首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Larval stages of the Pacific white shrimp, Litopenaeus vannamei (Boone) were fed standard live diets of mixed microalgae from the first to the third protozoea (PZ1 to PZ3), followed by Artemia nauplii until post‐larvae 1 (PL1). Trypsin enzyme activity for each larval stage was determined using N‐α‐p‐toluenesulphonyl‐l ‐arginine methyl ester (TAME) as a substrate. Results were expressed as enzyme content to assess ontogenetic changes during larval development. Tissue trypsin content (IU µg?1 DW for each larval stage) was significantly highest at the PZ1 stage and declined through subsequent stages to PL1. This contrasts with previously observed patterns of trypsin development in Litopenaeus setiferus (Linnaeus) and other penaeid genera, which exhibit a peak in trypsin activity at the third protozoea/first mysis (PZ3/M1) larval stage. Litopenaeus vannamei larvae transferred to a diet of Artemia at the beginning of the second protozoea (PZ2) stage were significantly heavier on reaching the first mysis stage (M1) than those fed algae, while survival was not significantly different between treatments. At both PZ2 and PZ3 stages, trypsin content in larvae feeding on Artemia was significantly lower than in those feeding on algae. The rapid decline in trypsin content from PZ1 and the flexible enzyme response from PZ2 suggest that L. vannamei is physiologically adapted to transfer to a more carnivorous diet during the mid‐protozoeal stages.  相似文献   

2.
Although ethylenediaminetetraacetic acid (EDTA) is used routinely in the intensive culture of penaeid shrimp larvae to increase both the percentage of eggs that hatch and the survival of larvae, the mode of action is not known. To explain EDTA's beneficial effect this study compares the toxicities of copper and manganese divalent ions in the presence and absence of 10 mg EDTA/liter seawater. Toxicity was evaluated in terms of the percentage of Penaeus stylirostris nauplii surviving after 12 and 24 hours of exposure to either copper or manganese and in terms of the percentage of nauplii that metamorphose to the protozoeal stage. In the absence of EDTA, copper and manganese ions were toxic to nauplii with copper causing 100% mortality at a much lower concentration (20 μM) than manganese (20,000 μM). In the presence of EDTA, survival of nauplii exposed to copper was increased but survival of nauplii exposed to manganese was not affected. At concentrations lower than the levels that reduce survival, copper ions (0.2 μM) and manganese ions (2 μM) reduce the percentage of nauplii that metamorphose to protozoea. In the presence of EDTA, the percentage of nauplii that metamorphose to protozoea is increased with both nauplii exposed to copper ions and nauplii exposed to manganese ions. The beneficial effects of EDTA are probably due to the chelation of copper and manganese ions by EDTA. Chelation lowers the free concentration of these ions and thus reduces their toxicities.  相似文献   

3.
Microbound feeds have been well accepted by shrimps and farmers in many penaeid shrimp hatcheries. The present study focused on an adequate level of replacement of Artemia nauplii and microalgae by a microbound diet for rearing Litopenaeus setiferus (Burkenroad) larvae. A microbound diet (MBD) consisting of fishmeal, squid meal, shrimp meal, yeast meal and soybean meal was used. The first experiment was designed to obtain the optimum level of MBD to complete the live feeding schedule, from Protozoea (PZIII) to Mysis (MIII). The experimental levels of the microbound diet tested were 2, 4, 6 and 8 mg MBD L?1 day?1. The next step was to determine the Artemia nauplii replacement level from PZI to MIII by MBD. These experiments were carried out either in the presence (Experiment 2) or in the absence of algae (Experiment 3). Four replacement levels were tested: 0% (4 mg MBD L?1 day?1: 1 Artemia nauplii mL?1), 40% (5.5 mg MBD L?1 day?1: 0.6 Artemia nauplii), 60% (6.5 mg MBD L?1 day?1: 0.4 Artemia nauplii) and 100% (8 mg MBD L?1 day?1: 0 Artemia nauplii). In all experiments growth, survival, development, quality index (QI) and performance index (PI), were used to determine the optimum concentration of microbound diet. Results showed that 6 mg MBD L?1 day?1 can be recommended as a complement to live food for L. setiferus larvae from PZIII to MIII. In the presence of algae, maximum growth and survival may be obtained in 40–60% (5.5–6.5 mg MBD L?1 day?1) of Artemia nauplii replacement levels. In the absence of algae, the Artemia nauplii replacement resulted in slower development, less salinity resistance, lower growth and lower survival than was obtained in larvae fed with algae.  相似文献   

