首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breeding goals in pigs are subject to change and are directed much more toward retail carcass yield and meat quality because of the high economic value of these traits. The objective of this study was to estimate genetic parameters of growth, carcass, and meat quality traits. Carcass components included ham and loin weights as primal cuts, which were further dissected into boneless subprimal cuts. Meat quality traits included pH, drip loss, purge, firmness, and color and marbling of both ham and loin. Phenotypic measurements were collected on a commercial crossbred pig population (n = 1,855). Genetic parameters were estimated using REML procedures applied to a bivariate animal model. Heritability estimates for carcass traits varied from 0.29 to 0.51, with 0.39 and 0.51 for the boneless subprimals of ham and loin, respectively. Heritability estimates for meat quality traits ranged from 0.08 to 0.28, with low estimates for the water holding capacity traits and higher values for the color traits: Minolta b*(0.14), L* (0.15), a* (0.24), and Japanese color scale (0.25). Heritability estimates differed for marbling of ham (0.14) and loin (0.31). Neither backfat nor ADG was correlated with loin depth (r(g) = 0.0), and their mutual genetic correlation was 0.27. Loin primal was moderately correlated with ham primal (r(g) = 0.31) and more strongly correlated with boneless ham (r(g) = 0.58). Backfat was negatively correlated with (sub)primal cut values. Average daily gain was unfavorably correlated with subprimals and with most meat quality characteristics measured. Genetic correlations among the color measurements and water-holding capacity traits were high (average r(g) = 0.70), except for Minolta a* (average r(g) = 0.17). The estimated genetic parameters indicate that meat quality and valuable cut yields can be improved by genetic selection. The estimated genetic parameters make it possible to predict the response to selection on performance, carcass, and meat quality traits and to design an effective breeding strategy fitting pricing systems based on retail carcass and quality characteristics.  相似文献   

2.
Carcass characteristics, meat quality traits, and sensory attributes were evaluated in late-finishing barrows and gilts, weighing between 100 to 130 kg of BW, fed 0, 5, or 7.4 mg/kg of ractopamine hydrochloride (RAC) for the final 21 to 28 d before slaughter. Carcass data were collected from carcasses from barrows and gilts (n = 168), and all primal cuts from the right sides of these carcasses were fabricated to calculate primal yields as a percentage of the HCW. Subjective (National Pork Producers Council and Japanese) color, firmness, and marbling scores were determined on the LM of each loin and the semimembranosus muscle (SM) of the ham, whereas the moisture, extractable lipid, Warner-Bratzler shear force (WBSF), and trained sensory evaluations (juiciness, tenderness, and pork flavor) were measured on the LM samples only. Gilts produced heavier (P < 0.05) HCW than barrows, whereas feeding RAC increased (P < 0.05) HCW over pigs fed diets devoid of RAC. Carcasses from gilts also had greater (P < 0.02) primal cut and lean cut (P < 0.01) yields than barrows, and dietary inclusion of 5 mg/kg of RAC increased (P < 0.05) total boneless cut and lean cut yields when compared with carcass from pigs fed 0 or 7.4 mg/kg of RAC. Warner-Bratzler shear forces values were greater (P < 0.05) in the LM of gilts than barrows, but only juiciness scores were greater (P < 0.03) in LM chops from barrows than gilts. The LM from barrows had greater intramuscular lipid (P < 0.001) than the LM from gilts, and even though the LM from pigs fed 5 mg/kg of RAC had greater (P < 0.04) WBSF values than the LM from pigs fed 0 or 7.4 mg/kg of RAC, including RAC in the late-finishing diets for 21 or 28 d did not affect sensory panel rating or percentages of moisture and intramuscular lipid. In summary, addition of RAC in the late-finishing diet improved carcass and primal cut yields when it was fed at 5 and 7.4 mg/kg without altering pork quality traits regardless of whether RAC was fed for 21 or 28 d.  相似文献   

3.
Selected beef subprimals were obtained from fabrication lines of three foodservice purveyors to assist in the development of a software support program for the beef foodservice industry. Subprimals were fabricated into bone-in or boneless foodservice ready-to-cook portion-sized cuts and associated components by professional meat cutters. Each subprimal was cut to generate mean foodservice cutting yields and labor requirements, which were calculated from observed weights (kilograms) and processing times (seconds). Once fabrication was completed, data were analyzed to determine means and standard errors of percentage yields and processing times for each subprimal. Subprimals cut to only one end point were evaluated for mean foodservice yields and processing times, but no comparisons were made within subprimal. However, those traditionally cut into various end points were additionally compared by cutting style. Subprimals cut by a single cutting style included rib, roast-ready; ribeye roll, lip-on, bone-in; brisket, deckle-off, boneless; top (inside) round; and bottom sirloin butt, flap, boneless. Subprimals cut into multiple end points or styles included ribeye, lip-on; top sirloin, cap; tenderloin butt, defatted; shortloin, short-cut; strip loin, boneless; top sirloin butt, boneless; and tenderloin, full, side muscle on, defatted. Mean yields of portion cuts, and mean fabrication times required to manufacture these cuts differed (P < 0.05) by cutting specification of the final product. In general, as the target portion size of fabricated steaks decreased, the mean number of steaks derived from any given subprimal cut increased, causing total foodservice yield to decrease and total processing time to increase. Therefore, an inverse relationship tended to exist between processing times and foodservice yields. With a method of accurately evaluating various beef purchase options, such as traditional commodity subprimals, closely trimmed subprimals, and pre-cut portion steaks in terms of yield and labor cost, foodservice operators will be better equipped to decide what option is more viable for their operation.  相似文献   

