首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intensive production of ictalurid catfish in the USA has increased over the past several years, and a better understanding of the amount of organic carbon (OC) and dissolved oxygen (DO) in these culture environments is needed. Budgets for OC and DO were estimated over a production season (March to November) for an in‐pond raceway system for channel catfish, Ictalurus punctatus, and hybrid catfish (channel catfish × blue catfish, Ictalurus furcatus), with co‐culture of paddlefish, Polyodon spathula, and Nile tilapia, Oreochromis niloticus. Feed input ranged from 45 to 263 kg/ha/d with an overall average of 80 kg/ha/d. Production of each kilogram of live catfish required 1.5 kg of feed and released into the water 0.70 kg of OC, and led to the synthesis of an additional 3.36 kg of OC by photosynthesis. Consequently, production of 1 kg of live catfish resulted in 4.06 kg OC, and harvest of catfish accounted for only 29.5% of OC applied from the feed. Removal of OC increased to 34.3% with the additional harvest of paddlefish and tilapia. OC was consumed in respiration, and some OC accumulated in sediment. Total respiration within the system exceeded the DO produced by photosynthesis, while diffusion and mechanical aeration aided in maintaining suitable DO levels for fish production.  相似文献   

2.
A 2 ± 4 factorial experiment was conducted to examine effects of dietary protein level (28, 32, 36, and 40%) and feeding rate (satiation or ± 90 kg/ha per d) on production characteristics, processing yield, body composition, and water quality for pond-raised channel catfish Ictalurus punctatus. Fingerling channel catfish with a mean weight of 64 g/fish were stocked into 40 0.04-ha ponds at a rate of 17,290 fish/ha. Fish were fed once daily to apparent satiation or at a rate of ± 90 kg/ha per d for 134 d during the growing season. Dietary protein concentration had no effect on feed consumption, weight gain, feed conversion, survival, aeration time, or on fillet moisture, protein, and fat levels. Fish fed to satiation consumed more feed, gained more weight, had a higher feed conversion, and required more aeration time than fish fed a restricted ration. Visceral fat decreased, and fillet yield increased as dietary protein concentration increased to 36%. Carcass yield was lower for fish fed a diet containing 28% protein. Increasing feeding rate increased visceral fat but had no major effect on carcass, fillet, and nugget yields. Fish fed to satiation contained less moisture and more fat in the fillets that those fed a restricted ration. Nitrogenous waste compounds were generally higher where the fish were fed the higher protein diets. Although there was a significant interaction in pond water chemical oxygen demand between dietary protein and feeding rate, generally ponds in the satiation feeding group had higher chemical oxygen demand than ponds in the restricted feeding group. There was a trend that pond water total phosphorus levels were slightly elevated in the satiation feeding group compared to the restricted feeding group. However, pond water soluble reactive phosphorus and chlorophyll-a were not affected by either diet or feeding rate. Results from the present study indicate that a 28% protein diet provides the same level of channel catfish production as a 40% protein diet even when diet is restricted to 90 kg/ha per d. Although there was an increase in nitrogenous wastes in ponds where fish were fed high protein diets, there was little effect on fish production. The long term effects of using high protein diets on water quality are still unclear. Feeding to less than satiety may be beneficial in improving feed efficiency and water quality.  相似文献   