4.
This study evaluated the use of live and frozen copepods collected from shrimp ponds for rearing juveniles of the spotted seahorse Hippocampus kuda. Protein and HUFA contents in frozen copepods were all higher than in Artemia nauplii, the conventional live food for seahorse juveniles. The results of this study showed that copepods can be used as feed for rearing seahorse fry and juvenile. The spotted seahorse showed obvious preference for live copepods and rarely fed on dead copepods on the tank bottom. Furthermore, the combination of frozen copepods and live Artemia nauplii resulted in highest growth and highest survival of the experimental seahorses. Further research on possible effects of DHA:EPA ratio on survival and growth of young H. kuda is recommended.  相似文献   

5.
The effect of different food items on growth and survival was assessed in four feeding experiments conducted consecutively using distinct Farfantepenaeus paulensis (Pérez‐Farfante) postlarval growing stages: (1) PL1–PL4 (i.e. from postlarvae 1‐day old to postlarvae 4 days old); and (2) PL4–PL10; (3) PL10–PL18 and (4) PL18–PL30. For each trial, 10 feeding treatments were tested in triplicate: Unf, unfed shrimp; Tt, Tetraselmis chuii; Ch, Chaetoceros calcitrans; C, commercial diet; AC, decapsulated Artemia cysts; C+Ph, commercial diet and phytoplankton combination; FA, frozen Artemia nauplii; A, live Artemia nauplii; A+Ph, Artemia nauplii and phytoplankton combination and Mix, mixture of phytoplankton, live Artemia nauplii and commercial diet. Postlarvae feed phytoplankton (i.e. Tt or Ch) exclusively exhibited low growth and survival. The best results for growth and survival were observed in the A, A+Ph and Mix treatments. Frozen Artemia nauplii was found to be suitable for younger postlarvae (PL1–10), whereas AC may be offered from PL4 to PL30. In general, the present findings indicated that even at an early postlarval stage, F. paulensis presents a high degree of carnivory, and a diet containing Artemia is recommended.  相似文献   

6.
This work reports on the successful incorporation of commercial formulated Artemia replacement diets as 50% of a larval American lobster diet. Combination diets of either live Artemia nauplii or frozen adult n-3 fatty acid enriched Artemia with a rotation of three commercial formulated diets resulted in equivalent survival to stage IV (19–25%), postlarval size and subsequent early juvenile performance compared to an Artemia nauplii plus frozen Artemia combination diet. A 100% formulated diet resulted in reduced larval survival (6%) and postlarval size, while a larval diet of 100% frozen adult Artemia resulted in reduced postlarval quality and early juvenile performance. The much lower price of the formulated diets compared to the prices of Artemia nauplii and frozen Artemia makes its inclusion in the lobster larval diet the most cost-effective diet choice.  相似文献   

7.
Nutritional efficacy of fairy shrimp (Streptocephalus sirindhornae) nauplii, as a live food, was studied for growth performance and survival rate of giant freshwater prawn (Macrobrachium rosenbergii) postlarvae. A feeding experiment was designed with four different feeds: dry commercial feed, fairy shrimp nauplii, Artemia sp. nauplii and adult Moina macrocopa. Results from the nutritional composition revealed that fairy shrimp nauplii had protein and lipid contents of 54.58 ± 2.8 g kg?1 and 255 ± 2.8 g kg?1, respectively. The highest value for an individual amino acid in fairy shrimp was lysine (140.7 ± 1.6 g kg?1). The essential amino acids content in the whole body of the larval prawns was in the range of 66.7–67.5 g kg?1. Fairy shrimp nauplii had the highest essential amino acid ratio (A/E) of lysine, similarly, in musculature of prawn larvae. Weight gain and specific growth rate of the postlarvae fed with fairy shrimp nauplii were significantly higher than those fed with Artemia nauplii, adult Moina and dry commercial feed. The presented results suggest that S. sirindhornae nauplii can be used as a nutritionally adequate food for freshwater prawn M. rosenbergii postlarvae.  相似文献   

