首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were conducted to determine mechanisms mediating effects of nutritional manipulation before and after mating on embryonic survival in pigs. Experiment 1 studied the mechanisms by which continued high feeding levels after mating result in differences in plasma progesterone during early pregnancy. Gilts fed 2.0 times maintenance energy requirements either remained on this high level or feed was reduced to 1.5 times maintenance immediately after mating. Ovarian, oviductal, and jugular vein progesterone concentrations were determined 72 h after onset of estrus, and samples taken every 4 h were used to determine LH and progesterone during the periestrous period. Treatment did not affect peripheral progesterone concentrations, the timing or rate of rise of progesterone, or progesterone in ovarian, oviductal, or jugular veins at the time of surgery. Time after the LH peak was highly correlated (P = 0.0001) with jugular progesterone concentrations, but not with those in oviductal and ovarian veins, suggesting that responses in the reproductive tract mediated by peripheral progesterone concentrations will be temporally different to effects within tissues supplied by the ovarian and oviductal vasculature. Experiment 2 studied mechanisms mediating nutritional manipulation in the preovulatory period on postovulatory reproductive function, using feed restriction during the first (RH) or second (HR) week of the estrous cycle. Surgeries were performed 12 to 20 h after ovulation, and fertilized oocytes were cultured for 144 h in vitro. Ovulation rate was not affected by previous nutritional regimen. Fertilization rate was higher (P = 0.056) in RH vs HR gilts, but development of cultured oocytes was not affected by treatment. There were no treatment differences in peripheral or oviductal plasma progesterone, estradiol, or insulin-like growth factor-I (IGF-I) at surgery, or in porcine oviductal secretory protein abundance and IGF-I concentrations in oviduct flushings, but treatment affected total protein concentration (P = 0.002). These results indicate that either previous nutritional treatment does not affect the early developmental competence of fertilized oocytes in vitro or differences in developmental competence of oocytes are not expressed up to the early blastocyst stage. However, the lack of an effect of previous nutrition on steroids in the local oviductal circulation may also be related to the lack of effects on oviductal function and embryonic development.  相似文献   

2.
Ovariectomized gilts were either placed on full feed (FF) or restricted to one-third of the full feed amount (RST) for 7 days. Blood samples were taken through jugular catheters every 15 min for 4 h at the end of the 7-day period. Then dietary treatments were reversed and 7 days later samples were taken as before. Serum concentrations of leptin, insulin and luteinizing hormone (LH) were determined by radioimmunoassay. LH pulse frequency and mean serum leptin and insulin concentrations were lower (P < 0.01) in RST than FF gilts. Reversal of treatment reversed the patterns of hormone secretion. These results confirm previous observations that feed restriction can inhibit pulsatile LH secretion and also decrease leptin and insulin secretion.  相似文献   

3.
The current experiment was carried out to determine whether exogenous GnRH treatment in primiparous, lactating sows undergoing feed restriction would improve reproductive performance after weaning. Sows were allocated to one of three treatments: AA sows (n = 8) were fed to appetite throughout a 28-d lactation, AR (n = 12) and AR + GnRH (n = 12) sows were fed as AA sows from farrowing to d 21 of lactation, and feed intake was reduced to 50% of the ad libitum intakes from d 22 to 28. The AR + GnRH sows received 800 ng of GnRH i.v. every 6 h from d 22 to 28 of lactation, and AA and AR sows received saline. Sow weight, backfat, and litter weight were recorded weekly. Within 2 d after farrowing, litter size was standardized to 8 to 10. At d 17 of lactation, an indwelling jugular catheter was surgically implanted in each sow. Blood samples were taken for characterization of plasma LH, FSH, insulin, IGF-I, and leptin by RIA at d 21 and before and after weaning on d 28 of lactation. After weaning, all sows were given ad libitum access to feed, checked for onset of standing estrus twice daily with mature vasectomized boars, and inseminated 12 and 24 h after onset of standing estrus with pooled semen from the same fertile boars (3 x 10(9) sperm/AI). After breeding, feed allowance was reduced to NRC (1988) requirements for gestation. At d 28 +/- 3 of gestation, sows were killed and ovulation rate and embryo survival were determined. Restricted sows lost more weight during lactation than AA sows (P < .02). During the period of feed restriction, plasma IGF-I and postprandial insulin and leptin in AR and AR + GnRH sows, and LH pulse frequency in AR sows, were lower than those in AA sows (P < .04). Associations (P < .004) between plasma insulin and leptin and between leptin and mean LH concentrations were established. The LH pulse frequency in AR + GnRH sows did not differ from that in AA sows before weaning. After weaning, maximum, mean, and minimum LH concentrations in the AA and AR sows, and FSH concentrations in AR sows, increased (P < .05) in response to weaning. Paradoxically, GnRH treatment in lactation seemed to suppress the expected LH and FSH responses to weaning. Ovulation rate and embryo survival were not different among the three groups. In conclusion, although exogenous GnRH therapy restored LH secretion in feed-restricted sows, it did not improve overall reproductive performance.  相似文献   

