首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
探讨了施氮量对高大气CO2浓度下小麦功能叶光合能量传递与分配的影响,进而明确氮素对小麦叶片光合作用适应性下调的能量分配调节作用。采用开顶式气室盆栽法,通过测定小麦拔节期和抽穗期不同大气CO2浓度和施氮水平下的叶氮浓度、光合速率–胞间CO2浓度(Pn–Ci)响应曲线和荧光动力学参数,测算光合电子传递速率和分配去向。与在正常CO2浓度(400 μmol mol-1)条件下相比,在高大气CO2浓度(760 μmol mol-1)下,小麦叶氮浓度显著下降,N200处理(200 mg kg-1)叶片抽穗期叶氮浓度的下降幅度较拔节期高335.7%。N200处理较N0处理(0 mg kg-1)提高小麦叶片光适应下PSII反应中心最大量子产额(Fv′/Fm′)、光化学效率(ΦPSII)和开放比例(qP),降低非光化学猝灭系数(NPQ)。高大气CO2浓度下,小麦叶片光化学反应的非环式光合电子传递速率(Jc)和Rubisco羧化速率(Vc)显著升高,而光呼吸的非环式光合电子传递速率(Jo)和Rubisco氧化速率(Vo)明显降低;施氮使Jc、Jo、Vc和Vo值均呈上升趋势,而且Jc和Vc达到显著差异。高大气CO2浓度下Jo/Jc和Vo/Vc显著降低,施氮后小麦拔节期叶片Jo/Jc和Vo/Vc降低,但抽穗期Jo/Jc升高而Vo/Vc无明显变化。叶氮浓度与小麦叶片Jc、Jo和Vo均呈显著线性正相关,而且高大气CO2浓度下小麦叶片Jc、Jo和Vo对氮浓度的敏感性降低。高大气CO2浓度下,小麦叶片PSII反应中心开放比例增加,非光化学耗能降低,更多的光合电子进入光化学过程;施氮后使小麦叶氮浓度增加,提高光合能力,改变了能量分配,这是高氮条件下光合作用适应性下调被缓解的一个关键因素。  相似文献   

2.
为阐明大气CO2浓度升高和不同氮素水平对湿地植物光合生理特性和生长的影响,本研究以三江平原湿地优势植物小叶章(Calamagrostis angustifolia)为研究对象,通过野外原位控制试验,利用开顶式气室(OTC)模拟环境大气CO2浓度变化,设置E0(380 ±20 µmol/mol)、E1(550 ±20 μmol/mol)和E2(700 ± 20 μmol/mol)3个CO2浓度;在每个OTC内设置 N0(0 g N/m2)、N1(4 g N/m2)和N2(8 g N/m2)3个氮素水平。结果表明,N0条件下,与E0处理相比,E1和E2处理(72 天)后小叶章叶片净光合速率分别降低11%和12%(P<0.05),其叶片可溶性蛋白含量、氮素含量(CO2熏蒸72 天)、小叶章株高(CO2熏蒸86 天)均显著低于E0处理(P<0.05);N1条件下,与E0处理相比,E1和E2处理(72 天)后小叶章叶片净光合速率降低5%(P>0.05)和10%(P<0.05),其叶片氮素含量(P<0.05)、小叶章株高均低于E0处理;N2条件下,E1和E2处理(72 天)小叶章净光合速率均呈稍增加的趋势(P>0.05),其叶片可溶性蛋白含量显著增加(P<0.05),氮素含量和小叶章株高无显著变化(P>0.05)。N0、N1和N2条件下,CO2浓度升高均显著增加了小叶章叶片可溶性糖含量。本研究表明长期CO2浓度升高可能通过降低小叶章叶片光合酶活性,进而降低了其净光合速率,而施加高浓度的氮肥可以缓解长期高CO2浓度对湿地植物光合及生长的负面影响。  相似文献   