4.
Crossbred pigs (n = 200) from Duroc sires mated to Landrace x Large White dams, with a mean BW of 107.0 +/- 2.4 kg and intended for highquality dry-cured hams (Teruel ham) from Spain, were used to investigate the effects of sex (barrows and gilts) and slaughter weight (SW; 120, 125, 130, 135, and 140 kg of BW) on growth performance and carcass characteristics. For productive performance, there were 5 treatments based on 5 SW; each treatment was replicated 4 times and the replicate was a pen made up of 5 barrows and 5 gilts allotted together. For carcass traits, there were 10 treatments based on 2 sexes and 5 SW; each treatment was replicated 20 times and the replicate was a carcass. Barrows had fatter carcasses (P < 0.001) and wider hams (P < 0.01) but a lower yield of trimmed shoulder (P < 0.05), loin (P < 0.001), and ham (P < 0.001) than gilts. Also, castrates tended to show a greater proportion of final suitable carcasses for Teruel ham (P < 0.10) than females because more barrows than gilts fulfilled the minimum requirement of carcass weight and fat thickness in the gluteus medius (GM) muscle (P < 0.01). An increase in SW tended to decrease ADG and G:F (P < 0.10). In addition, dressing percentage, fat, and dimensions of carcass and ham increased as SW increased (P < 0.001). Although the weight of trimmed primal cuts (shoulder, loin, and ham) increased with SW, the yield of trimmed loin or ham decreased (P < 0.01). The proportion of final suitable carcasses for Teruel ham improved as SW increased up to 130 kg of BW but not thereafter (P < 0.001) because of an increase in percentage carcasses that fulfilled the minimum carcass and ham weight (P < 0.001) and fat in GM (P < 0.05). We can conclude that barrows were better than gilts when intended for Teruel ham. Furthermore, an increase in SW up to 130 kg in pigs impaired growth performance but improved some aspects of carcass quality that are required by the Teruel ham industry.  相似文献   

5.
Retail cutting tests were conducted on subprimals from cattle fed zilpaterol hydrochloride (ZH) to determine if the improved carcass composition and red meat yield resulting from ZH feeding would translate into increased retail yields of ready-to-cook products. As part of a 3-phase study, selection of carcasses from Holstein steers was done once (fall 2008), followed by the collection of carcasses from beef-type steers on 2 separate occasions (beef study I: summer 2009; beef study II: spring 2010). Each of the 3 groups of steers was assigned previously to 1 of 2 treatments, treated (fed 8.3 mg/kg of ZH for 20 d) or control (not fed ZH). All steers were slaughtered and carcasses were fabricated in commercial beef-processing establishments. Only those carcasses grading USDA Choice or higher were used. Five subprimals were used for both the calf-fed Holstein study (n = 546 subprimals) and beef study I (n = 576 subprimals): beef chuck, chuck roll; beef chuck, shoulder clod; beef round, sirloin tip (knuckle), peeled; beef round, top round; and beef round, outside round (flat). Seven subprimals were used in beef study II (n = 138 subprimals): beef chuck, chuck roll; beef round, sirloin tip (knuckle), peeled; beef round, top round; beef round, eye of round; beef loin, strip loin, boneless; beef loin, top sirloin butt, boneless; and beef loin, tenderloin. A simulated retail market environment was created, and 3 retail meat merchandisers prepared retail cuts from each subprimal so salable yields and processing times could be obtained. Differences in salable yields were found for the calf-fed Holstein steer chuck rolls (96.54% for ZH vs. 95.71% for control; P = 0.0045) and calf-fed Holstein steer top rounds (91.30% for ZH vs. 90.18% for control; P = 0.0469). However, other than heavier subprimals and an increased number of retail cuts obtained, total salable yields measured on a percentage basis and processing times were mostly unaffected by ZH. Cutability advantages of feeding ZH are achieved primarily in the carcass-to-subprimal conversion rather than in the subprimal-to-retail conversion.  相似文献   

