首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The left ventricular (LV) Tei index (index of myocardial performance) has been demonstrated to be clinically useful in estimating comprehensive LV function, including the systolic and diastolic performances, in various human cardiac diseases. The purposes of this study were to validate the correlation between the LV Tei index and LV function obtained by cardiac catheterization in healthy dogs, and to evaluate the LV Tei index in dogs with naturally occurring mitral regurgitation (MR). In healthy dogs, the LV Tei index was significantly correlated with the LV peak +dP/dt (r = -0.89) and LV peak -dP/dt (r=0.87). The LV Tei index significantly increased in dogs with MR compared with normal dogs and significantly increased with progressively more severe clinical signs due to heart failure. The elevation of the LV Tei index in dogs with symptomatic MR appears to be associated with shortening of ejection time. The LV Tei index significantly increased with age and was not correlated with heart rate and body weight in normal dogs. In conclusion, our study demonstrated that the LV Tei index was measurable in dogs and not influenced by heart rate and body weight. The LV Tei index significantly increased with the progression of clinical signs in MR dogs. In particular, the elevation of the LV Tei index in dogs with symptomatic MR due to shortening of ejection time may suggest LV systolic dysfunction and the decrement of forward stroke volume.  相似文献   

2.
Right ventricular (RV) Tei index (index of myocardial performance) has been demonstrated to be clinically useful in estimating RV function in various human cardiac diseases. The purposes of this study were to validate the correlation between RV Tei index and RV function obtained by cardiac catheterization in healthy dogs, and to evaluate the RV Tei index in dogs with tricuspid regurgitation (TR). In healthy dogs, the RV Tei index significantly correlated with the RV peak +dP/dt (r=-0.80, p<0.0001) and -dP/dt (r=0.69, p=0.0001). In normal dogs, the RV Tei index was not significantly correlated with heart rate, body weight, and age. The RV Tei index significantly increased in dogs with moderate to severe TR (0.39 +/- 0.35, p=0.0015), filariasis (0.46 +/- 0.16, p=0.0131), and trivial to mild TR and severe mitral regurgitation (MR; 0.61 +/- 0.14, p=0.0017) when compared with the normal dogs (0.17 +/- 0.10). In addition, the RV Tei index in dogs with TR significantly increased in association with pulmonary hypertension [PH(-), 0.19 +/- 0.09; PH(+), 0.65 +/- 0.14; respectively p<0.0001]. Our study has demonstrated that RV Tei index is a feasible approach to estimate RV function in dogs and is not influenced by heart rate, body weight, and aging. Further investigations are required to clarify the clinical significance of RV Tei index in dogs with right-sided cardiac diseases.  相似文献   

3.
Background: Pulmonary hypertension (PH) is a disease condition leading to right-sided cardiac hypertrophy and, eventually, right-sided heart failure. Cardiac troponin I (cTnI) is a circulating biomarker of cardiac damage.
Hypothesis: Myocardial damage can occur in dogs with precapillary and postcapillary PH.
Animals: One hundred and thirty-three dogs were examined: 26 healthy controls, 42 dogs with mitral valve disease (MVD) without PH, 48 dogs with pulmonary hypertension associated with mitral valve disease (PH-MVD), and 17 dogs with precapillary PH.
Methods: Prospective, observational study. Serum cTnI concentration was measured with a commercially available immunoassay and results were compared between groups.
Results: Median cTnI was 0.10 ng/mL (range 0.10–0.17 ng/mL) in healthy dogs. Compared with the healthy population, median serum cTnI concentration was increased in dogs with precapillary PH (0.25 ng/mL; range 0.10–1.9 ng/mL; P < .001) and in dogs with PH-MVD (0.21 ng/mL; range 0.10–2.10 ng/mL; P < .001). Median serum cTnI concentration of dogs with MVD (0.12 ng/mL; range 0.10–1.00 ng/mL) was not significantly different compared with control group and dogs with PH-MVD. In dogs with MVD and PH-MVD, only the subgroup with decompensated PH-MVD had significantly higher cTnI concentration compared with dogs with compensated MVD and PH-MVD. Serum cTnI concentration showed significant modest positive correlations with the calculated pulmonary artery systolic pressure in dogs with PH and some echocardiographic indices in dogs with MVD and PH-MVD.
Conclusions and Clinical Importance: Serum cTnI is high in dogs with either precapillary and postcapillary PH. Myocardial damage in dogs with postcapillary PH is likely the consequence of increased severity of MVD.  相似文献   

