首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, natural cycling of BoHV-1 infection was investigated in two groups of dairy cattle containing 2120 head. Group 1 comprised 127 animals and they were monitored for BoHV-1 infection virologically and serologically in six consecutive sampling periods. It consisted of naive heifers between 6 and 8 months of age, while in group 2, age, sex and the BoHV-1 serostatus of the animals were disregarded. The animals in group 1 were found to have seroconverted at the second sampling. Results of the serological study showed slight antibody response after natural BoHV-1 infection in the herd and neutralizing titres fell below protective levels in the 6–8 months after the peak. During the 2-year study period, one recurrence was detected after primary infection. Virus isolation studies revealed a cytopathic effect indicative of BoHV-1 in two nasal swabs taken during the fifth sampling period from animals with mild upper respiratory tract symptoms. As the study was carried out under natural conditions, it is not known whether the viruses isolated were from recurrences or re-infections. Data from cross-neutralization tests with herd isolates showed higher antibody response than those with the reference virus. The dynamics of BoHV-1 in both groups were found to be statistically similar.  相似文献   

2.
The common disease caused by bovine herpes virus 1 infection is febrile rhinotracheitis (FRT) and under certain conditions the virus is strongly implicated in pre-disposing cattle to pneumonic pasteurellosis. These illnesses account for a significant economic loss in the cattle industry worldwide and vaccination is widely applied. In naive cattle, and for a short period of time, old and new vaccines significantly reduce clinical signs of FRT and also virus shedding. A single intranasal vaccination affords significant protection in face of maternally derived antibodies, and the protection can be significantly prolonged by a booster intramuscular vaccination. Current data recommend vaccination in face of an outbreak and vaccines appear safe for pregnant cattle.  相似文献   

3.
Four bovine herpesvirus-1 (BHV-1) commercial vaccines, three of which (vaccines B, D, E) were modified live vaccines (MLV) and one (vaccine A) identified as a live strain of BHV-1 gE negative, were used for vaccination of calves, using three calves for each vaccine. Three months after vaccination calves were subjected to dexamethasone (DMS) treatment following which virus was recovered from calves inoculated with vaccine B and from those given vaccine D. No virus reactivation was obtained in calves, which received vaccines A or E. The DNA extracted from the two reactivated viruses was subjected to restriction endonuclease analysis. The restriction pattern of the isolate obtained from calves vaccinated with vaccine D differs significantly from that of the original vaccine, whereas the reactivated virus from calves given vaccine B conserved the general pattern of the original vaccine strain. For each reactivated virus in this experiment (B and D) as well as for the isolate obtained from calves vaccinated with a further MLV (vaccine C) in a previous trial, three calves were inoculated. No clinical signs of disease were detected in any of the inoculated calves during the observation period. When the nine calves were exposed 40 days later to challenge infection with virulent BHV-1, they remained healthy and no virus was isolated from their nasal swabbings. These results indicate that some BHV-1 vaccines considered in the project can establish latency in the vaccinated calves, however, the latency does not appear to interfere with the original properties of the vaccines in terms of safety and efficacy.  相似文献   

4.
Eight separate, but related experiments, were carried out in which groups of six calves were vaccinated with one of eight commercial vaccines. In each experiment the vaccinated calves were subsequently exposed to three calves infected with virulent bovine herpesvirus-1 (BHV-1). In each experiment, all infected donor calves developed a typical severe infectious bovine rhinotracheitis (IBR) infection and excreted virus in their nasal secretions of up to 10(8.00) TCID50/0.1 ml. One live BHV-1 gE-negative vaccine (A) and three modified live vaccines (B, C, D), administered intranasally, all protected against clinical disease. The calves vaccinated with one vaccine (C) also did not excrete virus in the nasal secretions, whereas the calves protected by vaccines A, B and D excreted virus in their nasal secretions but at low titres (10(0.66)-10(1.24) TCID50/0.1 ml). A fourth modified live vaccine (E), given intramuscularly, failed to prevent mild clinical disease in the calves which also excreted virus in the nasal secretions at titre of 10(1.00) TCID50/0.1 ml. An analogous result was given by the calves vaccinated with either of the two inactivated vaccines (F and G) or with a BHV-1 subunit vaccine (H). All calves developed mild clinical signs and excreted virus at titres of 10(2.20)-10(3.12) TCID50/0.1 ml. Calves vaccinated with C vaccine were subsequently given dexamethasone, following which virus was recovered from their nasal secretions. The virus isolates did not cause disease when calves were infected and appeared to be closely related to the vaccine strain.  相似文献   