4.
The impact of different patterns of feed restriction between d 1 and 15 of the estrous cycle on subsequent reproductive performance of 23 trios of littermate gilts was tested. Some gilts were fed a high plane of nutrition (HH gilts) throughout the cycle, in contrast to HR gilts, which were restricted from d 8 to 15, and RH gilts, which were restricted from d 1 to 7. During feed restriction, weight gain in RH gilts (2.5 +/- .7 kg) was lower (P = .006) between d 1 and d 7 than in their HH and HR littermates (5.6 +/- .7 and 5.6 +/- .8 kg, respectively) and it was lower (P = .0001) in HR gilts (5.5 +/- .5 kg) between d 8 to d 15 than in their HH and RH counterparts (8.5 +/- .4 and 9.4 +/- .5 kg, respectively). There were no differences in backfat changes among groups. Embryonic survival in HR gilts at d 28 of gestation (68.3 +/- 4.8%) was lower (P < .05) than in HH and RH gilts (83.6 +/- 4.3 and 81.7 +/- 4.5%, respectively). Plasma progesterone concentrations in HR gilts were lower (P < .05) at 48 and 72 h after onset of standing estrus (.82 +/- .2 and 3.6 +/- .5 ng/mL, respectively) than in HH and RH gilts (1.44 +/- .2 and 1.24 +/- .2 ng/mL, 5.0 +/- .4 and 5.0 +/- .5 ng/mL, respectively at 48 and 72 h). No differences in ovulation rate were observed among treatments. Placental area was positively correlated to embryo size at d 28 (embryo size = .0003 x (area) + 18.35; r = .28, P = .03) but placental volume was negatively correlated to the number of embryos in utero (placental volume = -4.317 x (number) + 207.55, r = -.39, P = .002). These data demonstrate that the timing of feed restriction during follicular development has important consequences for subsequent embryo survival, possibly mediated by differences in progesterone concentrations in early pregnancy.  相似文献   

5.
Two experiments were conducted to determine 1) the effect of acute feed deprivation on leptin secretion and 2) if the effect of metabolic fuel restriction on LH and GH secretion is associated with changes in serum leptin concentrations. Experiment (EXP) I, seven crossbred prepuberal gilts, 66 +/- 1 kg body weight (BW) and 130 d of age were used. All pigs were fed ad libitum. On the day of the EXP, feed was removed from four of the pigs at 0800 (time = 0) and pigs remained without feed for 28 hr. Blood samples were collected every 10 min from zero to 4 hr = Period (P) 1, 12 to 16 hr = P 2, and 24 to 28 hr = P 3 after feed removal. At hr 28 fasted animals were presented with feed and blood samples collected for an additional 2 hr = P 4. EXP II, gilts, averaging 140 d of age (n = 15) and which had been ovariectomized, were individually penned in an environmentally controlled building and exposed to a constant ambient temperature of 22 C and 12:12 hr light: dark photoperiod. Pigs were fed daily at 0700 hr. Gilts were randomly assigned to the following treatments: saline (S, n = 7), 100 (n = 4), or 300 (n = 4) mg/kg BW of 2-deoxy-D-glucose (2DG), a competitive inhibitor of glycolysis, in saline iv. Blood samples were collected every 15 min for 2 hr before and 5 hr after treatment. Blood samples from EXP I and II were assayed for LH, GH and leptin by RIA. Selected samples were quantified for glucose, insulin and free fatty acids (FFA). In EXP I, fasting reduced (P < 0.04) leptin pulse frequency by P 3. Plasma glucose concentrations were reduced (P < 0.02) throughout the fast compared to fed animals, where as serum insulin concentrations did not decrease (P < 0.02) until P 3. Serum FFA concentrations increased (P < 0.02) by P 2 and remained elevated. Subcutaneous back fat thickness was similar among pigs. Serum IGF-I concentration decreased (P < 0.01) by P 2 in fasted animals compared to fed animals and remained lower through periods 3 and 4. Serum LH and GH concentrations were not effected by fast. Realimentation resulted in a marked increase in serum glucose (P < 0.02), insulin (P < 0.02), serum GH (P < 0.01) concentrations and leptin pulse frequency (P < 0.01). EXP II treatment did not alter serum insulin levels but increased (P < 0.01) plasma glucose concentrations in the 300 mg 2DG group. Serum leptin concentrations were 4.0 +/- 0.1, 2.8 +/- 0.2, and 4.9 +/- 0.2 ng/ml for S, 100 and 300 mg 2DG pigs respectively, prior to treatment and remained unchanged following treatment. Serum IGF-I concentrations were not effected by treatment. The 300 mg dose of 2DG increased (P < 0.0001) mean GH concentrations (2.0 +/- 0.2 ng/ml) compared to S (0.8 +/- 0.2 ng/ml) and 100 mg 2DG (0.7 +/- 0.2 ng/ml). Frequency and amplitude of GH pulses were unaffected. However, number of LH pulses/5 hr were decreased (P < 0.01) by the 300 mg dose of 2DG (1.8 +/- 0.5) compared to S (4.0 +/- 0.4) and the 100 mg dose of 2DG (4.5 +/- 0.5). Mean serum LH concentrations and amplitude of LH pulses were unaffected. These results suggest that acute effects of energy deprivation on LH and GH secretion are independent of changes in serum leptin concentrations.  相似文献   