4.
ObjectiveTo analytically validate a commercially available high-sensitivity immunoassay for measurement of cardiac troponin I (cTnI) in humans for use in dogs and to evaluate serum cTnI concentrations in healthy dogs and 3 well-defined groups of dogs with common cardiac diseases.AnimalsCanine serum samples were used for validation. 85 client-owned dogs including 24 healthy controls, 20 with myxomatous mitral valve disease, 19 with congenital heart disease, and 22 with arrhythmias.MethodsFour serum samples were used to analytically validate the ADVIA Centaur TnI-Ultra assay by assessing intra-assay variability, inter-assay variability, spiking recovery, and dilutional parallelism. Dogs were grouped based on examination, echocardiography, and additional testing as clinically indicated, and serum cTnI concentrations were compared.ResultsAnalysis of the serum samples used for validation revealed an intra-assay coefficient of variation between 3.6% and 5.7%, and an inter-assay coefficient of variation between 2.4% and 5.9%. Observed to expected ratios for spiking recovery were 97.9 ± 8.6% (mean, SD). Observed to expected ratios for dilutional parallelism were 73.0 ± 11.5% (mean, SD). Dogs with cardiac disease had significantly higher serum cTnI concentrations (P < 0.005) than healthy dogs.ConclusionsThe ADVIA Centaur TnI-Ultra's low limit of detection allows measurement of serum cTnI in the majority of dogs even with no or mild cardiac disease. Dilution of samples for measurement of values above the upper limit of detection is not reliable and therefore not recommended. Serum cTnI concentrations are significantly higher in dogs with cardiac disease compared to healthy dogs.  相似文献   

5.
Background: Making a clinical diagnosis of pericarditis in cattle is difficult and additional diagnostic tests are needed to evaluate cattle with suspected pericarditis. Serum cardiac troponin I (cTnI) concentrations are increased in cattle with pericarditis, but the utility of measuring serum cTnI concentrations in cattle with suspected pericarditis in cattle remains unclear.
Objectives: To determine if serum cTnI concentrations in cattle can be used to differentiate pericarditis from other cardiac disorders and noncardiac thoracic diseases.
Animals: Seventy-seven clinically diseased cattle and 19 healthy control cattle.
Methods: Serum cTnI concentrations were measured using an Immunlite Troponin I immunometric chemiluminescent assay in consecutive cases of postmortem-confirmed pericarditis (n = 18), endocarditis (n = 15), chronic suppurative pneumonia (n = 13), congenital heart disease (n = 10), reticulitis (n = 3), mediastinal abscess (n = 7), thymic lymphoma (n = 6), and caudal vena cava thrombosis (n = 5). Serum cTnI concentrations were measured in 19 healthy cattle.
Results: Although serum cTnI concentrations were significantly higher in cattle with pericarditis compared with healthy cattle, they were not significantly different from concentrations in cattle with endocarditis, congenital cardiac disease, mediastinal abscess, reticulitis, caudal vena cava thrombosis, or chronic suppurative pneumonia.
Conclusions: Serum cTnI cannot be used to distinguish cattle with pericarditis from cattle with other primary cardiac diseases. In addition, serum cTnI concentrations cannot distinguish between cattle with primary cardiac diseases and those with other noncardiac, intrathoracic disorders.  相似文献   