5.
A bovine herpesvirus-1 (BHV-1) vaccine expressing glycoprotein D, the form with the transmembrane anchor removed, was evaluated for inducing immunity in calves. The plasmid encoding gD of BHV-1 was injected three times to nine calves, using three animals for each of the following routes: intramuscularly (i.m.), intradermally (i.d.), or intranasally (i.n.). Three additional calves were given the plasmid vector only and served as unvaccinated controls. When calves were subjected to challenge infection with BHV-1, all vaccinated calves as well as the controls developed a typical severe form of infectious bovine rhinotracheitis. However, compared to the controls, the vaccinated calves showed earlier clearance of challenge virus. Moreover, the calves given the vaccine i.m. developed neutralizing antibody to BHV-1 between 21 and 42 days following the first injection of vaccine, whereas in calves vaccinated either i.d. or i.n., as well as the controls, antibody first appeared in their sera 14 days post-challenge infection.  相似文献   

6.
Bovine herpesvirus type 5 (BoHV-5) is the causative agent of bovine herpetic encephalitis. In countries where BoHV-5 is prevalent, attempts to vaccinate cattle to prevent clinical signs from BoHV-5-induced disease have relied essentially on vaccination with BoHV-1 vaccines. However, such practice has been shown not to confer full protection to BoHV-5 challenge. In the present study, an inactivated, oil adjuvanted vaccine prepared with a recombinant BoHV-5 from which the genes coding for glycoprotein I (gI), glycoprotein E (gE) and membrane protein US9 were deleted (BoHV-5 gI/gE/US9), was evaluated in cattle in a vaccination/challenge experiment. The vaccine was prepared from a virus suspension containing a pre-inactivation antigenic mass equivalent to 107.69 TCID50/dose. Three mL of the inactivated vaccine were administered subcutaneously to eight calves serologically negative for BoHV-5 (vaccinated group). Four other calves were mock-vaccinated with an equivalent preparation without viral antigens (control group). Both groups were boostered 28 days later. Neither clinical signs of disease nor adverse effects were observed during or after vaccination. A specific serological response, revealed by the development of neutralizing antibodies, was detected in all vaccinated animals after the first dose of vaccine, whereas control animals remained seronegative. Calves were subsequently challenged on day 77 post-vaccination (pv) with 109.25 TCID50 of the wild-type BoHV-5 (parental strain EVI 88/95). After challenge, vaccinated cattle displayed mild signs of respiratory disease, whereas the control group developed respiratory disease and severe encephalitis, which led to culling of 2/4 calves. Searches for viral DNA in the central nervous system (CNS) of vaccinated calves indicated that wild-type BoHV-5 did not replicate, whereas in CNS tissues of calves on the control group, viral DNA was widely distributed. BoHV-5 shedding in nasal secretions was significantly lower in vaccinated calves than in the control group on days 2, 3, 4 and 6 post-challenge (pc). In addition, the duration of virus shedding was significantly shorter in the vaccinated (7 days) than in controls (12 days). Attempts to reactivate latent infection by administration of dexamethasone at 147 days pv led to recrudescence of mild signs of respiratory disease in both vaccinated and control groups. Infectious virus shedding in nasal secretions was detected at reactivation and was significantly lower in vaccinated cattle than in controls on days 11–13 post-reactivation (pr). It is concluded that the inactivated vaccine prepared with the BoHV-5 gI/gE/US9 recombinant was capable of conferring protection to encephalitis when vaccinated cattle were challenged with a large infectious dose of the parental wild type BoHV-5. However, it did not avoid the establishment of latency nor impeded dexamethasone-induced reactivation of the virus, despite a significant reduction in virus shedding after challenge and at reactivation on vaccinated calves.  相似文献   