8.
An artificial diet for shrimp larvae was microencapsulated with a polysaccharide blend [66% gum arabic, 17% mesquite gum and 17% maltodextrin 10 dextrose equivalent (DE)]. Microencapsulated diet (MD) was fed to mysis alone, as a co‐feed with the microalgae Chaetoceros cerastosporum and Tetraselmis chuii (mixed) and compared with a live diet (control) of C. cerastosporum, T. chuii and Artemia nauplii. No significant differences (P > 0.05) were detected in growth rates, development and quality indexes of larvae fed the three experimental diets. All diets supported survival percentages of >90%. Shrimp larvae fed MD and mixed diets had higher specific trypsin activity and soluble protein content than those fed live diet. Amylase activity decreased in larvae fed the mixed and MD apparently due to the carbohydrate composition of the diet. The results indicate that it is possible to substitute a live diet with a microencapsulated one (with a wall composition made up of a polysaccharide blend) in Litopenaeus vannamei mysis.  相似文献   

9.
In three separate experiments, harpaticoid copepods Tisbe monozota (alive and dead) and a microparticulate microbound diet were evaluated as alternatives to live Artemia nauplii as food, beginning at either stage PZ2 or M1, in the larval culture of Litopenaeus vannamei. Larvae were cultured in 2 L round bottom flasks at a density of 150 L− 1 (Experiment 1) and 100 L− 1 ( 3.2 and 3.3) at 28 °C, 35‰ salinity and 12:12 LD photoperiod, and fed 4×/day- 1. Larvae were initially fed a mixture of phytoplankton to stages PZ2 or M1 and then fed either live Artemia, live or dead copepods, or a microparticulate microbound diet. The experiments were terminated and all larvae were harvested when more than 80% of larvae had molted to postlarvae 1 (PL1) within any flask representing any of the treatments. The comparative value of the different diets and feeding regimes was determined by mean survival, mean dry weight and total length of individual larva, and percentage of surviving larvae that were PL1. Trypsin activity of samples of larvae from each treatment was also determined. The microparticulate microbound diet effectively served as a complete substitute for Artemia nauplii when fed beginning at stage M1. When fed at the beginning of the PZ2 stage, survival was comparable to that of larvae fed Artemia, but mean dry weight, mean total length, and percent of surviving larvae that were PL1 generally were significantly less. Responses to the feeding of copepods, whether fed dead or live, as a substitute were generally significantly less than those of larvae fed either the Artemia nauplii or the microparticulate diet. Values of trypsin activity (10− 5 IU/μg- 1 dry weight) corresponded to the relative proportions of the different larval stages within a treatment, with higher activity being characteristic of early stages. Previously demonstrated successful results with another species of crustacean suggest that the microparticulate microbound diet has characteristics that should be effective in the culture of the carnivorous stages of other crustacean and fish larvae that are currently fed live Artemia nauplii.  相似文献   

10.
Brachionus plicatilis and Artemia nauplii were fed to a number of larval stages of the penaeid prawn Penaeus indicus to determine ingestion rates, larval energy requirements and to establish at which stage larval predation commenced. The raptorial feeding rates were then contrasted on an energy basis with filter feeding rates for P. indicus larvae to compare the relative efficiency of these two feeding mechanisms. Brachionus was first eaten as early as protozoea 1 to protozoea 2, while the maximum ingestion rate of 300 rotifers larva?1 d?1 (1.06 J larva?1 d?1) was obtained during protozoea 3 to mysis 1. Artemia were effectively ingested by P. indicus protozoea 3 (4.1 J larva?1 d?1) to post-larva (8.2 J larva?1 d?1). Daily energy intake rate from filter feeding increased from 1.1 J larva?1 d?1 during protozoea 1 to reach a peak of 5.32 J larva?1 d?1 during mysis 3 after which it declined to 2.66 J larva?1 d?1 during the post-larval stage. This decline in energy intake from filter feeding with a concomitant increase in energy intake from Artemia predation demonstrates a predominant feeding mode changeover point during mysis 3. Energy intake was consistently low with Brachionus, indicating that it may be unnecessary for commercial culture purposes.  相似文献   

11.
This study proposed the use of the stable isotope technique to track the type of food utilized by pacu Piaractus mesopotamicus larvae during their development, and to identify the moment when the larvae start using nutrients from the dry diet by retaining its carbon and nitrogen atoms in their body tissues. Five‐day‐old pacu larvae at the onset of exogenous feeding were fed Artemia nauplii or formulated diet exclusively; nauplii+formulated diet during the entire period; or were weaned from nauplii to a dry diet after 3, 6 or 12 days after the first feeding. δ13C and δ15N values for Artemia nauplii were ?15.1‰ and 4.7‰, respectively, and ?25.0‰ and 7.4‰ for the dry diet. The initial isotopic composition of the larval tissue was ?20.2‰ and 9.5‰ for δ13C and δ15N respectively. Later, at the end of a 42‐day feeding period, larvae fed Artemia nauplii alone reached values of ?12.7‰ and 7.0‰ for δ13C and δ15N respectively. Larvae that received the formulated diet alone showed values of ?22.7‰ for δ13C and 9.6‰ for δ15N. The stable isotope technique was precise, and the time at which the larvae utilized Artemia nauplii, and later dry diet as a food source could be clearly defined.  相似文献   