3.
Threadfin shad Dorosoma petenense are often stocked into commercial catfish ponds for biological control of algae. It is thought that the fish will alter the phytoplankton community, improve water quality, and enhance channel catfish production. Co-stocking of shad and catfish is a common practice, although there is limited information regarding the effects of threadfin shad on pond dynamics and catfish production. To evaluate the influence of shad in catfish ponds, this study was conducted in ten 0.04-ha experimental earthen ponds near Auburn, Alabama. All ponds were stocked in April with 600 fingerling channel catfish Ictal-urus punctatus (13,200/ha) with a mean length of 10.4 cm (4.1 in). Additionally, five of these ponds were randomly chosen and stocked with 70 adult threadfin shad (1,750/ha) weighing a total of 3.3 kg (16.5 kg/ha). At harvest in November, an average of 1,284 threadfin shad (32,100/ha), weighing a total of 55 kg (1,375 kg/ha) were collected from each shad pond. Water quality was improved with the addition of threadfin shad to channel catfish ponds. Mean total ammonia-nitrogen was significantly lower and less variable in the shad treatment. Observed mean nitrite concentrations, though not significant, were lower in the shad treatment. The phytoplankton community of the shad treatment had significantly higher density, more taxa, and smaller organisms. Pond water in the shad treatment had higher projected early morning dissolved oxygen levels requiring less aeration. Channel catfish had significantly higher survival in the shad treatment, furthermore, though not statistically significant, observed mean fish production was higher and feed conversion ratio was lower than in the no-shad treatment.  相似文献   

4.
An environmental assessment was made of Alabama channel catfish Ictalurus punctatus farming which is concentrated in the west‐central region of the state. There are about 10,000 ha of production ponds with 10.7% of the area for fry and fingerlings and 89.3% for food fish. Food fish production was about 40,800 tons in 1997. Watershed ponds filled by rainfall and runoff make up 76% of total pond area. Water levels in many of these ponds are maintained in dry weather with well water. The other ponds are embankment ponds supplied by well water. Harvest is primarily by seine‐through procedures and ponds are not drained frequently. The main points related to Alabama catfish farming and environment issues are as follows: 1) catfish farming in Alabama is conservative of water, and excluding storm overflow, about two pond volumes are intentionally discharged from each pond in 15 yr; 2) overflow from ponds following rains occurs mostly in winter and early spring when pond water quality is good and stream discharge volume is high; 3) total suspended solids concentrations in pond effluents were high, and the main sources of total suspended solids were erosion of embankments, pond bottoms, and discharge ditches; 4) concentrations of nitrogen and phosphorus in effluents were not high, but annual effluent loads of these two nutrients were greater than for typical row crops in Alabama; 5) ground water use by the industry is about 86,000 m3/d, but seepage from ponds returns water to aquifers; 6) there is little use of medicated feeds; 7) copper sulfate is used to control blue‐green algae and off‐flavor in ponds, but copper is rapidly lost from pond water; 8) although sodium chloride is applied to ponds to control nitrite toxicity, stream or ground water salinization has not resulted from this practice; 9) fertilizers are applied two or three times annually to fry and fingerling ponds and occasionally to grow‐out ponds; 10) hydrated lime is applied occasionally at 50 to 100 kg/ha but this does not cause high pH in pond waters or effluents; 11) accumulated sediment removed from pond bottoms is used to repair embankments and not discarded outside ponds; 12) sampling above and below catfish pond outfalls on eight streams revealed few differences in stream water quality; 13) electricity used for pumping water and mechanical aeration is only 0.90 kW h/kg of production; 14) each metric ton of fish meal used in feeds yields about 10 tons of dressed catfish. Reduction in effluent volume through water reuse and effluent treatment in settling basins or wetlands does not appear feasible on most farms. However, some management practices are recommended for reducing the volume and improving the quality of channel catfish pond effluents.  相似文献   

5.
The US catfish industry is evolving by adopting production‐intensifying practices that enhance productivity. Catfish producers have increased aeration rates over time, and some now use intensive rates of aeration (>9.33 kW/ha). Costs and production performance were monitored at commercial catfish farms using high levels of aeration (11.2–18.7 kW/ha) in Alabama, Arkansas, and Mississippi. A multivariate‐cluster analysis was used to identify four different management clusters of intensively aerated commercial catfish farms based on stocking density, size of fingerlings at stocking, and feed conversion ratios (FCR). Breakeven prices of hybrid catfish raised in intensively aerated pond systems were estimated to range from $1.86/kg to $2.17/kg, with the lowest costs associated with the second greatest level of production intensity. The two medium‐intensity clusters generated sufficiently high revenues for long‐term profitability. However, the least‐intensive and the most‐intensive clusters were economically feasible only when catfish and feed prices were closer to less probable market prices. Feed price, FCR, and yield contributed the most to downside risk. Intensive aeration in catfish ponds, up to the levels analyzed in this study, appears to be economically feasible under the medium‐intensity management strategies identified in this analysis.  相似文献   