6.
Leptin, a protein hormone secreted by adipocytes, plays an important role in energy homeostasis and regulation of body composition. We previously observed that acute feed restriction resulted in a rapid decline in concentrations of leptin in obese pony mares. This acute response prompted us to characterize the temporal changes in concentrations of leptin, GH, and insulin in obese pony mares during the transition between fed and feed-restricted conditions. Nine obese pony mares of mixed breed, previously maintained on fescue pasture, were randomly allotted to 2 groups. Treatments consisted of a 48-h feed restriction, a 48-h refeeding, and a 24-h feed restriction (RFR; n = 4), or 48 h of alfalfa hay ad libitum, a 48-h feed restriction, and a 24-h refeeding (FRF; n = 5). Blood samples were taken every 15 min during restriction and feeding transitions (0600 to 1400 on d 2 and 4), and every 30 min thereafter until 0830 of the following days (d 3 and 5). In the FRF treatment, plasma concentrations of leptin declined precipitously 6 h after the removal of feed (sample by treatment interaction; P < 0.01), and remained low and unresponsive to refeeding. Similarly, in the RFR group, plasma concentrations of leptin were initially low, and did not respond to feeding during the second (refeeding) sampling period. After feed restriction in each of the 2 treatment sequences, plasma insulin decreased and GH mean concentration, pulse frequency, pulse amplitude, and area under the curve increased (P < 0.05). Refeeding reversed these effects on insulin and GH. These data provide evidence that peripheral concentrations of insulin and GH are dynamically responsive to feed removal (decrease in insulin; increase in GH) and replacement (increase in insulin; decrease in GH), whereas leptin decreases in response to feed restriction but is slow to recover from a transient nutritional insult.  相似文献   

7.
Effects of an increased level of dietary energy (flushing) on plasma concentrations of FSH, LH, insulin, progesterone and estradiol-17 beta and ovulation rate were studied in 16 gilts. Gilts received 5,400 kcal ME/d for one estrous cycle and the first 7 d of a second. On d 8 of the second estrous cycle, gilts received either 5,400 kcal ME/d (control [C], n = 8) or 11,000 kcal ME/d (flushed [F], n = 8) for the remainder of the estrous cycle. Blood was collected daily at 15-min intervals for 6 h from d 8 through estrus. Gilts were examined by laparotomy 6 d after estrus. Ovulation rate was greater (P less than .05) in F than C gilts (16.0 vs 9.4). Mean daily concentrations of FSH were greater (P less than .05) in F gilts at 5 d, 4 d and 3 d prior to estrus compared with C females. In both C and F gilts, FSH decreased (P less than .05) prior to estrus. Mean daily concentrations of LH and LH pulse amplitude were not different (P greater than .05) between treatments. Mean number of LH pulses/6 h at 4 d, 3 d and 2 d prior to estrus were greater (P less than .05) in F than in C gilts. In both treatments, LH pulse amplitude decreased (P less than .05) and pulse frequency increased (P less than .07) prior to estrus. Mean plasma concentrations of insulin tended to be higher (P less than .07) in F than in C females during the 7-d period before estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Two experiments determined how feed restriction and realimentation altered metabolism and ovarian function in gilts. In Exp. 1, cyclic (INTACT-R, n=6) and ovariectomized (OVEX-R, n=6) gilts were fed restricted diets (.23 kg feed.d-1) or ovariectomized (OVEX-C, n=6) gilts were fed control diets (1.81 kg.d-1). Estrous cycles stopped after 46 +/- 9 d of feed restriction. Average weight (WT), backfat thickness (BF) and concentrations of insulin (INS) were lower and free fatty acids (FFA) were greater in OVEX-R than in OVEX-C gilts. Frequency of luteinizing hormone (LH) release (peaks.6 h-1) was reduced by feed restriction (.2 +/- .2, 1.8 +/- 1.0 and 5.8 +/- .2 in INTACT-R, OVEX-R and OVEX-C gilts, respectively). Patterns of secretion of LH and follicle stimulating hormone (FSH) after gonadotropin releasing hormone (GnRH) or estradiol benzoate were not altered by feed restriction. Feed intake was then increased in INTACT-R and OVEX-R gilts beginning on d 80 and 82, respectively. Resumption of estrous cycles in INTACT-R gilts occurred on d 116.0 +/- 4.0 and was preceded by a significant increase in WT, but not BF, and a linear increase in concentration and frequency of release of LH. Increasing feed intake in OVEX-R gilts increased WT and frequency of LH release, while FFA decreased and INS increased to concentrations not different from those of OVEX-C gilts. The hypothesis that nutritionally-induced anestrus resulted from decreased activity of the hypothalamic pulse-generator was evaluated in Exp. 2 by providing 144 hourly pulses (iv) of saline (n=3), GnRH (n=3) or LH (n=4) to nutritionally-anestrous gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The possible roles of dietary protein level and feed restriction in regulating mammary development of prepubertal gilts were investigated. Cross-bred gilts were fed a commercial diet until 90 d of age and then divided into four nutritional regimens based on two pelleted diets (as-fed basis): a high-protein diet (HP = 13.8 MJ of ME, 1.0% total lysine, 18.7% CP) and a low-protein diet (LP = 13.8 MJ of ME, 0.7% total lysine, 14.4% CP). Nutritional regimens were as follows: 1) HP ad libitum until slaughter (n = 22, T1); 2) HP ad libitum until 150 d of age followed by LP until slaughter (n = 20, T2); 3) LP ad libitum until slaughter (n = 21, T3); and 4) HP with a 20% feed restriction until slaughter (n = 19, T4). Gilts were weighed, their backfat thickness was measured, and jugular blood samples were obtained on d 90, 150, and at slaughter to determine concentrations of prolactin, IGF-I, leptin, and glucose. Gilts were slaughtered 8+/-1 d after their first or second estrus (202.7+/-14.5 d of age). Mammary glands were excised, parenchymal and extraparenchymal tissues were dissected, and composition of parenchymal tissue (protein, fat, DM, DNA, protein/DNA) was determined. The T4 gilts weighed less (P < 0.01) and had less backfat (P < 0.01) than did gilts on other treatments on d 150 and at slaughter. Treatments had no significant effects on prolactin, IGF-I, or glucose concentrations, but there was a treatment x day interaction (P < 0.01) for leptin, with concentrations being lower at slaughter in restricted-fed (T4) vs. LP (T3) gilts (P < 0.05). There was less extraparenchymal mammary tissue (P < 0.01) in T4 gilts than in gilts from the other groups and a tendency (P = 0.13) for the amount of parenchymal tissue to be lower in T4 gilts. In conclusion, a lower lysine intake during prepuberty did not hinder mammary development of gilts, but a 20% feed restriction decreased mass of parenchymal and extraparenchymal tissues. The effect of feed restriction on extraparenchymal tissue is most likely associated with the lower fat deposition.  相似文献   