7.
8.
Inoculation of plasmid DNA, encoding an immunogenic protein gene of an infectious agent, stands out as a novel approach for developing new generation vaccines for prevention of infectious diseases of animals. The potential of DNA vaccines to act in presence of maternal antibodies, its stability and cost effectiveness and the non-requirement of cold chain have heightened the prospects. Even though great strides have been made in nucleic acid vaccination, still there are many areas that need further research for its wholesome practical implementation. Major areas of concern are vaccine delivery, designing of suitable vectors and cytotoxic T cell responses. Also, the induction of immune responses by DNA vaccines is inconclusive due to the lack of knowledge regarding the concentration of the protein expressed in vivo. Alternative delivery systems having higher transfection efficiency and the use of cytokines, as immunomodulators, needs to be further explored. Recently, efforts are being made to modulate and prolong the active life of dendritic cells, in order to make antigen presentation a more efficacious one. For combating diseases like acquired immunodeficiency syndrome (AIDS), influenza, malaria and tuberculosis in humans; and foot and mouth disease, Aujesky’s disease, swine fever, rabies, canine distemper and brucellosis in animals, DNA vaccine clinical trials are underway. This review highlights the salient features of DNA vaccines, and measures to enhance their efficacy so as to devise an effective and novel vaccination strategy against animal diseases.  相似文献   

9.
Latent bovine herpesvirus-1 (BHV-1) infection was established in 6 calves and was demonstrated by reinduction of virus shedding after administration of corticosteroids. Latently infected calves failed to transmit BHV-1 during 4 weeks' contact with sentinel calves. Infected calves were killed and necropsied during latency or induced recrudescence. The BHV-1 DNA was demonstrated intranuclearly in trigeminal ganglion neurons by in situ hybridization. The BHV-1 antigen was demonstrated by immunofluorescence in trigeminal ganglion neurons during recrudescence. By electron microscopy, changes in the appearance of the Nissl bodies and a high frequency of nuclear bodies were observed in trigeminal ganglion neurons.  相似文献   

10.
The protective effect of an inactivated whole-virion bovine herpesvirus-1 (BHV-1) immunising inoculum, without adjuvant, against viral-bacterial respiratory disease was studied in three experimental treatment groups of five calves each. One group was boosted 14 days after the first vaccination and at this time the second group received their initial inoculation. Seven days later, calves were challenged with BHV-1 in aerosol and four days after this challenge all calves were exposed to Pasteurella haemolytica A1 in aerosol. Among the three groups, differences in rectal temperature responses four days after viral challenge (P less than 0.01) did not relate to protection. However the main response variable, viral-bacterial pneumonia, was reduced in boosted calves (P less than 0.05).  相似文献   

11.
The aim of this study was to determine the pathogenicity of an Indian bovine viral diarrhea virus (BVDV) 1b isolate in 7-9-months-old male calves. Infected (four) and control (two) calves were bled at three days interval for hematological, virological and serological studies until day 27. All infected calves developed respiratory illness, biphasic pyrexia, mild diarrhea, leucopenia and mild thrombocytopenia. Viraemia was demonstrated between 3 and 15dpi and the infected calves seroconverted by 15dpi. Prominent kidney lesions were endothelial cell swelling, proliferation of mesangial cells and podocytes leading to glomerular space obliteration. Degeneration and desquamation of cells lining seminiferous tubules were observed in two infected calves. Consolidation of lungs with interstitial pneumonia, mild gastroenteritis and systemic spread were also evident. It was concluded that Indian BVDV isolate induced moderate clinical disease in calves and glomerulonephritis resulting from acute BVDV infection was observed for the first time.  相似文献   

12.
兽用DNA疫苗的研究进展及应用   总被引:1,自引:0,他引:1  
本文主要介绍了DNA疫苗的特点、组成、免疫途径、免疫反应的机制、DNA疫苗的捕捉、细胞活素/共同刺激分子和兽用DNA疫苗的研究进展以及应用。  相似文献   

13.
Background: Both Bovine herpesvirus (BoHV-1) and Bubaline herpesvirus (BuHV-1) have been reported to cross the species barrier. Antibody seroconversion in glycoprotein E (gE) blocking ELISA during BuHV-1 infection has been documented. Recent diagnostic efforts have focused on the development and application of discriminatory tests to distinguish between infections with BoHV-1 and BuHV-1.