6.
Continuous dissolved oxygen (DO) measurements were analyzed to evaluate the rates of pond metabolic processes related to productivity and respiration in three commercial catfish ponds in northwest Mississippi. Multiple regression models were constructed to assess the relative importance of various forcing functions on indices of net primary productivity (NPP) and whole pond respiration (WPR), duration of automated aeration, and DO concentration below various threshold values. Water temperature, solar radiation, wind run, cumulative feed, and lagged values of these parameters were considered as forcing functions. Generally, NPP and WPR were most strongly affected by water temperature and only weakly related to solar radiation. The duration of nightly aeration was also strongly related to water temperature, although 10-d cumulative feed was an important predictor in one pond. The best predictors of duration of DO below certain threshold values were NPP, WPR and wind run, the importance of which varied depending upon the pond and the threshold value considered. Change in feeding rate from one day to the next was inversely related to feeding rate on the previous day. The results of this analysis suggest that NPP and WPR rates, and the duration of required nightly aeration in commercial catfish ponds are controlled by factors not amenable to practical management control.  相似文献   

7.
There is increasing interest in intensive production of Ictalurid catfish in the United States and a better understanding of water quality dynamics in intensive culture is needed. Budgets for water, nitrogen, and phosphorus were estimated over a production season (March–November) for an In‐pond Raceway System for channel catfish, Ictalurus punctatus, and hybrid catfish, I. punctatus×I. furcatus, with co‐culture of paddlefish, Polyodon spathula, and Nile tilapia, Oreochromis niloticus. In addition to the rainfall and runoff, 70 cm of water was applied from a well to offset evaporation and seepage. Production of each kilogram of live catfish required 1.50 kg of feed and released 51.7 g nitrogen and 9.7 g phosphorus. Harvest of catfish accounted for 34.0% of nitrogen and 37.1% of phosphorus applied in feed. Seepage and overflow removed only small portions of nitrogen and phosphorus, while denitrification and ammonia volatilization removed large amounts of nitrogen. Some nitrogen accumulated in sediment. Phosphorus was harvested in fish and absorbed by pond sediment. Mechanical aeration aided in maintaining appropriate dissolved oxygen levels for fish production.  相似文献   

8.
The effect of Chinese waterchestnut (Eleocharis dulcis) on production of channel catfish (Ictalurus punctatus) and resulting water quality were studied in 1975 in 0.04-ha earthen ponds at Clemson University. Ponds containing waterchestnut had significantly lower levels of nitrate nitrogen and ammonia nitrogen. These lower nitrient levels resulted in lower phytoplankton levels in ponds with waterchestnut.Data indicated that Chinese waterchestnut had no effect on channel catfish production. Poor fish survival may have prevented detection of any effect of waterchestnut on catfish production.Chinese waterchestnut removed nutrients from the pond water. Mean nutrient removal per ha for the 201-day growing season was 108.06 kg of nitrogen, 6.90 kg of calcium, and 37.46 kg of magnesium. Mean corm production was 4664 kg per ha. These data indicate that Chinese waterchestnut should remove nutrients in sufficient quantities to improve water quality and allow increases in feeding rates and greater catfish production.  相似文献   