10.
Two experiments were conducted to examine influences of dietary energy and insulin on ovulation rate and patterns of luteinizing hormone (LH), follicle stimulating hormone (FSH), glucose, insulin and estradiol in gilts during 6 d before estrus. In Exp. 1, 36 gilts were given altrenogest for 14 d to synchronize estrus. In a factorial arrangement, gilts were fed one of two levels of dietary energy (5,771 or 9,960 kcal metabolizable energy (ME)/d), and given one of two levels of porcine insulin (0 or .1 IU/kg body weight iv every 6 h). Dietary treatments began 4 d before and insulin treatments began 1 d after the last day of altrenogest, respectively, and lasted until 24 h after estrus. Main effect means for number of corpora lutea were 14.0 +/- 1.3 and 17.6 +/- .9 for 5,771 and 9,960 kcal ME (P less than .05), and 14.6 +/- 1.0 and 17.0 +/- .9 for 0 and .1 IU insulin (P less than .05). Number of LH peaks on d 3 was greater for gilts that received 9,960 kcal than 5,771 kcal (3.3 +/- .2 vs 2.7 +/- .2; P less than .05), and for .1 than 0 IU insulin (3.2 +/- .2 vs 2.7 +/- .2; P less than .05). During the first 24 h of sampling, concentrations of LH and FSH were greater (P less than .05) in gilts receiving 9,960 kcal ME plus insulin than for other treatment combinations. Concentrations of estradiol were not affected by treatments. In Exp. 2, two formulations of insulin were evaluated for influence on ovulation rate. All gilts received altrenogest and 9,960 kcal ME/d as in Exp. 1. Then on the first day after altrenogest, seven gilts each received short-acting insulin (as in Exp. 1), long-acting insulin (zinc suspension, 1.0 IU/kg body weight every 18 to 24 h), or served as controls. Ovulation rates were increased (P less than .05) by both insulin preparations (15.6, control; 19.1, short-acting; 18.5, long-acting; SE = 1.2). Concentrations of LH tended to be greater after short-acting insulin, but differences were not significant (P = .13). We conclude that increases in ovulation rate produced by dietary energy and insulin are not necessarily accompanied by changes in gonadotropins or estradiol.  相似文献   