6.
Two Duroc and two Yorkshire lines of pigs that had been selected at Beltsville Agricultural Research Center for 12 and 10 generations, respectively, for either thinner or thicker backfat were mated to produce all possible pure lines and reciprocal crosses in 1967, 1969 and 1970. Data for littermate gilts and barrows from 136 litters were analyzed to estimate genetic and maternal influence on individual pig weights at birth, 21 d, 56 d and 140 d of age; age at 79.4 kg; average backfat thickness at 79.4 kg and postweaning average daily gain (56 d to 79.4 kg). Pure-line gilts differed among breed-lines (P less than .05 or P less than .01) for all traits except weight at 56 d. Gilts of the two low-fat lines were heavier than gilts of the two high-fat lines through 56 d of age, but Yorkshire low-fat gilts were lightest at 140 d, were oldest at 79.4 kg and had the slowest daily gain, in addition to the least backfat. The Duroc low-fat line gilts were heaviest at 140 d, youngest at 79.4 kg and were second thinnest in backfat. Among pure-line barrows, the low-fat lines were heaviest at birth, at 21 d and at 140 d and were thinnest in backfat. Line-cross gilts were heavier than pure-line gilts at all four ages, were younger at 79.4 kg and higher in daily gain. Among barrows, line crosses were heavier in all weights except at 21 d, were younger at 79.4 kg and were higher in daily gain than pure lines. Differences between pure lines and line crosses in backfat were not significant for either sex. Heterosis varied from 6.5 to 16.7% among weights and growth traits. Pigs of both sexes differed among breed-lines in general combining ability for all traits except 21-d weight, and differed in maternal ability for weights through 56 d and for backfat. Specific combining ability (SCA) was significant only for intra-breed crosses for weight at 21 d, and for inter-breed, intra-line crosses for 21- and 56-d weights and for age at 79.4 kg among gilts, with no significant effects in SCA for any trait among barrows. General combining ability was not correlated with maternal effects for any trait except 21-d weight, for which they were positively correlated (r greater than .80).  相似文献   

7.
One hundred eighty barrows were evaluated to determine the effects of ractopamine hydrochloride (RAC) on lean carcass yields and pork quality. The pens were blocked by weight (six pens per block) with starting block weights of 69.0, 70.7, 73.8, 76.6, 78.4, and 84.3 kg. Pens within a block were assigned randomly to one of three RAC treatments so each treatment in a block was replicated twice. Treatments (as-fed basis) included control diet, 10 ppm of RAC added (R10), and 20 ppm of RAC added (R20) and ranged from 25 to 41 d depending on block. Pigs were slaughtered by blocks when block average live weights were 109 kg. Gain and feed efficiency were improved (P < 0.05) with increasing dietary concentrations of RAC, but feed intake did not differ (P > 0.05). Dressing percentage was higher (P < 0.05) for RAC-treated pigs. Subjective color, firmness, marbling scores, and Minolta L* reflection of the LM were not different (P > 0.05) among treatments. Carcass weights were heavier (P < 0.05) for pigs treated with RAC compared with control pigs and were higher for R20 than for R10. The RAC-fed pigs had greater (P < 0.05) yields (actual and percentage of HCW) of the following Institutional Meat Purchase Specification (IMPS) cuts than control pigs: trimmed, boneless ham (IMPS-402C and IMPS-402G), loin (IMPS-414), sirloin, and Boston butt (IMPS-406A). Pigs treated with RAC had a greater (P < 0.05) percentage of fat-free lean trimmings (IMPS-418) than did control pigs. Pigs treated with the R20 concentration had increased (P < 0.05) water-holding capacity compared with control pigs. Purge loss decreased linearly (P < 0.05) with increasing RAC compared with control for 14-d aged, non-enhanced loins. Warner-Bratzler shear (WBS) force values measured for nonenhanced chops were greater for RAC-treated pigs than for control pigs with a low dose response (P = 0.001). Enhanced chop (salt and phosphate injection) WBS values did not differ (P > 0.05) among dietary treatments. Trained sensory evaluation panel results for tenderness decreased in a low-dose plateau response fashion for nonenhanced chops (P = 0.004). Tenderness of enhanced chops decreased linearly (P = 0.04) with increasing RAC concentrations. No differences (P > 0.05) were found in juiciness or flavor of enhanced or nonenhanced chops. Feeding RAC to late-finishing swine resulted in faster growing, more efficient animals with increased boneless subprimal yields, and it had little effect on pork juiciness and flavor.  相似文献   