Objective: To evaluate the impact and distribution of these two infections in water buffalo farms in two regions (Piedmont (n = 3) and Campania (n = 10), Italy) where infectious bovine rhinotracheitis control programs have been implemented.

Animals and methods: Sampling was carried out on 13 buffalo farms comprising 1089 animals using specific gE-indirect ELISA's test able to discriminate among BoHV-1 and BuHV-1 infections.

Results: 59.0% of animals reacted positive to ELISA (irrespective of whether BoHV-1 or BuHV-1 antigen was used) and 86.4% of these were reactive to BuHV-1 only, whereas 11.8% showed absorbance values for both antigens and were classified as inconclusive. There was a statistically significant age-related difference in BuHV-1 infection rates but not in overall individual (47% vs. 58%) or herd prevalence (100% vs. 90%) of infection between the two regions.

Conclusion: The low percentage of sera reactive to BoHV-1 (1.8%, 12/643) indicates that BuHV-1 may be the main circulating alphaherpesvirus infection in Mediterranean water buffalo in the two study areas. Since Bubalus bubalis is included in Directive 64/432/EEC on animal health problems affecting intra-community trade in bovine animals, diagnostic testing with nonspecific ELISA for BoHV-1 infection in buffalo may yield false-positive reactions. This scenario could lead to economic losses and hamper buffalo trade and movement, particularly for reproduction purposes.  相似文献   


14.
Susceptible calves were administered modified live virus (MLV) vaccines containing bovine herpesvirus-1 (BHV1) and bovine viral diarrhoea type 1 (BVDV1a) strains intramuscularly, with one vaccine containing both MLV and inactivated BHV-1 and inactivated BVDV1a. There was no evidence of transmission of vaccine (BHV-1 and BVDV1a) strains to susceptible non-vaccinated controls commingled with vaccinates. No vaccinates had detectable BHV-1 in peripheral blood leucocytes (PBL) after vaccination. Each of three vaccines containing an MLV BVDV1a strain caused a transient BVDV vaccine induced viremia in PBL after vaccination, which was cleared as the calves developed serum BVDV1 antibodies. The vaccine containing both MLV and inactivated BHV-1 induced serum BHV-1 antibodies more rapid than MLV BHV-1 vaccine. Two doses of MLV BHV-1 (days 0 and 28) in some cases induced serum BHV-1 antibodies to higher levels and greater duration than one dose.  相似文献   

15.
16.
为了评价制备的牛冠状病毒灭活疫苗的免疫效力,试验选用分离鉴定出来的牛冠状病毒(BCV-YC分离株)为制苗种毒,接种HRT-18细胞进行增殖,收集上清液进行超速离心浓缩,最后加入甲醛灭活制成油乳剂灭活疫苗,分别接种小鼠和妊娠母牛。结果表明,疫苗不仅使小鼠具有一定的保护力,而且使妊娠母牛也能产生较高的抗体水平,犊牛攻毒试验证明,产生的母源抗体能使初生犊牛抵抗牛冠状病毒的攻击。说明制备的牛冠状病毒灭活疫苗对抵抗牛冠状病毒感染具有良好的保护性。  相似文献   

17.
Since Aujeszky's disease have become an economic problem in pig farms in late 1960's and early 1970's many different vaccines, either inactivated or live - attenuated were developed. Soon it became evident that they differ in their efficacy. In this article a panel of tests used for evaluation of safety and efficacy of inactivated as well as live Aujeszky's disease vaccines is described.  相似文献   