11.
Two experiments (EXP) were conducted to determine the roles of age, weight and estradiol (E) treatment on serum leptin concentrations and leptin gene expression. In EXP I, jugular blood samples were collected from gilts at 42 to 49 (n = 8), 105 to 112 (n = 8) and 140 to 154 (n = 8) d of age. Serum leptin concentrations increased (P < 0.05) with age and averaged 0.66, 2.7, and 3.0 ng/ml (pooled SE 0.21) for the 42- to 49-, 105- to 112-, and 140- to 154-d-old gilts, respectively. In EXP II, RNase protection assays were used to assess leptin mRNA in adipose tissue of ovariectomized gilts at 90 (n = 12), 150 (n = 11) or 210 (n = 12) d of age. Six pigs from each age group received estradiol (E) osmotic pump implants and the remaining animals received vehicle control implants (C; Day 0). On Day 7, back fat and blood samples were collected. Estradiol treatment resulted in greater (P < 0.05) serum E levels in E (9 +/- 1 pg/ml) than C (3 +/- 1 pg/ml) pigs. Serum leptin concentrations were not affected by age, nor E treatment. Leptin mRNA expression was not increased by age in C pigs nor by F in 90- and 150-d-old pigs. However, by 210 d of age, leptin mRNA expression was 2.5-fold greater (P < 0.01) in E-treated pigs compared to C animals. Serum insulin concentrations were similar between treatments for 210-d-old pigs. However, insulin concentrations were greater (P < 0.05) in E than C pigs at 90 d and greater in C than E animals at 150 d. Plasma glucose and serum insulin-like growth factor-I concentrations were not influenced by treatment. These results demonstrate that serum leptin concentrations increased with age and E-induced leptin mRNA expression is age- and weight-dependent.  相似文献   

12.
Pregnant Angus x Hereford cows (n = 73) were used to determine the effects of amount of nutrient intake and BCS on concentrations of IGF-I, insulin, leptin, and thyroxine in plasma. At 2 to 4 mo of gestation, cows were blocked by BCS and assigned to one of four nutritional treatments: high (H = a 50% concentrate diet fed ad libitum in a drylot) or adequate native grass pastures and one of three amounts of a 40% CP supplement each day (M = moderate, 1.6 kg; L = low, 1.1 kg; or VL = very low, 0.5 kg; as-fed basis). After 110 d of treatment, all cows grazed dormant native grass pasture and received 1.6 kg/d of a 40% CP supplement. At 68, 109, and 123 d of treatment, cows were gathered, and plasma samples were collected by tail venipuncture (fed sample). After 18 h without feed and water, a second plasma sample was collected (fasted sample). At 109 d of treatment, BCS was greatest (P < 0.05) for H cows, similar for M and L cows, and least for VL cows. Concentrations of insulin and leptin were greater (P < 0.05) for H cows than for M and VL cows at 68 and 109 d, but similar for all groups at 123 d. Thyroxine in plasma was greatest (P < 0.05) for H cows at 68 d and similar for cows on all treatments at 123 d. Concentrations of IGF-I, insulin, and leptin in fed and fasted cows were positively correlated with BCS at 109 d. Body condition was predictive of concentrations of IGF-I, insulin, and leptin when cows had different nutrient intakes, but BCS accounted for less than 12% of the variation in plasma concentrations of IGF-I, insulin, and leptin when nutrient intake was the same for all cows. We conclude that amount of nutrient intake has a greater influence than body energy reserves on IGF-I, insulin, and leptin concentrations in the plasma of gestating beef cows.  相似文献   

13.
Serum concentrations of leptin increase linearly from approximately 16 wk before until the week of pubertal ovulation in beef heifers. To test the hypothesis that exogenous leptin can hasten the onset of puberty in heifers, we examined the effects of chronic administration of recombinant ovine leptin (oleptin) on timing of puberty, pulsatile and GnRH-mediated release of LH, and plasma concentrations of GH, IGF-I, and insulin. Fourteen fall-born, prepubertal heifers (Brahman x Hereford, 12 to 13 mo; 304.7+/-4.12 kg) were used. Heifers were stratified by age and BW and assigned randomly to one of two groups (seven animals per group): 1) Control; heifers received s.c. injections of saline twice daily (0700 and 1900) for 40 d; and 2) Leptin; heifers received s.c. injections of oleptin (19.2 microg/kg) twice daily at 0700 and 1900 for 40 d. Blood samples were collected at 10-min intervals for 5 h on. d 0, 5, 10, 20, 30, and 40, and twice daily, just before each treatment injection, throughout the study. On d 41, heifers received i.v. injections of GnRH at 0 (0.0011 microg/kg) and 90 min (0.22 microg/kg), with additional sampling for 5.5 h to examine releasable pools of LH. Diets promoted a gain of 0.32+/-0.09 kg/d, which did not differ between groups. Plasma concentrations of leptin increased markedly in leptin-treated heifers and were greater (P < 0.001) than controls throughout (27.8+/-0.8 vs. 4.9+/-0.12 ng/mL). None of the heifers reached puberty during the experiment, but did so within 45 d of its termination. Mean concentrations of plasma LH, GH, IGF-I, and insulin were not affected by treatment, nor was there an overall effect on the frequency of LH pulses. However, a treatment x day interaction (P = 0.02) revealed that the frequency of LH pulses (pulses/ 5 h) was greater (P = 0.03) in controls (3.6+/-0.36) than in leptin-treated heifers (1.7+/- 0.28) on d 10. Characteristics of GnRH-induced release of LH were not affected by treatment. In summary, chronically administered leptin failed to induce puberty or alter endocrine characteristics in beef heifers nearing the time of expected puberty.  相似文献   