8.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in slaughter frame size and muscle thickness score, as well as carcass adjusted 12th-rib fat thickness. After collection of USDA carcass grade data, one side of each carcass was fabricated into boneless primals, subprimals, and minor tissue components. Cuts were trimmed to 2.54, 1.27, and .64 cm of external fat, except for the knuckle, tri-tip, and tenderloin, which were trimmed of all fat. Forced four-variable regression equations were used to predict the percentage (chilled carcass weight basis) yield of boneless subprimals at the three fat trim levels as influenced by sex class, frame size, muscle score, and adjusted 12th-rib fat thickness. Independent variables that had the most influence on percentage yield of primals and boneless subprimals were adjusted 12th-rib fat thickness and sex class. Within the same phenotypic group, percentage of trimmable fat increased by 2.32% as 12th-rib fat thickness increased by .75 cm. Estimated percentage yield of the major subprimals from the loin and round tended to be higher or relatively equal for heifer carcasses at all trim levels compared with those subprimals from steer carcasses. Holding frame size, sex class, and fat thickness constant, there was a higher percentage yield of chuck roll, rib eye roll, and strip loin for carcasses from thick-muscled cattle than for those from average- and thin-muscled cattle. Frame size had little effect on percentage yield of boneless subprimals.  相似文献   

9.
Effects of recombinant porcine somatotropin (rpST) on growth, lean tissue growth, feed intake, feed conversion, lean tissue feed conversion, backfat thickness and lean percentage were examined in 96 growing pigs. The experiment used barrows and gilts from the genotypes Duroc, F1 (Dutch Yorkshire x Dutch Landrace) and Pietrain. Half the pigs received 14 mg rpST i.m. twice each week starting at 60 kg; others received a placebo. Pigs had ad libitum access to a diet containing 2,162 kcal net energy and 182 g crude protein per kilogram and were slaughtered at either 100 or 140 kg live weight. From 60 to 100 and from 100 to 140 kg, live weight responses to rpST averaged as follows: daily gain, +4.5 and +19.9%; feed intake, -4.4 and +3.5%; feed conversion, -8.4 and -13.9%; backfat thickness, -13.8 and -22.8%; lean percentage, +4.4 and +8.7%; lean tissue growth rate, +8.6 and +35.8%; and lean tissue feed conversion, -13.1 and -24.9%. No gender x rpST interaction was detected. However, a genotype x treatment interaction was significant for backfat thickness at both slaughter weights, showing a higher response to rpST in Duroc than in Pietrain and F1. Growth performance was improved more by rpST in F1 and Pietrain than in Duroc, especially at higher weights, but carcass traits were improved more by rpST in Duroc. The response to rpST in lean tissue growth rate from 60 to 100 kg was highest in fatter animals (Duroc, barrows), whereas from 100 to 140 kg, response in lean tissue growth rate to rpST was highest in leaner animals (Pietrain, F1, gilts).  相似文献   

10.
Sixty crossbred cull cows were used to determine the combined effects of a trenbolone acetate-estradiol implant and feeding zilpaterol hydrochloride on performance, carcass characteristics, and subprimal yields of mature cows fed for 70 d. Cows were assigned to 1 of 5 treatments: 1) grazing native grass pasture (G); 2) concentrate-fed (C) a grain sorghum-sorghum silage diet; 3) concentrate-fed and implanted (CI) with Revalor-200 (trenbolone acetate-estradiol); 4) concentrate-fed and fed Zilmax (zilpaterol hydrochloride) beginning on d 38 of the feeding period (CZ); and 5) concentrate-fed, implanted, and fed Zilmax beginning on d 38 (CIZ). The concentrate diet consisted primarily of ground grain sorghum and sorghum silage. During the last 34 d of the feeding trial, concentrate-fed (C, CI, CZ, and CIZ) cows had greater (P < 0.05) gains than G cows. Hot carcass weights and dressing percentages were greater (P < 0.05) for the concentrate-fed cows than for G cows. Longissimus muscle area was largest (P < 0.05) for CIZ cows, whereas subprimal weights from the chuck were heavier (P < 0.05) from CIZ cows than C and G cows, and carcasses from CI and CZ cows had heavier (P < 0.05) chuck subprimal weights than G cows. Rib and round subprimal weights were heavier (P < 0.05) for concentrate-fed cows compared with G cows. In addition, carcasses from CIZ cows had heavier (P < 0.05) total subprimal weights, and total subprimals were a greater percentage of their initial BW than C cows. Rib cut-out and total soft tissue weights from the 9-10-11th rib were less (P < 0.05) for G cows than concentrate-fed cows. Feeding cull cows a concentrate diet increased carcass weight, dressing percentage, and subprimal yields compared with feeding cows a grass-based pasture diet, and the combination of a trenbolone acetate-estradiol implant and feeding zilpaterol hydrochloride can maximize trimmed beef yields from cull cows fed a high-concentrate diet.  相似文献   