12.
Brine shrimp Artemia, the most common live food organism used in larviculture, can reproduce either oviparously (production of dormant cysts) or ovoviviparously (direct production of nauplii), depending on environmental conditions. Ovoviviparous Artemia nauplii have seldom been considered as a source of live food in aquaculture, partly due to the convenience and the developed techniques associated with the production and use of the dormant cysts. In many countries in Africa, however, hatchery managers do not have access to a reliable supply of affordable good quality cysts. In this study, we therefore demonstrated the potential of a system designed for the continuous ovoviviparous production of nauplii at low salinity, using Great Salt Lake Artemia franciscana and micronized agricultural material as feed. The suitability of the produced nauplii was tested by feeding them directly to Clarias gariepinus larvae in comparison with oviparous nauplii and decapsulated cysts. Higher survival (100%), better protein efficiency ratio (2.6 ± 0.1) and food conversion ratio (1.0 ± 0.1) was observed in larvae fed with the ovoviviparous nauplii (p < 0.05). Overall, we conclude that the ovoviviparous nauplii could serve as an alternative live food for larval fish. If optimized, the system could be validated for integration in hatcheries.  相似文献   

13.
High mortality frequently occurs in larval mass production of Korean rockfish, Sebastes schlegeli Hilgendorf. Nutritional deficiencies in live feeds, rotifers and Artemia nauplii, fed to larvae could be a reason. A series of experiments was carried out to evaluate the effect of nutritional enrichment of live feeds by ω‐yeast, Spirulina powder and Super SelcoTM on survival and growth rates in rockfish larvae. Preference of rockfish larvae for the live feeds was determined by analysis of stomach contents. In addition, the effect of green water produced by the use of Chlorella ellipsoidea and Spirulina powder on the growth performance of larvae was evaluated. Larvae fed rotifers nutritionally enriched with Super Selco showed significantly higher survival rates than those fed rotifers enriched with ω‐yeast. Larvae fed rotifers that were nutritionally enriched with both Super Selco and Spirulina together exhibited improved growth and survival rates. Larvae fed Artemia nauplii nutritionally enriched with Spirulina powder showed significantly higher survival than larvae fed Artemia nauplii without enrichment. When larvae were fed rotifers, Artemia nauplii or the mixture of rotifers and Artemia nauplii, the second and last group showed significantly higher survival than the first group. Fatty acid composition in live feeds was improved by enrichment of ω‐yeast and larvae fed this feed showed higher survival and growth rates compared with larvae fed non‐enriched feeds. No positive effect of green water in the tank produced with C. ellipsoidea or Spirulina powder was observed on survival and growth rates for larvae fed nutritionally enriched rotifers with Super Selco and Spirulina powder. However, when the larvae were fed Artemia nauplii that were nutritionally enriched with ω‐yeast and Spirulina powder, green water obtained by adding Spirulina powder to the tanks resulted in significantly higher growth rates of larvae than was obtained by adding C. ellipsoidea.  相似文献   

14.
Many coral reefs are threatened because of anthropogenic impacts such as destructive fishing methods for marine ornamentals. The marine ornamental industry is currently almost completely dependent upon wild collections. The development of commercially feasible methods to culture ornamental species could help to reduce the need for wild‐collected specimens and reduce pressure on coral reefs. Advances in larval rearing and nutrition would help overcome the bottlenecks that impede the commercial production of many marine ornamental species. This article focuses on research for improving the production of the fire shrimp, Lysmata debelius. Experiments were performed with larval fire shrimp to evaluate (1) the importance of essential fatty acid enrichment of live prey (rotifers and Artemia) and (2) feeding penaeid shrimp muscle tissue to improve survival to metamorphosis. We also provide the fatty acid composition of Day‐1 posthatch fire shrimp larvae. The enrichment of live prey with docosahexaenoic acid did not improve larval growth, survival, or time to metamorphosis, but larvae fed live prey together with pureed penaeid shrimp muscle had survival rates of 9.8 ± 1.2%. The data and protocols developed in this study provide a foundation and baseline for future fire shrimp larval studies.  相似文献   

