首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Due to its persistence, subsoil compaction should be avoided, which can be done by setting stress limits depending on the strength of the soil. Such limits must take into account soil moisture status at the time of traffic. The objective of the work presented here was to measure soil water changes during the growing period, use the data to calibrate a soil water model and simulate the soil susceptibility to compaction using meteorological data for a 25-year period. Measurements of soil water content were made in sugarbeet (Beta vulgaris L.) from sowing until harvest in 1997 on two sites classified as Eutric Cambisols in southern Sweden. Sampling was carried out at 2-week intervals in 0.1 m layers down to 1 m depth, together with measurements of root growth and crop development. Precompression stress of the soil at 0.3, 0.5 and 0.7 m depth was determined from uniaxial compression tests at water tensions of 6, 30, 60 and 150 kPa and adjusted as a logarithmic function of the soil water tension. Soil water content was simulated by the SOIL model for the years 1963–1988. Risk calculations were made for a wheel load of 8 t and a ground pressure of 220 kPa, corresponding to a fully loaded six-row sugarbeet harvester. Subsoil compaction was expected to occur when the major principal stress was higher than the precompression stress. The subsoil water content was very low in late summer, but increased during the autumn. At the end of August, there was practically no plant available water down to 1 m depth. There was in general good agreement between measured and simulated values of soil water content for the subsoil, but not for the topsoil. In the 25-year simulations, the compaction risk at 50 cm depth was estimated to increase from around 25% to nearly 100% between September and late November, which is the period when the sugarbeet are harvested. The types of simulation presented here may be a very useful tool for practical agriculture as well as for society, in giving recommendations as to how subsoil compaction should be avoided.  相似文献   

2.
Soil compaction caused by traffic of heavy vehicles and machinery has become a problem of world-wide concern. The aims of this study were to evaluate and compare the changes in bulk density, soil strength, porosity, saturated hydraulic conductivity and air permeability during sugar beet (Beta vulgaris L.) harvesting on a typical Bavarian soil (Regosol) as well as to assess the most appropriate variable factors that fit with the effective controlling of subsequent compaction. The field experiments, measurements and laboratory testing were carried out in Freising, Germany. Two tillage systems (conventional plough tillage and reduced chisel tillage) were used in the experiments. The soil water contents were adjusted to 0.17 g g−1 (w1), 0.27 g g−1 (w2) and 0.35 g g−1 (w3).Taking the increase in bulk density, the decrease in air permeability and reduction of wide coarse pore size porosity (−6 kPa) into account, it seems that CT (ploughing to a depth of 0.25 m followed by two passes of rotary harrow to a depth 0.05 m) of plots were compacted to a depth of at least 0.25 m and at most 0.40 m in high soil water (w3) conditions. The trends were similar for “CT w1” (low soil water content) plots. However, it seems that “CT w1” plots were less affected than “CT w3” plots with regard to bulk density increases under partial load. In contrast, diminishments of wide coarse pores (−6 kPa) and narrow (tight) coarse pores (−30 kPa) were significantly higher in “CT w1” plots down to 0.4 m. Among CT plots, the best physical properties were obtained at medium soil water (w2) content. No significant increase in bulk density and no significant decrease in coarse pore size porosity and total porosity below 0.2 m were observed at medium soil water content. The soil water content seemed to be the most decisive factor.It is likely that, CS (chiselling to a depth of 0.13 m followed by two passes of rotary harrow to a depth 0.05 m) plots were less affected by traffic treatments than CT plots. Considering the proportion of coarse pore size porosity (structural porosity) and total porosity, no compaction effects below 0.3 m were found. Medium soil water content (w2) provides better soil conditions after traffic with regard to wide coarse pore size porosity (−6 kPa), air permeability (at 6 and 30 kPa water suction), total porosity and bulk density. Proportion of wide coarse pores, air permeability and bulk density seems to be suitable parameters to detect soil compaction under the conditions tested.  相似文献   

3.
In a field experiment, a sandy loam was subjected to single passes with a sugar beet harvester at two different soil water potentials. Different hopper fillings resulted in ground contact pressures of 130 kPa (partial load) and 160 kPa (full load) underneath the tyre. Bulk density, macroporosity (equivalent pore radius >100 μm), penetrometer resistance, air permeability and pre-consolidation pressure were measured within and next to the wheel tracks at depths of 0.12–0.17, 0.32–0.37 and 0.52–0.57 m. Furthermore, the soil structure at two horizons (Ahp 7–24 cm, B(C) 24–38 cm) was visually assessed and classified.

The moist plot responded to a wheel load of 11.23 mg (160 kPa) with an increase in bulk density and pre-consolidation pressure as well as with a decrease in air permeability and macroporosity at a depth of 0.12–0.17 m. With a wheel load of 7.47 mg (130 kPa) on the moist plot and with both wheel load levels on the dry plot, only slight changes of the soil structure were detected. At a depth of 0.32–0.37 and 0.52–0.57 m, the measurements did not indicate any compaction. An ANOVA indicates that the factor “soil water potential” and the factor “wheel load” significantly influence the bulk density at a depth of 0.12–0.17 m. No interactions occurred between these two factors. The wheel traffic on the test plot had no effect on the yield of winter wheat planted after the experimental treatment.