11.
Beef subprimals from two different grade groups were obtained from two beef processors to assist in updating the Beef Computer Assisted Retail Decision Support (CARDS) program with new fabrication styles. The grade groups consisted of Top Choice (containing subprimals from carcasses with a Modest or Moderate degree of marbling) and Select (containing subprimals from carcasses with a Slight degree of marbling). Subprimals (shoulder clod; top blade, roast; arm roast; knuckle, peeled; outside round, flat) were separated into individual muscles and fabricated into retail cuts by professional retail meat cutters. Mean retail cutting yields and labor requirements were calculated from observed weights (kilograms) and processing times (seconds). Data were analyzed to determine means and standard errors of percentage yield and processing times for subprimals in each grade group, and comparisons were made between grade groups. Generally, there were few differences in processing times between Top Choice and Select subprimals, and the trimming phase required the most time to complete for each subprimal. Differences (P < 0.05) were observed in saleable yield between Top Choice and Select subprimals for the shoulder clod (Top Choice = 73.89%; Select = 78.49%), top blade, roast (Top Choice = 84.36%; Select = 86.70%), and outside round, flat (Top Choice = 85.99%; Select = 91.34%). Trimmable fat differed (P < 0.05) between Top Choice and Select subprimals: shoulder clod (Top Choice = 25.30%; Select = 20.85%), top blade, roast (Top Choice = 14.88%; Select = 12.59%), arm roast (Top Choice = 8.35%; Select = 7.47%), knuckle (Top Choice = 5.72%; Select = 2.73%), and outside round, flat (Top Choice = 13.82%; Select = 7.26%). Most of the differences in saleable yields were related to less trimmable fat for Select subprimals, which also required less trimming time than Top Choice subprimals. These data will serve to update the Beef CARDS program and will provide retailers and foodservice operators with third-party cutting yield and time allocation information.  相似文献   

12.
Crossbred progeny sired by either Duroc or Pietrain boars, normal for the ryanodine receptor gene, were evaluated for carcass composition and meat quality. Boars from each breed were mated to Yorkshire or F1 Yorkshire-Landrace females. A total of 162 off-spring was evaluated for carcass and meat quality traits at a common age (approximately 26 wk of age). Duroc-sired progeny had heavier (108.0 vs. 103.0 kg, P < 0.001) and longer carcasses (86.9 vs. 84.8 cm, P < 0.01), whereas Pietrain-sired pigs had less backfat at the first rib (44.6 vs. 47.7 mm, P < 0.01), last lumbar vertebrae (20.9 vs. 23.0 mm, P < 0.05), and 10th rib (23.0 vs. 25.5 mm, P < 0.01). No difference between Pietrain and Duroc progeny was detected for fat depth at the last rib (27.8 vs. 28.8 mm, respectively). Pietrain progeny had a higher percentage of lean at slaughter (52.6 vs. 50.7, P < 0.05) and higher dressing percentage (74.0 vs. 73.1, P < 0.01). Primal cut weights were collected with Pietrain progeny having a greater percentage of carcass as ham (23.0 vs. 22.4, P < 0.01) and loin (21.6 vs. 21.2, P < 0.05), whereas Duroc progeny had a higher percentage of belly weight (12.0 vs. 11.7, P < 0.05). Percentages of Boston butt (8.8 vs. 9.0) and picnic shoulder (9.9 vs. 9.9) were similar for Duroc vs. Pietrain progeny. Total weight of these five primal cuts, as a percentage of carcass weight, was higher for Pietrain progeny (75.2 vs. 74.3, P < 0.01). With heavier carcass weight, Duroc progeny had greater primal cut weights as a function of age. Subjective meat quality scores for color, marbling, and firmness (1 to 5 scale) were more favorable for Duroc-sired progeny. Furthermore, chops from Duroc progeny had higher 24-h pH (5.53 vs. 5.48, P < 0.001) and Minolta a* (17.33 vs. 17.04, P < 0.05) with less percentage drip loss (2.88 vs. 3.80, P < 0.001). No differences were detected between Duroc- and Pietrain-sired progeny for Minolta L* (54.77 vs. 55.37) or b* (7.58 vs. 7.58) objective color scores, percentage cooking loss (28.63 vs. 29.23), or Warner-Bratzler shear force (6.94 vs. 7.11 kg). Both sire breeds have beneficial traits that can be utilized in commercial pork production and merit further study.  相似文献   

13.
We evaluated 20 slaughtered cattle with ultrasound before hide removal to predict fat thickness and ribeye area at the 12th rib for possible use in carcass composition prediction. Carcasses were fabricated into boneless subprimals that were trimmed progressively from 2.54 to 1.27 to .64 cm maximum fat trim levels. Stepwise regression was used to indicate the relative importance of variables in a model designed to estimate the percentage of boneless subprimals from the carcass at different external fat trim levels. Variables included those obtained on the slaughter floor (ultrasound fat thickness and ribeye area; estimated percentage of kidney, pelvic, and heart [KPH] fat; and warm carcass weight) and those obtained from carcasses following 24 h in the chill cooler (actual fat thickness, actual ribeye area, estimated percentage of KPH fat, warm carcass weight, and marbling score). At all different subprimal trim levels, percentage KPH was the first variable to enter the model. In the models using measures taken on the slaughter floor, ultrasound fat thickness was the only other variable to enter the model. Ultrasound fat thickness increased R2 and decreased residual standard deviation (RSD) in models predicting subprimals at 2.54-cm maximum fat trim; however, at 1.27- and .64-cm trim levels, R2 and RSD increased. Models using the same two variables (except actual fat instead of ultrasound) in the cooler were similar to those using data from the slaughter floor. However, as more cooler measurement variables entered the models, R2 increased and RSD decreased, explaining a greater amount of the variation in the equation. Ultrasonic evaluation on the slaughter floor may be of limited application compared with the greater accuracy found in chilled carcass assessment.  相似文献   