6.
ObjectiveTo evaluate the effect of medetomidine–butorphanol sedation on serum cardiac troponin I (cTnI) concentration, a marker of myocardial ischemia and injury, in healthy dogs undergoing pre–surgical radiographs for orthopedic procedures.Study designProspective clinical study.AnimalsTwenty client–owned dogs with no history of cardiac disease.MethodsDogs were evaluated for pre–existing cardiac disease with electrocardiogram (ECG), noninvasive blood pressure and echocardiogram. Sedation was achieved using a combination of medetomidine (10 μg kg?1) and butorphanol (0.2 mg kg?1) intravenously. Blood pressure, heart rate and ECG were serially recorded throughout the duration of sedation. Serum cTnI concentration was measured at baseline and 6, 18, and 24–hours post–sedation.ResultsFollowing administration of medetomidine and butorphanol, all dogs were adequately sedated for radiographs and had a decreased heart rate and increased diastolic blood pressure. Arrhythmias associated with increased parasympathetic tone occurred, including a sinus arrhythmia further characterized as a sinus bigeminy in 17 of the dogs. Serum cTnI was undetectable at all time points in all but three dogs. Two of the three dogs had a detectable concentration of cTnI at all time points measured, including prior to sedation. Only one of the two dogs had a cTnI concentration above the normal reference interval. The dogs that exhibited detectable cTnI had no significant difference in signalment, heart rate, blood pressure, or lactate concentration as compared to those with undetectable cTnI.Conclusions and clinical relevanceSedation with medetomidine and butorphanol had predictable cardiovascular effects including bradycardia, an increase in arterial blood pressure, and arrhythmias in apparently healthy dogs requiring radiographs for orthopedic injuries, but did not induce significant increases in serum cTnI concentration following the drug doses used in this study.  相似文献   

7.
Cardiac troponin-I (cTnI) is a highly sensitive and specific marker of myocardial injury and can be detected in plasma by immunoassay techniques. The purpose of this study was to establish a reference range for plasma cTnI in a population of healthy dogs using a human immunoassay system and to determine whether plasma cTnI concentrations were high in dogs with acquired or congenital heart disease, specifically cardiomyopathy (CM), degenerative mitral valve disease (MVD), and subvalvular aortic stenosis (SAS). In total, 269 dogs were examined by physical examination, electrocardiography, echocardiography, and plasma cTnI assay. In 176 healthy dogs, median cTnI was 0.03 ng/mL (upper 95th percentile = 0.11 ng/mL). Compared with the healthy population, median plasma cTnI was increased in dogs with CM (0.14 ng/mL; range, 0.03-1.88 ng/mL; P < .001; n = 26), in dogs with MVD (0.11 ng/mL; range, 0.01-9.53 ng/mL; P < .001; n = 37), and in dogs with SAS (0.08 ng/mL; range, 0.01-0.94 ng/mL; P < .001; n = 30). In dogs with CM and MVD, plasma cTnI was correlated with left ventricular and left atrial size. In dogs with SAS, cTnI demonstrated a modest correlation with ventricular wall thickness. In dogs with CM, the median survival time of those with cTnI >0.20 ng/mL was significantly shorter than median survival time of those with cTnI <0.20 ng/mL (112 days versus 357 days; P = .006). Plasma cTnI is high in dogs with cardiac disease, correlates with heart size and survival, and can be used as a blood-based biomarker of cardiac disease.  相似文献   