Bulk density, macroporosity and pre-consolidation pressure proved to be sensitive to detect compaction because they varied only slightly and are easy to measure. In contrast, the standard deviation of air permeability is large. The soil structure determined visually in the field confirms the values measured in the laboratory. The results of the penetrometer resistance measurements were not explainable.  相似文献   


4.
The use of heavy machinery is increasing in agriculture, which induces increased risks of subsoil compaction. Hence, there is a need for technical solutions that reduce the compaction risk at high total machine loads. Three field experiments were performed in order to study the effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil. Vertical soil stress was measured at three different depths by installing probes into the soil horizontally from a dug pit. In one experiment, also the stress distribution below the tyre was measured. Beneath the dual wheels, vertical stresses at 0.15 and 0.3 m depth were lower between the two wheels than under the centre of each wheel, despite the gap between the wheels being small (0.1 m). At 0.5 m depth, vertical stress beneath the wheels was the same as between the two wheels. The stress interaction from the two wheels was weak, even in the subsoil. Accordingly, measured stresses at 0.3, 0.5 and 0.7 m depth were highest under the centre of each axle centre line of tandem wheels, and much lower between the axles. For a wheel load of 86 kN, tyre inflation pressure significantly affected stress at 0.3 m depth, but not at greater depths. Stress directly below the tyre, measured at 0.1 m depth, was unevenly distributed, both in driving direction and perpendicular to driving direction, and maximum stress was considerably higher than tyre inflation pressure. Calculations of vertical stress based on Boussinesq's equation for elastic materials agreed well with measurements. A parabolic or linear contact stress distribution (stress declines from the centre to the edge of the contact area) was a better approximation of the contact stress than a uniform stress distribution. The results demonstrate that stress in the soil at different depths is a function of the stress on the surface and the contact area, which in turn are functions of wheel load, wheel arrangement, tyre inflation pressure, contact stress distribution and soil conditions. Soil stress and soil compaction are a function of neither axle load nor total vehicle load. This is of great importance for practical purposes. Reducing wheel load, e.g. by using dual or tandem wheels, also allows tyre inflation pressure to be reduced. This reduces the risk of subsoil compaction.  相似文献   

5.
Subsoil compaction may reduce the availability and uptake of water and plant nutrients thereby lowering crop yields. Among the management options for remediating subsoil compaction are deep tillage and the selection of crop rotations with deep-rooted crops, but little is known of the effects of applications of organic amendments on subsoil compaction. The objectives of this study were to determine the effects of subsoil compaction on corn yield and N availability in a sandy-textured soil and to evaluate the use of deep tillage and surface applications of poultry manure to remediate subsoil compaction. A field experiment planted to corn (Zea mays L.) was conducted from 2000 to 2001 on a Reelfoot fine sandy loam (fine-silty, mixed thermic Aquic Argiudolls) formed in silty alluvium located in southeast Missouri near the Mississippi River. Treatments were arranged in a factorial design with three levels of subsoil compaction and subsoiling and four rates (averaging 0, 6, 11 and 18 Mg ha−1) of poultry manure. Subsoil tillage to a depth of 30 cm had multiple effects, including overcoming a natural or tillage-induced dense layer or pan and increasing volumetric soil water content and crop N uptake, especially in the 2001 cropping year with low early season precipitation. N recovery efficiency (NRE) was significantly higher in the subsoil treatment compared to the highest compaction treatment in 2001. No significant interactions between manure rates and compaction and subsoiling treatments were observed for corn grain and silage yields, N uptake and NRE. Average increases in corn grain yields over all manure rates due to subsoil tillage of compacted soil were 2002 kg ha−1 in 2000 and 3504 kg ha−1 in 2001. Application of poultry manure had a consistent positive effect on increasing grain yields and N uptake in 2000 and 2001 but did not significantly alter measured soil physical properties. The results of this study suggest that deep tillage and applications of organic amendments are management tools that may overcome restrictions in both N and soil water availability due to subsoil compaction in sandy-textured soils.  相似文献   