3.
大气CO2浓度升高对小麦旗叶衰老和产量的影响   总被引:4,自引:0,他引:4  
通过对不同大气CO2浓度水平下的小麦观测试验,研究了大气CO2增加对小麦旗叶衰老过程中丙二醛、光合色素、净光合速率的影响以及产量构成的变化。结果表明,在大气CO2含量为550和750μmol/mol时,与大气CO2背景浓度相比,小麦灌浆过程中旗叶MDA含量分别下降了6.4%~15.0%和14.1%~18.9%,叶绿素含量则平均增加11.6%和16.7%,类胡萝卜素含量也同步增加10.1%和16.9%,同时高浓度CO2促进了净光合速率的提高,平均提高幅度分别为14.9%和22.1%,明显延缓了旗叶衰老进程。CO2含量增加提高了小麦小穗数、穗粒数和千粒重,产量分别增加13.3%和21.7%。  相似文献   

4.
水稻株高性状对大气CO2浓度升高的响应   总被引:2,自引:0,他引:2  
以粳稻品种Asominori与籼稻品种IR24的杂交组合所衍生的染色体片段置换系(CSSLs)为材料,田间试验分别在FACE(CO2浓度约570 µmol mol-1)和对照(CO2浓度约370 µmol mol-1)下,对水稻株高性状的数量性状位点(QTL)进行了分析。结果表明,Asominori和IR24的株高、穗长、上位第一节间长和上位第二节间长在FACE和对照下的差异达显著水平;供试株系的4个株高性状对CO2浓度升高都呈正负两种响应,其变化最大的株系为AI7和AI44(株高分别增加14.2 cm和降低4.54 cm),AI9和AI12(穗长分别增加3.56 cm和降低2.39 cm),AI39和AI27(上位第一节间长分别增加15.74 cm和降低1.49 cm),AI32和AI53(上位第二节间长分别增加8.09 cm和降低3.00 cm);FACE和对照下分别检测出14和15个QTL,分布在除第2、7、9和第10号染色体外的各染色体上,其中5个(qPH6-4、qPH8-4、qPL8-4、qPL12-4和qLFN6-4)在FACE和对照条件下同时检测到,分布在第6、8和第12染色体上,而其余的只在FACE或对照下检测到。这29个QTLs中,3个(qPH6-4QE、qPH8-4QE和qLSN5-4QE)具显著的基因型与环境互作。在不同的CO2环境下,测试性状发生不同程度的表型变异。结果推论,对CO2浓度增加敏感的QTL位点,可能受到CO2浓度增加的诱导,可见控制水稻株高性状的QTL与CO2增加的环境发生了互作效应。  相似文献   

5.
大气CO2浓度升高对作物形态生理及育种的影响   总被引:3,自引:0,他引:3  
大气CO2浓度升高使作物光合效率提高、生长速度加快、根系发达、株高增加、生育期缩短、产量提高、品质下降.因此,作物育种应培育相对晚熟品种,加强抗倒、抗病虫育种,注重品质改良.  相似文献   

6.
CO2浓度增加对小麦和玉米品质影响的实验研究   总被引:21,自引:0,他引:21  
通过3种CO2浓度(700×10-6、 500×10-6、 350×10-6) 模拟实验表明: CO2浓度增加使小麦籽粒的蛋白质、 赖氨酸、 脂肪含量增高, 淀粉含 量下降, 品质得到提高; 玉米则相反, 其蛋白质、 赖氨酸、 脂肪含量随CO2浓度升 高而减少, 淀粉含量略有增高, 品质有所下降。 700×10-6的小麦籽粒粗蛋白、 赖氨酸、 粗脂肪、 粗淀  相似文献   