8.
OBJECTIVE: To determine whether serum concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) are increased in dogs with gastric dilatationvolvulus (GDV) and whether concentrations correlate with severity of ECG abnormalities or outcome. DESIGN: Prospective case series. ANIMALS: 85 dogs with GDV. PROCEDURE: Serum cTnl and cTnT concentrations were measured 12 to 24, 48, 72, and 96 hours after surgery. Dogs were grouped on the basis of severity of ECG abnormalities and outcome. RESULTS: cTnl and cTnT were detected in serum from 74 (87%) and 43 (51%) dogs, respectively. Concentrations were significantly different among groups when dogs were grouped on the basis of severity of ECG abnormalities (none or mild vs moderate vs severe). Dogs that died (n = 16) had significantly higher serum cTnI (24.9 ng/ml) and cTnT (0.18 ng/ml) concentrations than did dogs that survived (2.05 and < 0.01 ng/ml, respectively). Myocardial cell injury was confirmed at necropsy in 4 dogs with high serum cardiac troponin concentrations. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that concentrations of cTnI and cTnT suggestive of myocardial cell injury can commonly be found in serum from dogs with GDV and that serum cardiac troponin concentrations are associated with severity of ECG abnormalities and outcome.  相似文献   

9.
The cumulative cardiotoxicity that occurs as a result of doxorubicin chemotherapy is irreversible and can affect both quality and quantity of life for the cancer patient. Cardiac troponin I (cTnI) is a sensitive and specific marker of cardiomyocyte death. The purpose of this retrospective study was to evaluate serum concentrations of cTnI in dogs with lymphoma or osteosarcoma given doxorubicin chemotherapy, and with known cardiac outcome, based on a minimum assessment by physical examination and thoracic radiography. Serum samples were also available for cTnI measurement from seven healthy dogs given intracoronary doxorubicin. Serial serum samples obtained before, during and after doxorubicin chemotherapy showed increased cTnI concentrations in some clinical patients following chemotherapy (P = 0.0083 compared to baseline), but this did not correlate with clinical signs of cardiomyopathy. In dogs that subsequently developed cardiomyopathy however, serum cTnI concentrations were elevated before clinical signs became evident (confirmed with echocardiography).  相似文献   

10.
Background: C‐reactive protein (CRP) and cardiac troponin I (cTnI) are biomarkers of systemic inflammation and cardiac damage, respectively. Objective: To investigate the effects of short‐duration high‐intensity exercise on plasma cTnI and serum CRP concentrations in sprint racing sled dogs. Animals: Twenty‐two Alaskan sled dogs of 2 different teams participating in a 2‐day racing event. Methods: In this prospective field study, cephalic venipuncture was performed on all dogs before racing and immediately after racing on 2 consecutive days. Plasma cTnI and serum CRP concentrations were evaluated at each time point. Results: There was a mild, significant rise (P < .01) in median cTnI concentrations from resting (0.02 ng/mL; 0.0–0.12 ng/mL) on both days after racing (day 1 = 0.06, 0.02–0.2 ng/mL; day 2 = 0.07, 0.02–0.21 ng/mL). Serum CRP concentrations showed a mild significant increase (P < .01) on day 2 after racing mean (9.2 ± 4.6 μg/mL) as compared with resting (6.5 + 4.3 μg/mL) and day 1 after racing (5.0 + 2.9 μg/mL). Neither cTnI or CRP concentrations exceeded the upper reference range for healthy dogs. Conclusions and Clinical Relevance: Strenuous exercise of short duration did not result in cTnI concentrations above the reference range for healthy dogs. Although increased after 2 days of short‐duration strenuous exercise, CRP did not reach concentrations suggestive of inflammation, as reported previously in the endurance sled dogs. Therefore, we surmise that moderate exercise does not present a confounding variable in the interpretation of cTnI and CRP concentrations in normal dogs.  相似文献   