9.
Baitfish producers have expressed interest in adopting the split‐pond production system. However, confining fish to 20% of the pond area in split‐pond systems effectively quintuples fish density within the culture unit as compared with densities in open ponds. Winter conditions are known to be relatively more stressful on smaller fish, and high densities within split‐pond culture units could increase losses. A 139‐d study was conducted during the winter to compare the production of golden shiners, Notemigonus crysoleucas, in traditional earthen ponds and split ponds at two densities. Golden shiners were stocked at 646 kg/ha or 1292 kg/ha (ca. 370,500 or 741,000 fish/ha, respectively) into 12, 0.04‐ha, netted earthen ponds (six split ponds and six traditional). Feeding rate, nightly aeration hours, and daily circulation hours were reduced when water temperature decreased. At harvest, net yields were significantly lower in the split ponds as compared with traditional ponds at each density (53 and 113 kg/ha less in the low‐ and high‐density split‐pond treatments, respectively). Estimated survival was high (>87%) and did not differ among treatments. Results showed that, although net yield was reduced, small baitfish could be successfully overwintered in split‐pond culture units in preparation for the spring crappie market.  相似文献   

10.
We compared production variables between channel catfish, Ictalurus punctatus, nursery ponds fed according to industry standards, that is feeding immediately at stocking, to an alternative practice of delaying feeding for 6 wk after stocking in an effort to utilize natural pond productivity and reduce feed use. Twelve 0.04 ha ponds were fertilized and stocked with swim‐up fry (4–5 d posthatch) at a rate of 10,000/pond (250,000/ha). Ponds were then randomly assigned to either the standard feeding protocol (feeding daily starting immediately at stocking) or an alternative feeding protocol (no feeding until 6 wk post‐stocking). After 18 wk of production, there were no differences in water quality or zooplankton abundance between the two treatments. Fish length was not affected by treatment throughout the study, and survival and total weight harvested were similar. Total kg of feed fed was significantly reduced in the delayed feed treatment, averaging 26 kg/pond less feed fed. If proper fertilization practices are implemented, large numbers of desirable zooplankton for catfish fry culture are attained, and these zooplankton are able to sustain catfish fry stocked up to 250,000/ha. Therefore, no commercial diets are required during the first 6 wk of culture, saving over $95.55/ha in initial feed costs.  相似文献   

11.
Water temperature and water loss by evaporation were monitored in control ponds and in ponds with different rates of aeration (9.2, 18.4, 27.6 and 36.9 kW/ha). The mean decrease in water temperature at 70‐cm depth was greater than that at the surface in aerated ponds than in control ponds. The greater the aeration rate, the cooler was water, both at the surface and at 70 cm. Evaporation rates were found to increase with greater aeration rate. Water loss increased by 32%–92% over 24‐hr periods in ponds with one to four 0.37‐kW Air‐O‐Lator aerators, respectively. The nutrient‐enriched control pond was more turbid, had cooler surface and deep water temperature, and had greater evaporation loss than the control pond without nutrient addition and less turbid water. But, aeration did not increase turbidity. Aeration can increase water loss from ponds and result in lower water temperature. Although aeration should not be used excessively in order to conserve water and reduce production cost, it is essential for many types of feed‐based aquaculture.  相似文献   

12.
Resurgent wintering populations of double-crested cormorants in the past 10 years have caused serious depredation problems for commercial channel catfish ( Ictalurus punctarus ) growers in Mississippi. Catch rates of catfish by cormorants were found to average 5 catfish per cormorant-hour. Catfish taken averaged 12 cm in length. However, cormorants took fingerling catfish at rates as high as 28 per cormorant-hour. The average number of cormorants found feeding on a single pond in this study was 30.5. If this number (but not necessarily the same individuals) fed all day in an 8 ha pond stocked at 51,000 fishlha, the fish population would be halved in 30 days. Further, using this example, the cost of harassment patrols on a 200 ha catfish farm complex over a 5 month period would be exceeded in 22 days by the losses in this one pond. Wild gizzard shad ( Dorosoma cepedianum ) occurred in some ponds, and seem to be preferred by cormorants over caffish.  相似文献   