14.
Seventy-two Duroc x Hampshire x Yorkshire pigs were used to evaluate bioelectrical impedance procedures to predict fat-free mass of live pigs. Pigs were allotted by sex, ancestry, and weight. Pigs (12 gilts and 12 barrows) averaging 50+/-2.4 kg were slaughtered to establish a baseline for body composition. A pen of six gilts and a pen of six barrows were randomly selected for slaughter when the pen averaged either 70, 90, 110, or 130 kg. Pigs were weighed, then a four-terminal plethysmograph was used to measure resistance (omega) and reactance (omega), and length (cm) was measured between detector terminals. Pigs were slaughtered 12 h later, and carcasses were chilled for 24 h. The right side was ground twice and mixed and samples were frozen for later analyses of fat content. Actual fat-free mass (ActFFM) was determined from the weights and percentage of fat. Predicted fat-free mass (PredFFM) was calculated using the following equation: Pred FFM = .486 (live weight) - .881 (resistance) + .48 (length) + .86 (reactance) + 7.959. The correlation coefficients between ActFFM and PredFFM ranged from .66 to .91 overall. Correlation coefficients approximating slaughter weight (90 kg) were .94 (P < .02). Fat-free mass was underestimated by the prediction equation at all slaughter weights, but the predicted fat-free mass was highly correlated to the actual fat-free mass, except for the 110-kg gilts (r = .68, P = .15) and the 130-kg barrows (r = .65, P = .16). The data support the use of bioelectrical impedance to measure fat-free mass over a wide range of weights for finishing pigs.  相似文献   

15.
The dose-dependent effects of porcine somatotropin (pST) on growth performance and composition of carcass gain were investigated in 150 growing pigs. The experiment involved two genotypes (barrows from the Pig Improvement Company [PIC] and a University of Nebraska [NEB] gene pool line) and two sexes (PIC barrows and boars). At 30 kg, pigs were randomly assigned within each genotype and sex subclass to receive daily i.m. injections of 50, 100, 150, or 200 micrograms of pST/kg BW or an equivalent volume of an excipient. A diet (3.5 Mcal of DE/kg) supplemented with crystalline amino acids and containing 22.5% CP was available on an ad libitum basis until pigs were slaughtered at approximately 90 kg live weight. Excipient-treated PIC barrows exhibited faster and more efficient growth (P less than .001) and a higher capacity for carcass protein accretion (P less than .001) but similar rates of lipid deposition compared to excipient-treated NEB barrows. Within the PIC genotype, control boars grew at a rate similar to that of barrows, but they were more efficient (P less than .05) and deposited more carcass protein (P less than .05) and less lipid (P less than .001). Carcass protein accretion rate increased (P less than .001) up to approximately 150 micrograms of pST.kg BW-1.d-1, whereas lipid deposition decreased (P less than .001) with each incremental dose of pST. Although differences between PIC boars and barrows for all criteria were negated with increasing pST dose, they were maintained between the two genotypes. Polynomial regressions suggested that a slightly higher pST dose was required to optimize the feed:gain ratio compared with rate of gain and that the dose (micrograms per kilogram BW per day) was a function of the genotype and sex (feed:gain: 185, 170, and 155; rate of gain: 155, 155, and 125 for NEB barrows, PIC barrows, and PIC boars, respectively).  相似文献   