11.
Background: Cardiac troponin I (cTnI) is a polypeptide found specifically in cardiac muscle tissue that has been used as a diagnostic and prognostic indicator of cardiomyopathy. Increases in cTnI are associated with myocardial pathologic processes. However, high serum cTnI concentrations have been observed in normal Greyhounds.
Hypothesis: We hypothesized that Greyhounds have cTnI concentrations higher than non-Greyhound dogs, and that a separate reference range should be established for Greyhounds.
Animals: Blood samples were collected from the jugular vein from a group of 20 healthy Greyhound blood donors.
Methods: Analysis of serum cTnI was performed with an immunoassay system with a detection level of 0.01 ng/mL, as described previously. The Greyhound values were compared with 2 groups of Boxers with and without arrhythmogenic right ventricular cardiomyopathy (ARVC), and to a group of non-Boxer control dogs from a previous study.
Results: The mean cTnI concentration in Greyhounds was significantly higher ( P < .0001) than that in non-Greyhound control dogs, although not significantly different from normal Boxers ( P = .50), or Boxers with ARVC ( P = .58). Greyhound serum cTnI concentrations were in the range found in Boxers with ARVC. The proposed reference range for cTnI in Greyhounds is 0.05–0.16 ng/mL.
Conclusions and Clinical Importance: Greyhounds have a reference range for serum cTnI concentrations that differs from that of other previously published reference ranges for dogs of other breeds. Until a broader database and more precise reference range can be established, caution should be exercised in interpreting serum cTnI concentrations in Greyhounds with suspected cardiac disease.  相似文献   

12.
OBJECTIVE: To investigate the relationship between myocardial performance index (MPI; also known as the Tei index) and cardiac function in anesthetized cats administered dobutamine. ANIMALS: 6 adult cats. PROCEDURES: Cats were anesthetized by administration of propofol (6 mg/kg, IV), and anesthesia was maintained by administration of isoflurane. Heart rate and systolic arterial pressure (SAP) were monitored. Stroke volume, cardiac output, and aortic blood flow (ABF) were measured by use of transesophageal ultrasonography. Left ventricular fractional shortening (LVFS), mitral E-wave velocity-to-A-wave velocity (E:A) ratio, and ejection time were measured by use of transthoracic echocardiography. Dobutamine was administrated via a cephalic vein at rates of 2.5, 5.0, and 10 microg/kg/min. RESULTS: Heart rate, SAP, cardiac output, and ABF increased with dobutamine administration, whereas stroke volume significantly decreased. The LVFS significantly increased, and the E:A ratio significantly decreased. Total isovolumic time and the MPI significantly decreased. The MPI was negatively correlated (r=-0.63) with LVFS. Conversely, the MPI was positively correlated with the E:A ratio (r=0.47), stroke volume (r=0.66), and total isovolumic time (r=0.95). However, the MPI was not significantly correlated with heart rate, SAP, cardiac output, or ABF. CONCLUSION AND CLINICAL RELEVANCE: Analysis suggested that the MPI provides a sensitive clinical assessment of cardiac response to medication in cats, which may be similar to the usefulness of the MPI reported in humans.  相似文献   

13.
Cardiac troponin I (cTnI) and T (cTnT) have a high sequence homology across phyla and are sensitive and specific markers of myocardial damage. The purpose of this study was to evaluate the Cardiac Reader, a human point-of-care system for the determination of cTnT and myoglobin, and the Abbott Axsym System for the determination of cTnI and creatine kinase isoenzyme MB (CK-MB) in healthy dogs and in dogs at risk for acute myocardial damage because of gastric dilatation-volvulus (GDV) and blunt chest trauma (BCT). In healthy dogs (n = 56), cTnI was below detection limits (<0.1 microg/L) in 35 of 56 dogs (reference range 0-0.7 microg/L), and cTnT was not measurable (<0.05 ng/mL) in all but 1 dog. At presentation, cTnI, CK-MB, myoglobin, and lactic acid were all significantly higher in dogs with GDV (n = 28) and BCT (n = 8) than in control dogs (P < .001), but cTnT was significantly higher only in dogs with BCT (P = .033). Increased cTnI or cTnT values were found in 26 of 28 (highest values 1.1-369 microg/L) and 16 of 28 dogs (0.1-1.7 ng/mL) with GDV, and in 6 of 8 (2.3-82.4 microg/L) and 3 of 8 dogs (0.1-0.29 ng/mL) with BCT, respectively. In dogs suffering from GDV, cTnI and cTnT increased further within the first 48 hours (P < .001). Increased cardiac troponins suggestive of myocardial damage occurred in 93% of dogs with GDV and 75% with BCT. cTnI appeared more sensitive, but cTnT may be a negative prognostic indicator in GDV. Both systems tested seemed applicable for the measurement of canine cardiac troponins, with the Cardiac Reader particularly suitable for use in emergency settings.  相似文献   