13.
Data collected from 45 commercial channel catfish, Ictalurus punctatus, ponds were used to develop empirical models predicting sediment oxygen demand (SOD). Seven acceptable models were combined with a Monte-Carlo sampling distribution to predict industry-wide sediment oxygen demand (SODi). The SODi values obtained from the best equation were used in simulations to assess the effect of diurnally varying water column dissolved oxygen (DO) concentrations on SOD and the effect of pond water depth on the contribution of SOD to overall pond respiration. Estimated SODi ranged from 62 to 962 mg m−2 h−1, with a mean of 478 mg m−2 h−1. There was a 95% probability of mean SODi being ≥700 mg m−2 h−1. The effects of diurnal variation in DO concentration in the water column on expression of SOD was modeled by combining maximum SODi, an empirical relationship between DO and SOD, and simulated pond DO concentrations. At DO concentrations >15 mg l−1, diel SOD in catfish ponds exceeded 20 g O2 m−2 day−1. But when average diel DO was <4 mg l−1 and the range of DO concentration was 6–8 mg l−1, SOD decreased to 13 g O2 m−2 day−1 because DO availability limited the full expression of potential SOD. Respiration totals for sediment (average SODi), plankton, and fish respiration were calculated for pond water depths ranging from 0.25 to 4 m. Although whole-pond respiration increases as pond depth increases, the proportion of total respiration represented by sediment decreased from 48 to 10% by increasing water depth over this range. The results of these studies show that SOD is a major component of total pond respiration and that certain management practices can affect the impact of SOD on pond oxygen budgets. Mixing ponds during daylight hours, either mechanically or by orienting ponds for maximum wind fetch, will increase oxygen supply to sediments, thereby allowing maximum expression of SOD and maximum mineralization of sediment organic matter. Given a mixed condition caused by wind or other artificial means, the construction of deeper ponds increases the total mass of DO available for all respiration, causing nighttime DO concentrations to decline at a slower rate, reducing the need for supplemental aeration. Because a pond’s water volume decreases over time from sediment accumulation, annual aeration costs will increase with pond age. Constructing ponds with greater initial depth will therefore reduce long-term cost of aeration, allow more flexible management of pond water budget, and reduce the long-term expense associated with pond reconstruction.  相似文献   

14.
A study of the biochemical oxygen demand (BOD) of waters from ten channel catfish ponds at Auburn, Alabama, revealed that the 5-d BOD (BOD5) seldom exceeded 8 mg/L and that the ultimate BOD (BODu) was usually less than 30 mg/L. Water samples from catfish ponds usually needed to be diluted only 2 or 3 times to permit BOD5 measurements, and nitrification occurred even during a 5-d incubation period. Catfish pond waters were not extremely high in ammonia nitrogen concentration, and ammonia nitrogen introduced in the ammonium chloride-enriched dilution water caused an appreciable increase in BOD of some samples. Plankton respiration is a major component of carbonaceous BOD (CBOD) in catfish pond waters. Thus, the BOD is not expressed as rapidly during 5-d incubations as in typical waste-water. The ultimate BOD (BODu) would be a good measurement of oxygen demand for catfish pond effluents, but it is difficult to measure. Data from this study suggest that BODu can be estimated from BOD5, but the correlation is not strong ( R 2= 0.62). An alternative is to develop a short-term BOD measurement specifically for effluents from channel catfish and other aquaculture ponds. This study suggests that a 10-d BOD conducted without nitrification inhibition or addition of ammonia nitrogen in dilution water might be a better alternative to standard BOD5 or BODu measurements normally used in wastewater evaluation.  相似文献   