16.
The objective of this study was to estimate the effects of breed, sex, and halothane genotype on fatty acid composition and several fatty acid indices of lipid extracted from porcine LM. Purebred Yorkshire (n = 436), Duroc (n = 353), Hampshire (n = 218), Spotted (n = 187), Chester White (n = 173), Poland China (n = 124), Berkshire (n = 256), and Landrace (n = 187) pigs (n = 1,934; 1,128 barrows and 806 gilts) from 1991, 1992, 1994, and 2001 National Barrow Show Sire Progeny Tests were used. Pigs were classified as the HAL-1843 normal (NN) genotype (n = 1,718) or the HAL-1843 carrier (Nn) genotype (n = 216). For statistical analysis, a mixed model was used that included fixed effects of breed, sex, halothane genotype, test, slaughter date, interaction of breed x sex, and random effects of sire and dam within breed. Breed significantly affected the concentration of individual fatty acids, total lipid content, and the values of several fatty acid indices of LM. Duroc pigs had the greatest (P < 0.01) content of total SFA. Total MUFA concentration in Poland China pigs was greater (P < 0.05) than in all other breeds except the Spotted (P > 0.05). The concentrations of total PUFA were greater (P < 0.01) in Hampshire, Landrace, and Yorkshire pigs compared with those of other breeds. Significant sex differences for individual fatty acids were detected. Compared with gilts, barrows had greater (P < 0.01) concentrations of SFA and MUFA but lower (P < 0.01) total PUFA. Halothane genotype was a significant source of variation for the percentages of some fatty acids. Pigs with the carrier (Nn) genotype had lower concentrations of SFA (P < 0.05) and MUFA (P < 0.01) but a greater concentration of PUFA (P < 0.01) compared with NN pigs. There were significant negative correlations between total lipid content and individual PUFA and significant positive correlations between lipid concentration and most individual SFA and MUFA. In conclusion, the results suggest that breed and sex are important sources of variation for fatty acid composition of LM.  相似文献   

17.
Pork carcasses (n = 133) were used to investigate the influence of carcass fatness and muscling on composition and yields of pork primal and subprimal cuts fabricated to varying levels of s.c. fat. Carcasses were selected from commercial packing plants in the southeastern United States, using a 3 x 3 factorial arrangement with three levels of 10th rib backfat depth (< 2.03, 2.03 to 2.54, and > 2.54 cm) and three levels of loin eye area (LEA; < 35.5, 35.5 to 41.9, and > 41.9 cm2). Sides from the selected carcasses were shipped to the University of Georgia for carcass data collection by trained USDA-AMS and University of Georgia personnel and fabrication. Sides were fabricated to four lean cuts (picnic shoulder, Boston butt, loin, and ham) and the skinned belly. The four lean cuts were further fabricated into boneless cuts with s.c. fat trim levels of 0.64, 0.32, and 0 cm. The percentages of four lean cuts, boneless cuts (four lean cuts plus skinned, trimmed belly) at 0.64, 0.32, and 0 cm s.c. fat, fat-free lean, and total fat were calculated. Data were analyzed using a least squares fixed effects model, with the main effects of 10th rib backfat and LEA and their interaction. Fatness and muscling traits increased (P < 0.05) as 10th rib backfat and LEA category increased, respectively. However, fat depth measures were not affected greatly by LEA category, nor were muscling measures greatly affected by backfat category. The percentage yield of cuts decreased (P < 0.05) as backfat category increased. Cut yields from the picnic shoulder, Boston butt, and belly were not affected (P > 0.05) by LEA category, whereas the yield of boneless loin and ham increased (P < 0.05) as LEA category increased. Compositionally, the percentage of four lean cuts, boneless cuts at varying trim levels, and fat-free lean decreased incrementally (P < 0.05) as backfat depth increased, whereas parentage total fat and USDA grade increased (P < 0.05) as backfat depth increased. As LEA increased, percentage boneless cuts trimmed to 0.32 and 0 cm s.c. fat and fat-free lean increased and total fat decreased; however, the difference was only significant in the smallest LEA category. Collectively, these data show that decreased carcass fatness plays a greater role in increasing primal and subprimal cut yields and carcass composition than muscling even in lean, heavily muscled carcasses.  相似文献   

18.
To alleviate the need for daily injection of porcine somatotropin (pST), a sustained-release implant (pSTSR) was devised that continuously delivers a daily dose of 2 mg of pST for 42 d. Ninety-six white composite (Large White x Landrace) finishing barrows (83.6 +/- 1.2 kg BW) were assigned to receive zero or two pSTSR implants (4 mg pST/d) and to consume one of six diets differing in total Lys concentration (0.29, 0.52, 0.75, 0.98, 1.21, or 1.44%, as-fed basis). Diets were formulated to be isocaloric and based on the ideal protein concept. Pigs were housed individually, allowed ad libitum access to feed and water, and slaughtered at 112 kg of BW. The pSTSR affected neither ADG (P = 0.88) nor 10th rib LM area (LMA; P = 0.51), but it decreased (P < 0.01) ADFI, average backfat thickness, 10th rib fat depth, weights of leaf fat and ham fat, improved (P < 0.05) G:F, and increased (P < 0.01) weights of four trimmed lean cuts (T-cuts), and percentages of ham lean and bone. Increasing total Lys increased ADG (quadratic; P < 0.05) and ADFI (linear; P < 0.01). The G:F, plasma urea N concentrations (PUN), and T-cuts were affected by the interaction pSTSR x dietary Lys (P < 0.01). Without pSTSR, the G:F did not differ (P = 0.37) among pigs fed 0.52% and greater total Lys. With pSTSR, the G:F was less (P < 0.05) for pigs fed 0.52% than 0.98 and 1.44% total Lys. Increases in dietary total Lys resulted in increased PUN (P < 0.01), and incremental increases were less in pSTSR-implanted pigs. Maximal yield of T-cuts was at 0.98% dietary total Lys in nonimplanted pigs and 1.21% total Lys in pSTSR-implanted pigs. Estimates of total Lys requirements of pigs without and with pSTSR, respectively, were 0.52 and 0.86% for growth (ADG and G:F) and 0.73 and 0.88% for lean production (LMA and T-cuts). Equivalent apparent ileal digestible Lys requirements of pigs without and with pSTSR, respectively, were 0.44 and 0.68% for growth, and 0.62 and 0.75% for lean production. With ADFI of 3.5 kg daily, an intake of approximately 26.1 g of total daily Lys (0.75%) or 22.4 g of apparent ileal digestible Lys is needed to maximize lean production in finishing barrows receiving 4 mg pST/d via sustained-release implant.  相似文献   