14.
The aim of this study was to investigate the effects of methylprednisolone treatment on serum leptin and ghrelin levels in healthy dogs (n=40). After 14 h of fasting, the dogs were injected intramuscularly with saline (control group) or methylprednisolone (1, 5 or 10mg/kg). Blood samples were collected prior to (baseline) and 2, 3, 4, 8, 12 and 24h subsequent to the treatments. Serum leptin and ghrelin were measured by radioimmunoassay. The mean baseline serum leptin and ghrelin were 2.5+/-0.1 ng/mL (n=40) and 35.0+/-2.1 pg/mL (n=40), respectively. In the control dogs, serum leptin, but not ghrelin levels showed a significant fluctuation during the 24h observation period. Serum leptin increased significantly (p<0.05-0.01) between 2 and 12h after 1mg/kg of methylprednisolone. Serum leptin levels showed biphasic response to 5mg/kg of methylprednisolone: its level decreased to 1.9+/-0.1 ng/mL (p<0.01) at 2h and increased at 12h (2.6+/-0.1 ng/mL) (p<0.01). In response to 10mg/kg of methylprednisolone, serum leptin levels decreased significantly (p<0.01) for 24h. Serum ghrelin levels decreased to 19+/-5 pg/mL at 2-3h (p<0.01) or increased to 87+/-18 pg/mL at 3-8h (p<0.05-0.01) after 1mg/kg of methylprednisolone or 10mg/kg of methylprednisolone, respectively. Serum ghrelin levels did not change at any time point during 24h observation period after 5mg/kg of methylprednisolone. There was a significant (p<0.001) inverse correlation (r=-0.635) between serum leptin and ghrelin levels. In conclusion, we found that methylprednisolone increases or decreases serum leptin and ghrelin levels depending upon its dose and there is a negative correlation between serum leptin and ghrelin levels after methylprednisolone administration.  相似文献   

15.
ObjectiveTo estimate the incidence of raised cTnI after general anaesthesia in dogs and to explore major risk factors influencing this.Study designProspective clinical study.AnimalsA total of 107 (ASA physical status 1?2) dogs, 63% male and 37% female, median age 5 years (range 0.3–13.4), median weight 24.4 kg (range 4.2–66.5 kg) undergoing anaesthesia for clinical purposes.MethodsVenous blood samples were taken within 24 hours prior to induction and 24 hours after the termination of anaesthesia. Serum concentrations of cardiac troponin I were measured using a chemiluminescent enzyme immunometric assay with a lower level of detection of 0.20 ng mL?1 (below this level <0.20 ng mL?1). Continuous data were assessed graphically for normality and paired and unpaired data compared with the Wilcoxon signed ranks and Mann–Whitney U‐tests respectively. Categorical data were compared with the Chi squared or Fisher’s exact test as appropriate (p < 0.05).ResultsOf the 107 dogs recruited, 100 had pre‐ and post‐anaesthetic cTnI measured. The median pre‐anaesthesia cTnI was ‘<0.20’ ng mL?1 (range ‘<0.20’–0.43 ng mL?1) and the median increase from pre‐anaesthesia level was 0.00 ng mL?1 (range ?0.12 to 0.61 ng mL?1). Fourteen dogs had increased cTnI after anaesthesia relative to pre‐anaesthesia (14%, 95% CI 7.2–20.8%, range of increase 0.03–0.61 ng mL?1). Six animals had cTnI levels that decreased (range 0.02–0.12 ng mL?1). Older dogs were more likely to have increased cTnI prior to anaesthesia (OR = 5.32, 95% CI 1.35–21.0, p = 0.007) and dogs 8 years and over were 3.6 times as likely to have an increased cTnI after anaesthesia (95% CI 1.1–12.4, p = 0.028).Conclusion and clinical relevanceIncreased cTnI after anaesthesia relative to pre‐anaesthesia levels was observed in a number of apparently healthy dogs undergoing routine anaesthesia.  相似文献   