15.
Unexplained deaths of pond-grown catfish have occurred for many years. At least some of these mortalities could be from cyanobacteria toxins ingested during feeding on floating diets or passively assimilated through gills during breathing. Recently we were able to document algal production and subsequent ingestion of these toxicants by catfish during a mortality event. The causative organism, Microcystis aeruginosa, was the dominant species within the phytoplankton community during the cooler autumn-winter season. Pond conditions included a drop in water temperature by c . 5 °C during the 10 days preceding the fish mortalities. Microcystin-LR, a hepatotoxin produced by Microcystis , was detected in water samples and in catfish liver tissue. Fish exposed to pond water containing this toxic bloom were killed within 24 h. Necropsy of fish revealed congested liver and spleen tissues. The combination of clinical signs, detection of microcystin LR in water and in liver, and death of fish exposed to pond water supports the diagnosis of microcystin toxicosis. More research is needed to identify specific environmental conditions initiating toxin production to model and predict occurrence of these toxic algal blooms.  相似文献   

16.
Ionic Supplementation of Pond Waters for Inland Culture of Marine Shrimp   总被引:1,自引:0,他引:1  
Saline well water used to fill ponds for inland culture of marine shrimp in Alabama often have low concentrations of potassium and magnesium. In 2002, pond waters on a shrimp farm were treated with enough muriate of potash and potassium-magnesium sulfate (K-Mag) to increase potassium concentration from 6.2 mg/L to about 40 mg/L and magnesium concentrations from 4.6 mg/L to about 20 mg/L. Salinity in ponds averaged 2.6 ppt at the time of mineral salt additions. The concentrations of potassium and magnesium remained fairly constant throughout the growing season without further applications of salts, and salinity increased to about 4 ppt mainly as a result of concentration through evaporation. Survival and production on the farm averaged 19% and 595 kg/ha, respectively, in 2001. In 2002, average survival improved to 67% and average production was 4,068 kg/ha. Ponds were stocked at similar rates and managed by similar procedures both years. Magnesium concentration was very low related to the concentration expected in normal seawater diluted to the same salinity as the pond water, while potassium was near the expected concentration. Thus, increased potassium concentration is thought to have influenced production much more than did the increase in magnesium concentration. K-Mag does not dissolve as readily as muriate of potash. Thus, K-Mag should not be dumped in shallow water areas of ponds to dissolve as can be done with muriate of potash. It should be broadcast over the pond surface, predissolved and splashed over the pond surface, or placed in porous bags suspended in front of aerators. Although a single application of mineral salts was effective, 2002 was a dry year. On a wet year, ions may be diluted or flushed out in overflow and more than one treatment with mineral salts might be necessary during the growing season.  相似文献   

17.
A control system was designed to raise and maintain water temperatures within 0.03-ha earthen ponds to a range conducive for spawning (24–30 °C) channel catfish Ictalurus punctatus. Heating was done during February 2001 to April 2001, when temperatures would have otherwise prohibited spawning (<24 °C). Temperature was increased from 10 °C (ambient) by 2 °C per day, and maintained at 27 °C, by the addition of geothermally warmed water (36 °C). The control system substantially increased the controllability and precision of heating ponds compared to manual operation. Systems were designed to control sets of four ponds. In designing this control system, consideration of biological constraints was essential. Reproduction in channel catfish is most strongly influenced by temperature. Because cold fronts are common during the winter and early spring (January–March), it was essential to ensure that pond temperatures did not fall below the range for spawning. Constraints on the heating rate and temperature variability to maintain fish health and stimulate spawning behavior were considered. Components of the control system included temperature measurement devices (type-T thermocouples), a central electronic control unit, electronic switches and electrically actuated ball valves. In response to the temperature sensed by each thermocouple, the controller sent a message to close or open the valve. When the valve was opened, warm water was added to the pond to increase the average pond temperature. Hardware and algorithm design and initial system testing were the major components of this project. The final design incorporated information on relevant biological parameters and safety features including peak pond temperature, independent aeration and water pressure control mechanisms. Initial results indicate successful control of this biological system, and ongoing studies suggest similar mechanisms may be used for additional control objectives. In particular, this system could be used to vary pond temperatures to study biological responses and to cool ponds by addition of well water during summer months.  相似文献   