14.
Mature gilts classified by low (12 to 16 corpora lutea [CL], n = 6) or high (17 to 26 CL, n = 5) ovulation rate (OR) were compared for plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), progesterone, estradiol-17beta, and inhibin during an estrous cycle. Gilts were checked for estrus at 8-h intervals beginning on d 18. Blood samples were collected at 8-h intervals beginning on d 18 of the third estrous cycle and continued for one complete estrous cycle. Analysis for FSH and LH was performed on samples collected at 8-h intervals and for ovarian hormones on samples collected at 24-h intervals. The data were standardized to the peak of LH at fourth (d 0) and fifth estrus for the follicular phase and analyzed in discrete periods during the periovulatory (-1, 0, +1 d relative to LH peak), early-luteal (d 1 to 5), mid-luteal (d 6 to 10), late-luteal (11 to 15), periluteolytic (-1, 0, +1 d relative to progesterone decline), and follicular (5 d prior to fifth estrus) phases of the estrous cycle. The number of CL during the sampling estrous cycle was greater (P < 0.005) for the high vs low OR gilts (18.8 vs 14.3) and again (P < 0.001) in the cycle subsequent to hormone measurement (20.9 vs 14.7). For high-OR gilts, FSH was greater during the ovulatory period (P = 0.002), the mid- (P < 0.05) and late-luteal phases (P = 0.01), and tended to be elevated during the early-luteal (P = 0.06), but not the luteolytic or follicular periods. LH was greater in high-OR gilts during the ovulatory period (P < 0.005), but not at other periods during the cycle. In high-OR gilts, progesterone was greater in the mid, late, and ovulatory phases (P < 0.005), but not in the follicular, ovulatory, and early-luteal phases. Concentrations of estradiol-17beta were not different between OR groups during the cycle. Inhibin was greater for the high OR group (P < 0.005) during the early, mid, late, luteolytic, and follicular phases (P < 0.001). The duration of the follicular phase (from last baseline estrogen value to the LH peak) was 6.5 +/- 0.5 d and was not affected by OR group. These results indicate that elevated concentrations of both FSH and LH are associated with increased ovulation rate during the ovulatory phase, but that only elevated FSH during much of the luteal phase is associated with increased ovulation rate. Of the ovarian hormones, both inhibin and progesterone are highly related to greater ovulation rates. These findings could aid in understanding how ovulation rate is controlled in pigs.  相似文献   

15.
Our objective was to study the effects of dietary-induced insulin enhancement during and after lactation on the reproductive performance of primiparous sows. During a 21-d lactation period, 48 sows were allotted to a 2x2 factorial experiment. Treatments were feeding level (high or low; 44 MJ or 33 MJ NE/d) and dietary energy source (fat or starch). After weaning, all sows received the same amount of feed (31 MJ NE/d from weaning to estrus and 17.5 MJ NE/d from breeding until slaughter) of the same energy source as fed during lactation. On d 7, 14, and 21 of lactation and d 22 (weaning), blood samples were taken every 12 min for 12 h and analyzed for plasma glucose, insulin, and LH. Sows were slaughtered on d 35 of the subsequent pregnancy, and ovulation rate was assessed. During lactation, postprandial plasma glucose and insulin concentrations were higher for sows fed the starch diet than for those fed the fat diet (P<.001), whereas feeding level had no effect. Basal and mean LH concentrations were not affected by treatments. The LH pulse frequency on d 7 of lactation was greater for sows fed the starch diet than for those fed the fat diet (.52 vs .17 pulses/12 h; P = .03). The high compared with the low feeding level resulted in a greater LH pulse frequency on d 21 of lactation (.89 vs .47 pulses/12 h; P = .05) and on d 22 (8.63 vs 5.77 pulses/12 h; P = .02), in a higher percentage of sows that exhibited estrus within 10 d after weaning (96 vs. 63%; P = .01), and a tendency for a higher ovulation rate (18.0 vs. 16.2; P = .09). Plasma glucose and insulin concentrations were not related to any of the LH traits. The LH pulse frequency after weaning was related to the weaning-to-estrus interval (WEI) and was best explained by a linear-plateau model. In sows fed the low feeding level, follicle size after weaning was correlated with LH pulse frequency after weaning and with the WEI, whereas in sows fed the high feeding level these correlations were not significant. Our results indicate that an improved dietary-induced insulin status during and after lactation does not overcome the inhibitory effects of lactation on subsequent reproduction at any of the feeding levels.  相似文献   