7.
大气CO2浓度对大豆光能利用率和水分利用效率的影响   总被引:1,自引:0,他引:1  
通过不同大气CO2浓度控制试验,分析了大气CO2浓度升高对大豆光合速率、蒸腾速率等光合生理因子的影响,探讨了大气CO2增长状况下大豆光能利用率和水分利用效率的变化趋势。结果表明,与大气CO2背景浓度350μmol/mol相比,CO2浓度550μmol/mol水平下大豆开花期日平均光能利用率提高18.95%,当大气CO2浓度升至750μmol/mol时,提高幅度增大到33.79%。但在不同生育期光能利用率提高幅度存在差异,在大豆分枝期和开花期提高幅度较大,而在结荚期和鼓粒期提高幅度相对较小。大豆水分利用效率随着大气CO2浓度升高而大幅提高,二种高CO2浓度下大豆开花期水分利用效率分别提高24.08%和46.90%。  相似文献   

8.
通过在大型人工气候室内的试验、设计了350和700μl/L,两种C02浓度水平和高、中、低三种土壤水分处理,其土壤含水率范围分别为85%-100%, 65%-85%和45%-65%(占田间持水量的百分数),分析了土壤水分条件和大气CO2浓度增加的共同作用对小麦、玉米、棉花等作物蒸发蒸腾、光合速率、生长状况与干物质积累、水分利用效率的影响。  相似文献   

9.
为探究大气CO2浓度倍增对宁夏枸杞根区土壤微环境的影响,以宁夏枸杞为试验材料,用开顶气室模拟控制CO2浓度测得在大气CO2浓度倍增处理下根区土壤微生物数量与土壤酶活性的变化.大气CO2浓度倍增处理降低真菌数量,增加细菌、放线菌数量.0.5倍增CO2浓度处理下宁夏枸杞根区土壤过氧化氢酶和转化酶的活性较对照分别提高24.7...  相似文献   

10.
CO2浓度对黄瓜叶片光合速率,RubisCO活性及呼吸速率的影响   总被引:12,自引:1,他引:12  
于国华 《华北农学报》1997,12(4):101-106
研究了在200,350,500,700,1000mg/kgCO2浓度处理下的黄瓜叶片的光合速率,呼吸速率及双磷酸核酮糖羧化加氧酶活性。结果表明,增加CO2浓度,可显著提高黄瓜叶片的光合速率,在强光下,效果尤其明显。黄瓜叶片光合速率对不同CO2浓度的响应都有一个由低到高再低的趋势。黄瓜叶片暗呼吸在短时间内,随CO2浓度的增加而提高,随着时间的延长,各种CO2浓度下的呼吸速率都降至相似的低水平。  相似文献   

11.
大气CO2浓度升高对大豆生长和产量的影响   总被引:9,自引:1,他引:9  
通过开顶式气室控制大气CO2浓度,对大豆生长和产量指标进行实验测定,研究了大气CO2浓度升高对大豆株高、茎粗、叶片性状和产量构成因素的影响,分析了未来高CO2条件下大豆生长和产量的变化趋势。结果表明,与背景大气CO2浓度350μmol/mol相比,大气CO2浓度为550和750μmol/mol时,大豆株高分别提高15.74%和21.57%,茎粗则增加8.62%和13.79%。大豆比叶重在不同生育期平均提高3.50%和7.25%,大豆鼓粒期叶面积增加7.27%和14.08%,叶绿素含量提高7.10%和11.42%。高CO2浓度对大豆产量各构成因子的贡献存在差异,对单株荚数提高幅度较大,分别为6.87%和11.61%,促使产量增加15.19%和29.10%。  相似文献   

12.
CO2浓度和氮素水平对春小麦水分利用效率的影响   总被引:4,自引:0,他引:4  
李伏生  康绍忠 《作物学报》2002,28(6):835-840
试验设350和700 μmol mol-12种CO2浓度水平和0、 50、 100、 150、 200 mg N kg-1土5种N肥施用水平. 结果表明, CO2浓度增加对春小麦(Triticum aestivum L. Cv. Dingxi No.8654)地上部干物重、蒸散量(ET)和冠层水分利用效率(WUE)影响均决定于土壤氮素水平. 高氮处理地上部干物重和冠层WUE明显增加, 而ET值减少不明显; 低氮处  相似文献   