18.
Abstract— Continuous aeration at 0.5–0.9 kWha during summer months increasingly has become a baitfish industry practice, with aerators also serving as water circulators. Our study examined the impact of circulating pond water on golden shiners Notemigonus crysoleucas produced by typical commercial practices. Ponds (0.04-ha) were circulated with 0.25-kW pumps during two consecutive summers. In the first trial juvenile golden shiners were stocked at 282,800/ha and treatment ponds circulated from 0900–1600 h. In the second trial, stocking rate and daily hours of circulation were increased (800,600 fishha and 24 h, respectively). After 56 d (trial 1). gross yields (mean ± SE) were 771 ± 69 and 668 ± 44 kgha for control (uncirculated) and circulated ponds, respectively. Second trial gross yields (63 d) were 1,330 ± 70 and 1,177 ± 61 kgha for the control and circulated treatments, respectively. While circulated ponds showed a reduction in stratification based on temperature and dissolved oxygen profiles, there were no significant differences in golden shiner growth, yield or survival. Under the conditions of our trials, water circulation was an ineffective culture practice.  相似文献   

19.
Three different pond bottom treatments were evaluated in 12 earthen ponds. Bottoms of four ponds on the Auburn University Fisheries Research Unit, Auburn, Alabama, were dried for 1 mo and tilled with a roto-tiller (dry-till treatment). Four other ponds were dried and tilled, and after filling with water, enough gypsum (calcium sulfate) was applied to give a total hardness of about 200 mg/L. Gypsum was reapplied as needed to maintain the hardness (dry-till with gypsum treatment). Four ponds were not subjected to bottom drying, tilling or gypsum treatment (controls). Channel catfish Ictalurus punctatus fingerings were stocked at 15,000/ha. Selected water quality variables were measured at 1- to 2-wk intervals during the growing season. Concentrations of most variables increased over time because feeding rate was increased progressively as fish grew. Compared to the controls, both treatments had lower concentrations of total phosphorus and soluble reactive phosphorus, and higher concentrations of dissolved oxygen ( P < 0.05). In addition, ponds of the dry-till with gypsum treatment had in addition lower concentrations ( P < 0.05) of chlorophyll a , chemical oxygen demand, gross primary productivity, and total alkalinity than control ponds. The reduction in chlorophyll a concentration suggested less phytoplankton in gypsum-treated ponds, and this effect was probably related to lower phosphorus availability because of calcium phosphate formation. Secchi disk visibility, total suspended solids concentrations, and turbidity did not differ significantly among the treatments ( P < 0.05). Total fish production and survival rate did not differ significantly ( P < 0.05) among the treatments. These findings suggest that water quality improvement can be achieved by drying and tilling pond bottoms between crops, and benefits possibly may be increased by treating low hardness waters with gypsum.  相似文献   

20.
Abstract— Laboratory studies with pond water samples revealed that 5 mg/L active chlorine was needed to provide enough chlorine residual to reduce biological activity. Treatment of channel catfish ponds with repeated, 0.1-mg/L doses of active chlorine from calcium hypochlorite at 6- to 8-d intervals, as sometimes done by catfish farmers, had little influence on water quality. Dissolved oxygen, total ammonia-nitrogen, and chlorophyll a concentrations and pH were similar between treated and control ponds. Concentrations of chemical oxygen demand and particulate organic matter were seldom different between treated and control ponds. Channel catfish survival and net production were not improved by chlorine treatment. Thus, chlorination of production ponds during the grow-out period is not a useful technique. Treatment of sediment samples from ponds with up to 1,200-mg active chlorinelkg soil did not reduce bacterial abundance, so chlorination of bottoms of empty ponds may not he an effective disinfection procedure. Chlorination of pond waters with 30-mg/L active chlorine caused complete kill of bacteria 24 h after treatment, although heterotrophic bacteria quickly re-populated the water. Thus, chlorination can be an effective way to disinfect ponds before stocking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号