16.
Cyclic gilts from Control (C, randomly selected, n = 11) and Relax Select (RS, nine generations of selection for increased ovulation rate followed by seven generations of relaxed or random selection, n = 9) lines of the University of Nebraska Gene Pool population (derived from 14 different breeds) were utilized to characterize differences in gonadotropic and ovarian steroid hormones during preovulatory and postovulatory phases of the estrous cycle. Blood samples were collected during four periods (0500, 1100, 1700 and 2300) daily beginning 2 d prior to anticipated estrus (d -2, d 18 of a 20-d estrous cycle), and continuing through d 4 postestrus (d 0 = 1st of standing estrus). Sampling within a period consisted of five blood samples at 15-min intervals. All plasma samples were analyzed for concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH). Neither mean LH nor peak concentration of LH during the preovulatory surge differed between genetic lines (P greater than .10). Concentrations of FSH increased faster (line X period, P less than .05) and tended (P less than .1) to peak at a higher concentration in RS (.88 ng/ml) than in C (.54 ng/ml) gilts (P less than .05) during the 12 h preceding the FSH and LH preovulatory peaks. The second FSH surge began approximately 24 h after the preovulatory FSH peak. Peak FSH concentrations were observed at 42 h in both lines (1.46 vs 1.74 ng/ml for C and RS gilts, respectively). The higher FSH concentration in RS gilts established during the preovulatory surge was maintained through the second FSH surge (P less than .01). No line differences were detected in plasma concentrations of estradiol-17 beta and progesterone.  相似文献   

17.
In sheep, serum concentrations of leptin change congruently with increases or decreases in nutritional status, while intracerebroventricular infusions of leptin dramatically suppress feed intake in well-fed lambs, and may also increase growth hormone (GH), and/or luteinizing hormone (LH) in undernourished lambs. The objective of the present study was to determine the effects of peripherally delivered ovine leptin, via intravenous infusions, on feed intake and serum concentrations of GH, LH, insulin, IGF-1, cortisol, and thyroxine. Twelve ewe lambs weighing 29.4 +/- 0.7 kg were infused intravenously with a linearly increasing dose of leptin or saline (n = 6 per group) for 10 days, reaching a maximum dose delivered of 0.5mg/h on day 10. Feed intake was assessed twice daily, and blood samples were collected every 10 min for 6 h on days 0, 2, 5, 8, and 10. Serum concentrations of leptin increased in leptin-treated lambs by day 2 (P = 0.05), and continued to increase to concentrations 9-fold greater than saline-infused lambs by day 10 (P < 0.001). Despite the substantial increase in serum leptin, feed intake did not differ between leptin and saline-infused lambs except on day 3.5 (P = 0.01). Furthermore, intravenous infusions of leptin did not significantly influence serum concentrations of insulin, cortisol, IGF-1, thyroxine, LH, or GH. Collectively, these observations contrast with the potent hypophagic effects of leptin when delivered intracerebroventricularly into well-fed lambs. The reasons for the disparate response of lambs treated intravenously with leptin, versus that reported for lambs treated intracerebroventricularly with leptin are not known, but may provide insight into the mechanism(s) of leptin resistance.  相似文献   

18.
To assess the impact of acute caloric shortage on reproduction, rabbit does were either fed ad libitum (control, AL), or fasted for 24 (STF) or 48 h (LTF) before induction of ovulation with GnRH injection. Blood samples were collected during the last 3 h of fasting, and the following 4 h after GnRH injection, when feed was provided again, to measure plasma concentrations of LH, estradiol-17beta, leptin, insulin, T3, corticosterone, glucose, and NEFA. Before re-feeding, plasma leptin, insulin, and T3 concentrations were lower (P < or = 0.01) in both fasted groups than in controls, but then gradually increased following realimentation to match those of controls. During fasting, corticosterone levels were higher (P < or = 0.01) in LTF than in STF and AL does, but decreased to control values soon after realimentation. During fasting, plasma glucose concentrations did not differ among groups, but upon re-feeding they markedly increased (P < or= 0.01) both in STF and LTF does. NEFA levels were also more elevated (P < or = 0.01) in fasted rabbits than in controls, and rapidly decreased (P < or = 0.01) after re-feeding. Following GnRH injection, LH peak was lower (P < or = 0.01) in LTF than in AL and STF does. Estradiol-17beta showed higher pulse frequency and amplitude in AL than in STF and LTF does. Compared to controls, receptivity rate of STF and LTF artificially inseminated does declined respectively by -20.5% (P < or = 0.05) and -22.7%, and fertility rate by -23.9% (P < or = 0.05) and 21.4%, but no difference was found in ovulation rate. In summary, nutritional status of does, as modified by fasting, greatly influenced fertility, metabolic and reproductive hormones.  相似文献   