13.
大豆光合特性对大气CO2浓度升高的响应   总被引:10,自引:1,他引:9  
通过不同CO2浓度处理的大豆实验观测,分析了大豆叶片净光合速率、蒸腾速率、水分利用效率、叶绿素含量等光合特性对大气CO2增加的响应,探讨了未来高CO2水平下水分利用效率的变化趋势。结果表明,高CO2浓度下,大豆开花期叶片光合午休现象得到缓解和消除,净光合速率提高19.4%~33.0%。大豆蒸腾速率随大气CO2浓度升高而下降。大气CO2增加促使大豆水分利用效率提高,在不同生育期提高幅度不同,表明为分枝期、开花期较大,结荚期、鼓粒期较小。在大气CO2增加情景下,叶绿素a、叶绿素b、叶绿素总量均有增加的趋势,分别提高8.6%~11.6%,13.8%~20.0%和9.9%~13.8%。但叶绿素a与叶绿素b的比值则下降。  相似文献   

14.
利用LI-6400P型红外气体分析仪测定了苏打盐碱胁迫下水稻剑叶的净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、羧化效率(CE)及水分利用率(WUE)对模拟CO2浓度增强的响应.结果表明:无论是盐碱胁迫(S)还是非盐碱胁迫(NS)水稻剑叶的Pn随Ci的增加而呈上升趋势,增幅趋缓,最终趋于动态平衡;盐碱胁迫使不同CO2浓度下的Pn降低,同时也降低了水稻叶片的CE,提高了水稻叶片的CO2补偿点,降低了水稻叶片的光呼吸(Rp);Gs与Tr随Ci的变化趋势基本相同,但盐碱胁迫降低了水稻叶片的Gs和Tr;无论是非盐碱(NS)还是盐碱胁迫(S)水稻叶片的WUE随Ci的升高显著增大,盐碱胁迫却加大了水稻叶片的WUE.  相似文献   

15.
小麦氮营养研究进展   总被引:5,自引:0,他引:5  
(1黑龙江二道河农场,佳木斯 156300;2黑龙江八一农垦大学植物科技学院,大庆 163319)  相似文献   

16.
干旱胁迫下氮素营养对烤烟光合特性的影响   总被引:7,自引:0,他引:7  
研究了干旱胁迫下不同氮素营养水平对烤烟叶片光合特性的影响。结果表明:干旱胁迫下,烤烟叶片的相对含水量(RWC)降低,叶绿素(Chl)含量减少,净光合速率(Pn)减弱,硝酸还原酶(NR)活性下降,干物质积累减少,但施氮处理的上述各指标明显高于不施氮处理,表明氮素营养的施用在干旱胁迫下对烤烟的光合作用有促进作用。  相似文献   

17.
为了研究不同N沉降水平下,大气CO2浓度升高对三江平原小叶章群落土壤全磷、速效磷含量的影响。利用开顶气室(open-top chamber,OTC),设置当前大气CO2浓度(370 μmol/mol)、中等CO2浓度(550 μmol/mol)和高CO2浓度(700 μmol/mol)3个CO2浓度水平和不施氮[N1,0 g N/(m2?年)]、常氮[N2,4 g N/(m2?年)]、高氮[N3,8 g N/(m2?年)]3个施氮水平。结果表明:CO2浓度升高结合氮沉降连续运行2个生长季后,相同处理下,土壤全磷、速效磷的含量没有显著变化。各处理仅对0~10 cm土层土壤磷素含量影响明显,对下面2层土壤磷素含量无显著影响。在相同氮沉降水平下,0~10 cm土层土壤全磷、速效磷的含量随着大气CO2浓度的增加呈现出先增大后减小的变化趋势。氮的加入对土壤的全磷的含量没有显著影响、却减小了0~10 cm土层土壤速效磷的含量。土壤全磷的含量与土层深度密切相关,随着土层深度的增加而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号