16.
This study assessed the effects of a single intracoronary injection of autologous stem cells on the cardiac function of dogs with Chagas cardiomyopathy. Bone-marrow-derived stem cells were delivered into the right and left coronary arteries of 5 mature dogs with mildly compromised cardiac function due to chronic Chagas cardiomyopathy. Blood pressure and electrocardiographic and echocardiographic parameters were recorded at monthly intervals for 6 mo in the 3 dogs that survived. Although no changes were observed in the electrocardiogram and blood pressure, there was a significant increase in peak velocity of aortic flow 3 mo after stem cell transplantation. Pre-ejection period, isovolumic relaxation time, and the Tei index of myocardial performance were reduced significantly 4 mo after the procedure. All significant changes persisted to the end of the study. The results suggest that the transplantation of autologous bone-marrow-derived stem cells into the coronary arteries of dogs with Chagas cardiomyopathy may have a beneficial effect but the small number of dogs studied was a limitation.  相似文献   

17.

Objective

To determine if serum cardiac troponin I (cTnI) concentration distinguishes between cardiogenic syncope and collapsing dogs presenting with either generalized epileptic seizures (both with and without cardiac disease) or vasovagal syncope.

Animals

Seventy-nine prospectively recruited dogs, grouped according to aetiology of collapse: generalized epileptic seizures (group E), cardiogenic syncope (group C), dogs with both epileptic seizures and cardiac disease (group B), vasovagal syncope (group V) or unclassified (group U).

Methods

Most patients had ECG (n = 78), echocardiography (n = 78) and BP measurement (n = 74) performed. Dogs with a history of intoxications, trauma, evidence of metabolic disorders or renal insufficiency (based on serum creatinine concentrations >150 μmol/L and urine specific gravity <1.030) were excluded. Serum cTnI concentrations were measured and compared between groups using non-parametric statistical methods. Multivariable regression analysis investigated factors associated with cTnI. Receiver operator characteristic curve analysis examined whether cTnI could identify cardiogenic syncope.

Results

Median cTnI concentrations were higher in group C than E (cTnI: 0.165 [0.02–27.41] vs. 0.03 [0.01–1.92] ng/mL; p<0.05). Regression analysis found that serum cTnI concentrations decreased with increasing time from collapse (p=0.015) and increased with increasing creatinine concentration (p=0.028). Serum cTnI diagnosed cardiogenic syncope with a sensitivity of 75% and specificity of 80%.

Conclusions

Serum cTnI concentrations were significantly different between groups C and E. However, due to the overlap in cTnI concentrations between groups cTnI, measurement in an individual is not optimally discriminatory to differentiate cardiogenic syncope from collapse with generalized epileptic seizures (both with and without cardiac disease) or vasovagal syncope.  相似文献   