15.
We have evaluated the potential of a formulated diet as a replacement for live and fresh feeds for 7-day post-hatch Panulirus ornatus phyllosomata and also investigated the effect of conditioning phyllosomata for 14–21 days on live feeds prior to weaning onto a 100% formulated diet. In the first trial, the highest survival (>55%) was consistently shown by phyllosomata fed a diet consisting of a 50% combination of Artemia nauplii and 50% Greenshell mussel, followed by phyllosomata fed 50% Artemia nauplii and 50% formulated diet and, thirdly, by those receiving 100% Artemia nauplii. The second trial assessed the replacement of on-grown Artemia with proportions of formulated diet and Greenshell mussel that differed from those used in trial 1. Phyllosomata fed a 75% combination of formulated diet and 25% on-grown Artemia and 50% on-grown Artemia and 50% Greenshell mussel consistently showed the highest survival (>75%). Combinations of Greenshell mussel and formulated diet resulted in significantly (P < 0.05) reduced survival. In trial 3, phyllosomata were conditioned for 14, 18 or 21 days on Artemia nauplii prior to weaning onto a 100% formulated diet, which resulted in survival rates that were negatively related to the duration of feeding Artemia nauplii. In the final trial, phyllosomata were conditioned for 14 days on live on-grown Artemia prior to weaning onto one of three formulated diets (one diet with 44% CP and two diets with 50%). Phyllosomata fed a 44% CP diet consistently showed the highest survival (>35%) among all treatments, while those fed a 50%-squid CP diet showed a significant (P < 0.05) increase in mortality at day 24. The results of these trials demonstrate that hatcheries can potentially replace 75% of live on-grown Artemia with a formulated diet 7 days after hatch. The poor performance associated with feeding combinations of Greenshell mussel and formulated diet, and 100% formulated diet as well as conditioning phyllosomata for 14–21 days on live feeds prior to weaning onto a formulated diet highlights the importance of providing Artemia to stimulate feeding.  相似文献   

16.
An alternative larval shrimp feeding regime, in which umbrella‐stage Artemia were constituting the first zooplankton source was evaluated in the culture of Litopenaeus vannamei. In a preliminary experiment, umbrella‐stage Artemia were fed to larvae from zoea 2 (Z2) to mysis 2 (M2) stages to identify the larval stage at which raptorial feeding starts and to determine daily feeding rates. The following experiment evaluated the performance of two feeding regimen that differed during the late zoea/early mysis stages: a control treatment with frozen Artemia nauplii (FAN), and a treatment with frozen umbrella‐stage Artemia (FUA). The ingestion rate of umbrella‐stage Artemia increased from nine umbrella per larvae day?1 at Z2 stage to 21 umbrella per larvae day?1 at M2. A steep increase in ingestion and dry weight from Z3 to M2 suggests a shift to a raptorial feeding mode at the M1 stage. Treatment FUA exhibited a significantly higher larval stage index (P < 0.05) during the period that zoea larvae metamorphosed to the mysis stage, and a higher final biomass, compared with treatment FAN. Based on these results and on practical considerations, a feeding regime starting with umbrella‐stage Artemia from Z2 sub‐stage can be recommended for L. vannamei larvae rearing.  相似文献   

17.
Sutchi catfish Pangasianodon hypophthalmus hatch with morphologically immature sensory organs; however, sensory organs develop rapidly with larval growth. Two-day-old larvae commenced ingesting Artemia nauplii. The larvae displayed many taste buds on the barbels, the head surface, and in the buccal cavity. Other sense organs were also well developed at this stage. Feeding experiments revealed that 2-day-old larvae ingested Artemia under both light and dark conditions, moreover, the larvae could ingest frozen dead Artemia. The ingestion rates for 4- and 7-day-old larvae were significantly higher under dark conditions than under light conditions. The rates using frozen dead Artemia were mostly higher than the rates using live Artemia. Therefore, feeding behavior under dark conditions is most likely not mediated by visual or mechanical senses, but rather by chemosensory senses, such as taste buds. Larval fish are vulnerable to predators; thus, if they can search for and eat food at night, they can avoid diurnal predators. The behavior observed here appears to represent their survival strategy. Moreover, these results suggest a new possibility that sutchi catfish larvae can be reared under dark or dim light conditions in order to improve survival and growth rates as in the case of African catfish Clarias gariepinus.  相似文献   