19.
This study investigated the responsiveness of the pituitary-ovarian axis of prepubertal gilts to hourly injections (i.v.) with GnRH. Six gilts each at 70, 100, 150, and 190 d of age were assigned either to treatment with GnRH or saline. Treatments were given until gilts showed estrus or for 7 d, whichever came first. Hourly pulsing with GnRH resulted in gradually increasing concentrations of estradiol-17 beta (E2), a preovulatory surge of LH, and subsequently increased progesterone (P4) concentrations. The increase in serum P4 was preceded by ovulation and corpora lutea (CL) formation in two gilts 70 d of age and all older gilts. The interval (h) from start of GnRH treatment to peak E2 (88 +/- 3), peak LH (103 +/- 3), and concentrations of P4 greater than or equal to 1 ng/mL (144 +/- 4) did not differ (P greater than .50) for 18 gilts between 100 and 190 d of age. In two ovulating, 70-d-old gilts, the interval from onset of GnRH treatment to peak E2 (171 +/- 6), peak LH (186 +/- 0), and P4 greater than or equal to 1 ng/mL (216 +/- 4) was lengthened (P less than .001). Peak concentrations of E2 (pg/mL) were higher (P less than .01) at 190 d (48 +/- 2) and 150 d (49 +/- 2) than at younger ages and lower (P less than .01) in gilts 70 d of age (31 +/- 1) than in gilts 100 d of age (41 +/- 2). Peak LH (nanograms/milliliter) was higher (P less than .01) in gilts 100 d of age (12.7 +/- 6) than in older gilts. Concentrations of P4 were similar (P greater than .20) for all ovulating gilts. The number of CL (12.7 +/- .7) did not differ (P greater than .20) for 18 gilts 100 d of age or older but was higher (P less than .01) than that (4.5 +/- 1.1) for two gilts 70 d of age. Corresponding endocrine responses or ovulations were not observed in four 70-d-old gilts treated with GnRH or in gilts given saline. These findings indicate that the functional integration of the pituitary-ovarian axis is completed between 70 and 100 d of age. Hourly treatment with GnRH is an adequate stimulus to induce ovulation in prepubertal gilts as early as 70 d of age. Also, the number of follicles reaching ovulatory competency was similar (P greater than .20) in gilts between 100 and 190 d of age, when GnRH was given on a BW basis.  相似文献   

20.
The generic GnRH agonist, Fertilan (goserelin), was tested for the ability to induce an LH surge and ovulation in estrus-synchronized gilts. Three experiments were performed to 1) examine the effect of various doses of Fertilan on secretion of LH in barrows, to select doses to investigate in gilts (Exp. 1); 2) determine doses of Fertilan that would induce a preovulatory-like rise of LH in gilts (Exp. 2); and 3) determine the time of ovulation after Fertilan treatment (Exp. 3). In Exp. 1, 10 barrows were injected on d 1, 4, 7, 10, and 13 with 10, 20, or 40 microg of Fertilan; 50 microg of Gonavet (depherelin; GnRH control) or saline (negative control); and sequential blood samples were collected for 480 min. There was a dose-dependent stimulation (P < 0.05) of LH release. Maximal plasma concentrations of LH (LH(MAX)) were 2.1 +/- 0.2, 4.1 +/- 0.3, 2.6 +/- 0.4, and 3.4 +/- 0.3 ng/mL after 10, 20, and 40 microg of Fertilan and 50 microg of Gonavet, respectively, and duration of release was 78 +/- 9, 177 +/- 12, 138 +/- 7, and 180 +/- 11 min, respectively. Fertilan doses of 10 and 20 microg were deemed to be the most suitable for testing in gilts. In Exp. 2, 12 gilts received (after estrus synchronization with Regumate and eCG) injections of 10 or 20 microg of Fertilan or 50 microg of Gonavet 80 h after eCG to stimulate a preovulatory-like LH surge and ovulation. An LH surge was induced in 3 of the 4 gilts in both of the Fertilan groups and in all of the Gonavet-treated gilts. Characteristics of induced release of LH did not differ among groups: LH(MAX), 5.0 +/- 0.9 vs. 4.6 +/- 1.8 vs. 6.6 +/- 1.1 ng/mL; duration, 11.7 +/- 2.0 vs. 12.3 +/- 2.2 vs. 14.3 +/- 0.5 h; interval from GnRH injection to LH(MAX), 4.0 +/- 2.0 vs. 6.7 +/- 1.3 vs. 5.8 +/- 1.6 h. In Exp. 3, estrus-synchronized gilts were injected with 20 microg of Fertilan (n = 8) or 50 microg of Gonavet (n = 4), and the time of ovulation was determined by repeated endoscopic examination. Time of ovulation ranged from 34 to 42 h postGnRH; however, ovulation occurred earlier in the Gonavet compared with the other groups (P < 0.05). Results of these experiments indicate that 1) barrows are an appropriate model for determining GnRH doses that can be effective in inducing a preovulatory-like LH surge in females; 2) the generic GnRH agonist Fertilan, at doses of 10 to 20 microg, can stimulate an LH surge in gilts, with subsequent ovulation; and 3) Fertilan at doses of 10 and 20 microg should be examined further for use in fixed-time insemination protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号