18.
A randomized clinical trial was conducted to compare the humoral immune response to 3 different commercial vaccines in dairy heifers housed in 3 different dairy farms in Quebec. All heifers were seronegative to type 1 bovine viral diarrhea virus (BVDV) (Singer strain), type 2 BVDV (NVSL 125c strain), and bovine herpesvirus-1 (BHV-1) at the beginning of the trial. In addition, control heifers in group 1 remained seronegative to the 2 viruses till the end of the trial. Significant differences in humoral immune responses occurred among the 3 commercial vaccines at 4 weeks and 6 months following vaccination. The vaccine in group 2 elicited higher mean antibody titers and seroconversion rates to both type 1 and type 2 BVDV than that in groups 3 or 4. Vaccines in groups 2 and 3 induced higher mean antibody titers to BHV-1 than did the vaccine in group 4.  相似文献   

19.
The aim of this work was to investigate the susceptibility of calves infected with bovine viral diarrhea virus (BVDV) against secondary infections. For this purpose, the profile of cytokines implicated in the immune response of calves experimentally infected with a non-cytopathic strain of BVDV type-1 and challenged with bovine herpesvirus 1.1 (BHV-1.1) was evaluated in comparison with healthy animals challenged only with BHV-1.1. The immune response was measured by serum concentrations of cytokines (IL-1β, TNFα, IFNγ, IL-12, IL-4 and IL-10), acute phase proteins (haptoglobin, serum amyloid A and fibrinogen) and BVDV and BHV-1.1 specific antibodies. BVDV-infected calves displayed a great secretion of TNFα and reduced production of IL-10 following BHV-1 infection, leading to an exacerbation of the inflammatory response and to the development of more intense clinical symptoms and lesions than those observed in healthy animals BHV-1-inoculated. A Th1 immune response, based on IFNγ production and on the absence of significant changes in IL-4 production, was observed in both groups of BHV-1-infected calves. However, whereas the animals inoculated only with BHV-1 presented an IFNγ response from the start of the study and high expression of IL-12, the BVDV-infected calves showed a delay in the IFNγ production and low levels of IL-12. This alteration in the kinetic and magnitude of these cytokines, involved in cytotoxic mechanisms responsible for limiting the spread of secondary pathogens, facilitated the dissemination of BHV-1.1 in BVDV-infected calves.  相似文献   

20.
The efficacy of a Pasteurella haemolytica vaccine (PhV) administered once to calves within 24 hours of arrival at a feedlot was tested for the ability to prevent morbidity and mortality from all bovine respiratory disease (BRD) and specifically from fibrinous pneumonia mortality. The PhV consisted of two immunizing ingredients: outer membrane proteins extracted from P. haemolytica, plus genetically attenuated leukotoxin produced by recombinant DNA technology. This double blind study was conducted at a large Saskatchewan feedlot using 2,324 high-risk calves purchased at auction markets and kept under typical commercial feedlot conditions. The trial design included four vaccine test groups: 1) PhV and a bovine herpesvirus type-1 (BHV-1) subunit vaccine comprised only of the virus glycoprotein IV (gIV); 2) PhV and a commercial modified live vaccine (MLV) containing BHV-1 and parainfluenza-3 viruses; 3) gIV alone; and 4) MLV alone. Calves were assigned to vaccine groups in a random systematic manner, individually identified, and monitored for 90 days after vaccination. The vaccines were given once, on arrival, to reflect common feedlot practice, although vaccination prior to expected risk would be more appropriate.

The PhV in combination with gIV reduced BRD morbidity by 20% (p < 0.05) compared to gIV alone and 24% (p < 0.05) compared to MLV alone, and reduced BRD mortality by 88% (p < 0.05) and fibrinous pneumonia mortality by 100% (p < 0.05) when compared to either gIV or MLV alone. Vaccination with PhV in combination with MLV significantly reduced the efficacy of the PhV in preventing BRD morbidity, BRD mortality, and fibrinous pneumonia mortality and also reduced the antibody response to P. haemolytica leukotoxin. These results suggest that the MLV interfered with the protective capacity of the PhV.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号