18.
It is not known whether rotifers or Artemia nauplii are the best first food for South African mud crab Scylla serrata larvae. In order to test this, larvae were fed with five different test diets. These were rotifers for the first 8 days and newly hatched EG® type Artemia nauplii (San Francisco Bay) from day 6 onwards (treatment R6A); newly hatched EG® type Artemia nauplii throughout the rearing period (treatment EG); newly hatched Vinh-Chau strain (Vietnam) Artemia nauplii throughout the rearing period (treatment VC); decapsulated cysts of EG® type Artemia throughout the rearing period (treatment DECAP); or decapsulated cysts supplemented with low densities of Artemia EG type Artemia nauplii (treatment MIX). Two experiments were conducted approximately 1 month apart using larvae from two different female crabs. Although results showed it is possible to rear S. serrata larvae through metamorphosis on Artemia nauplii exclusively, larval performance (development, survival and successful metamorphosis) was enhanced by the inclusion of rotifers as a first feed.No significant difference in performance was recorded between larvae fed on the two strains of Artemia nauplii. Larvae fed on decapsulated cysts in treatments DECAP and MIX performed poorly, but there were indications that decapsulated cysts and other inert diets may have potential as supplements to live food in the rearing of S. serrata larvae.  相似文献   

19.
An experiment was conducted to evaluate the effect of different forms of Artemia biomass as a food source on survival, molting and growth rate of mud crab Scylla paramamosain. Instar 1 crablets with a mean weight of 0.0082 ± 0.0007 g were reared both individually and communally and fed with different diets consisting of fresh shrimp meat (control feed), live Artemia biomass, frozen Artemia biomass and a dried Artemia‐based formulated feed for 40 days. The highest survival was obtained for crablets receiving live Artemia (92.5% and 75.8%) followed by the groups fed with frozen biomass (90.0% and 47.5%), the control feed (72.5% and 24.2%) and the dried Artemia‐based diet (60.0% and 21.7%) for individual and communal cultures, respectively. The intermolt period, the total number of moltings and the growth rate, which were determined on individually reared crabs, showed the same pattern as for survival. The results suggest that crab performance decreased in the following order: live Artemia>frozen Artemia > fresh shrimp meat > dried Artemia‐based formulated feed. Live Artemia biomass proved an ideal feed for nursery of Scylla paramamosain crabs. Frozen Artemia biomass may be an alternative in times of shortage. Our findings illustrate the high potential for local utilization of Artemia biomass in Vietnam for reliable production of mud crab juveniles.  相似文献   

20.
Larvae of two caridean shrimp species, Macrobrachium rosenbergii (De Man) and Palaemon elegans Rathke, were fed live and artificial diets. P. elegans larvae fed exclusively live Artemia salina (15 nauplii mL?1) developed into first postlarval stage (PL1) within 12 days at a temperature of 25°C and salinity 32.5 g L?1. Their survival and mean total length at this stage were 88.5% and 6.7 mm respectively. M. rosenbergii larvae fed on 15 Artemia mL?1 started to metamorphose into PLl within 24 days at 29–30°C and 12 g L?1. Attempts to completely replace live Artemia for rearing P. elegans during early stages failed, and only a partial replacement was achieved for the larvae of both species. P. elegans larvae survived (49%) solely on a microgranulated diet (Frippak PL diet) from stage zoea (Z) 4–5 to PL1. Similarly, a microencapsulated diet (Frippak CD3) also sustained M. rosenbergii larvae from Z5–6 to PL1 with a 28% survival. Development of the larvae of both species was retarded by 2–3 days and their survivals were lower than those fed on the live diet. The inability of the early larvae of these caridean species to survive on artificial diets is attributed to their undeveloped guts and limited enzymatic capabilities. Trypsin activity in the larvae was determined for all larval stages. It was found that the highest trypsin activity, at stage Z4–5 in P. elegans and at stage Z5–6 in M. rosenbergii, coincides with a rapid increase in the volume of the hepatopancreas and the formation of the filter apparatus. These morphological changes in the gut structure appear to enable the larvae to utilize artificial diets after stage Z5–6. Low larval trypsin activities may be compensated by the easily digestible content of their live prey during early larval stages (Z1–Z4/5) and by longer gastroevacuation time (GET) and almost fully developed guts during later stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号