18.
Objective-To establish a clinical severity index that correlates severity of body system abnormalities with outcome in dogs with acute pancreatitis (AP) and determine the usefulness of serum C-reactive protein (C-RP) concentration as an objective measure of AP severity. Design-Retrospective cohort study. Animals-61 client-owned dogs with ultrasonographically or histologically confirmed AP. Procedures-Medical records of AP-affected dogs were reviewed, and signalment, physical examination findings, clinicopathologic data, and outcome (death or discharge from the hospital) were evaluated. The correlation of specific abnormalities in endocrine, hepatic, renal, hematopoietic, cardiovascular, and respiratory systems; local pancreatic complications; and intestinal integrity were evaluated, and a clinical severity index was developed for AP in dogs. The severity index score was compared with outcome and, for 12 dogs, with serum C-RP concentration. Results-The clinical severity index had a good correlation with outcome and interval from hospital admission until end point (days until outcome), but there was no difference in days until outcome between survivors and nonsurvivors. All 12 dogs evaluated had high serum C-RP concentration, but this variable was not related to outcome; however, within a 2-day period after onset of clinical signs, serum C-RP concentration in survivors and nonsurvivors differed significantly. Conclusions and Clinical Relevance-Among AP-affected dogs, the clinical severity index may be useful for treatment comparisons and prediction of intensive management requirements. Serum C-RP concentration was best related to AP severity within a 2-day period after onset of clinical signs, but daily measurement may be more useful for monitoring progress.  相似文献   

19.
Background: Cardiac troponin I (cTnI) is used as a biomarker of myocardial injury in people and small animals. Little is known about the diagnostic use of cTnI in cattle.
Hypothesis: Serum cTnI correlates to myocardial function and histopathologic lesions in cattle with monensin-induced myocardial injury.
Animals: Ten healthy cows.
Methods: Experimental study. Animals received 1 dose of monensin PO; 30 mg/kg (n = 1) or 40 mg/kg (n = 1) (Group A) or 50 mg/kg monensin (n = 8) (Group B) of body weight. Repeated measurements were performed of serum cTnI, biochemistry, and ECG and echocardiography until study termination at 80 (Group A) and 144 hours (Group B) after dosing. Semiquantitative histopathologic examinations of the heart were performed in each cow. A scoring system with regard to the magnitude of myocardial injury was established and a total heart score was compared with maximum cTnI concentration measured after monensin administration. Five hearts from healthy cows served as controls.
Results: Increased cTnI (>0.07 ng/mL) was found in 9/10 cows. cTnI was significantly associated with left ventricular shortening fraction ( r 2= 0.51; P = .02) and myocardial histopathologic lesion score ( r 2= 0.49; P = .021). All cows (n = 7) with evidence of myocardial necrosis had a cTnI concentration ≥ 1.04 ng/mL.
Conclusion and Clinical Importance: cTnI is related to myocardial necrosis and severity of myocardial damage in cattle with monensin toxicosis. cTnI could become a useful diagnostic tool in the noninvasive assessment of myocardial injury in cattle with naturally occurring cardiac disease.  相似文献   

20.
The purpose of this study was to develop prognostic models for heart failure in dogs with dilated cardiomyopathy (DCM). The prospective study included 26 dogs with DCM and 58 healthy dogs. The ervation time median was 250 days (1-600 days). All the dogs were clinically examined, had echocardiography, electrocardiography, and morphological and biochemical blood sampling. Twenty four deaths were found in the group of dogs with DCM and 1 demise in the healthy dog's group. There was a significant increase in the level of NT-pro-BNP and cTnI (p < 0.0005) in the group of dogs with DCM and a significant higher level of NT-pro-BNP and cTnI (p < 0.0005) in the dead dogs from group with DCM that died or were euthanized up to the 60th day of observation, compared to the animals that outlasted over 60 days of observation. The median level of NT-pro-BNP in the dogs which had short survival period (no more than 60 days) was 4865 pmol/L and the median level of cTnI in the same group of dogs was 0.63 ng/ml. The median level of NT-pro-BNP in the group of dogs with DCM, which lived longer than 60 days of observation was 978 pmol/l and the median level of cTnI in this group was 0.1 ng/ml. The level of NT-pro-BNP (r = 0.79) and cTnI (r = 0.4) correlated with the dogs' death. NT-pro-BNP and cTnI measurements could be useful to evaluate the survival the dogs with DCM. Increased level of NT-pro-BNP and cTnI is a bad prognosis. In the performed analysis of the Cox hazard regression it was found that cTnI level has a significant impact of the survival of the dogs (HR = 8.54; Cl 1.1-46.6; p = 0.02).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号