19.
Thirty-two crossbred cattle (steers = 17; heifers = 15) exhibiting an ultrasound fat thickness at the 12 to 13th rib region of at least 10 mm were selected from a slaughter shift at a commercial packing plant. After splitting, alternating sides of each carcass were trimmed of 1) subcutaneous fat in excess of 6.4 mm; 2) all kidney, pelvic, and heart fat; and 3) all cod or udder fat and fat in the flank region. Both sides of each carcass were fabricated into subprimals (final trim level of 6.4 mm) according to normal industry procedures. Effect of hot-fat trimming, yield grade (3, 4, and 5), and gender on hot-fat trim, fabrication fat trim, major subprimal, and total subprimal yield of untrimmed and trimmed carcasses were determined. Higher numerical yield grade (YG) corresponded with higher (P less than .05) percentages of hot-fat trim. Hot-fat trimming increased (P less than .05) the difference in fabrication fat trim between steers and heifers and between YG 3 and YG 5. Steers and heifers differed (P less than .05) in percentage of major subprimals and total subprimals when processed conventionally, whereas hot-fat trimming eliminated this difference (P less than .05). Untrimmed YG 3 carcasses had 3.1 and 5.0% higher major subprimal yield (P less than .05) than untrimmed YG 4 and YG 5 carcasses, respectively, whereas hot-fat trimming reduced this difference to 2.5% for YG 4 and to 3.7% for YG 5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Crossbred barrows (n = 144; 80 kg) from four farrowing groups were phenotypically selected into fat (FAT) and lean (LEAN) pens using ultrasound. The difference in 10th-rib fat depth between the LEAN and FAT groups was > or =0.5 cm. Within a farrowing group, pigs were assigned to pens (five pigs per pen and eight pens per phenotype) to equalize pen weight and fat depth. Pigs were fed a corn-soybean meal diet containing 19% CP, 1.0% added animal/vegetable fat, and 1.1% lysine (as-fed basis). Half the pens received 10 ppm (as-fed basis) of ractopamine (RAC) during the 28-d finishing phase. At 7-d intervals, live weight and feed disappearance were recorded to calculate ADG, ADFI, and G:F, and 10th-rib fat depth and LM area were ultrasonically measured to calculate fat-free lean and fat and muscle accretion rates. During the first 7 d on feed, LEAN pigs fed RAC gained less (P < 0.05) than FAT pigs fed RAC or LEAN and FAT pigs fed the control diet (RAC x phenotype; P = 0.02); however, RAC did not (P > 0.25) affect ADG after the second, third, and fourth weeks, or over the entire 28-d feeding period. Although wk-2 and -3 ADG were higher (P < or = 0.03) in LEAN than in FAT pigs, phenotype did not (P = 0.08) affect overall ADG. Dietary RAC decreased (P < or = 0.05) ADFI over the 28-d feeding trial, as well as in wk 2, 3, and 4, but intake was not (P > 0.20) affected by phenotype. Neither RAC nor phenotype affected (P > 0.10) G:F after 7 d on trial; however, RAC improved (P < or = 0.04) wk-3, wk-4, and overall G:F. Lean pigs were more efficient (P < or = 0.05) in wk 2 and 3 and over the duration of the trial than FAT pigs. Ultrasound LM accretion (ULA) was not (P > or = 0.10) affected by RAC; however, LEAN pigs had greater (P < or = 0.02) ULA in wk 2 and 4 than FAT pigs. Although fat depth was lower (P < 0.01) in RAC-fed pigs than pigs fed the control diet, ultrasound fat accretion rate indicated that RAC-pigs deposited less (P = 0.04) fat only during wk 4. In addition, calculated fat-free lean (using ultrasound body fat, ULA, and BW) was increased (P < 0.05) in RAC pigs after 3 and 4 wk of supplementation. In conclusion, RAC enhanced the performance of finishing swine through decreased ADFI and increased G:F, whereas carcass lean was enhanced through decreases in carcass fat and increases in carcass muscling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号