6.
The papers in this special issue present results of the European Union (EU) concerted action “Experiences with the impact of subsoil compaction on soil crop growth and environment and ways to prevent subsoil compaction”. The results and conclusions of earlier research on subsoil compaction are memorized and it is emphasized that the conclusions are still sound: high axle load traffic on soils of high moisture content causes deep and persistent subsoil compaction. The concerted action on subsoil compaction in the EU and an almost identical concerted action on subsoil compaction in central and eastern Europe are briefly introduced. This special issue presents a selection of papers of the concluding workshop of the concerted action on subsoil compaction in the EU. It includes three papers on modeling the impact of subsoil compaction on crop growth, water availability to plants and environmental aspects; three papers on modeling of subsoil compaction by heavy machinery; four papers on measurement of soil mechanical and physical properties in relation to subsoil compaction and four papers on methods to determine the risk of subsoil compaction and to identify prevention strategies. The trends in agriculture in relation to subsoil compaction are discussed. A positive trend is that policy makers in the EU and worldwide recognize soil as a vital and largely non-renewable resource increasingly under pressure. A negative trend is that wheel loads in agriculture are still increasing causing severe damage to subsoils. The conclusion is that European subsoils are more threatened than ever in history. Manufactures, agricultural engineers and soil scientists should collaborate and research should be initiated to solve this problem and find solutions. Subsoil compaction should be made recognized by all people involved from farmer to policy maker. Therefore an assessment of the existence and seriousness of subsoil compaction throughout Europe should be initiated.  相似文献   

7.
Irrigation of crops in Mediterranean countries can produce some conditions that favour soil compaction processes. The SIMWASER model takes into account the effects of subsoil compaction on water balance and crop yield. The objectives of this paper were: (i) to test the mentioned model using the data set collected, during three years (1991–1993), from irrigation experiments with maize (Zea mays L., cv. Prisma) on a sandy soil (Cambisols (FAO, 1990) or Xerocrepts (USDA, 1998)) in SW Spain and (ii) to estimate the influence of subsoil compaction on soil water balance and crop yield assuming long lasting heavy subsoil compaction that may be developed under irrigation for the SW Spain conditions. The model was run to simulate soil water content, evapotranspiration, drainage below the root zone, and crop yield for the same period in which the experiment was carried out. Results of simulation were compared with the experimental results in order to know the agreement between them. The results obtained show a fairly good agreement between simulated and measured values for most of the parameters considered. For the scenario in which subsoil compaction is developed under irrigation, the results simulated by the model indicate a reduction of the rooting depth. However, the effects on water balance and crop yield in this sandy soil were not relevant under the SW Spain conditions.  相似文献   

8.
In recent years, agricultural land in Switzerland has been increasingly used as temporary access ways for heavy machinery in road and pipeline construction operations. The Swiss soil protection law requires that measures are taken to prevent soil compaction in such operations, but gives no criteria to determine tolerable loads. We studied the compaction sensitivity of a loess soil (Haplic Luvisol) at different soil moisture conditions in a field traffic experiment and by a numerical model on the computer using finite element analysis. Two plots, one wetted by sprinkling and one left dry (no sprinkling), were traversed by heavy caterpillar vehicles during construction of a large overland gas pipeline. Compaction effects were determined by comparing precompression stresses of samples taken from trafficked and non-trafficked soil. A finite element model with a constitutive relation, based on the concept of critical state soil mechanics, was used to interpret the outcome of the field trials.

We found significantly higher precompression stresses in the trafficked (median 97 kPa) compared with the non-trafficked (median 41 kPa) topsoil of the wet plot. No effect was evident in the topsoil of the dry plot as well as in the subsoils of the wet and the dry plot. The observed compaction effects were in agreement with the model predictions if the soil was assumed to be partially drained, but disagreed for the wet subsoil if fully drained conditions were assumed. Agreement between model and experimental results also required that the moisture dependence of the precompression stress was taken into account.  相似文献   


9.
凸齿镇压器与土壤相互作用的三维动态有限元分析   总被引:1,自引:4,他引:1  
为分析凸齿镇压器与土壤的相互作用、预测不同的作业参数对凸齿镇压器作业效果的影响,该文利用有限元方法,在Abaqus软件中建立了凸齿镇压器与土壤相互作用的三维动态有限元模型。该模型在分析过程中使用任意拉格朗日-欧拉方法对网格进行自适应划分,以解决土体局部变形引起单元畸变而导致分析中断的问题。根据凸齿镇压器的2种工作模式,对模型设置不同的边界条件,探讨不同载荷对凸齿镇压器沉降量和所需牵引力的影响以及不同沉降量对所需载荷及牵引力的影响。搭建了基于室内土槽的凸齿镇压器牵引试验平台,通过土槽试验对有限元分析结果的有效性进行验证。结果表明,有限元求解的牵引力与实测值相对误差为3.4%,并且有限元分析模型运行结果能准确反映土壤的形貌变化特征;任意拉格朗日-欧拉方法有效解决了单元扭曲导致分析不收敛的问题;在恒定速度下,凸齿镇压器的沉降量和所需水平牵引力随着载荷的增大而增大,同样,沉降量的增大导致了所需载荷和牵引力的增加。该三维有限元模型可用于预测凸齿镇压器工作过程中的所需牵引力和土壤表面微形貌加工的作业效果,可为探索凸齿镇压器与土壤相互作用的机理,对凸齿形状进行改良与优化、以及作业条件与参数的选择提供参考依据。  相似文献   

10.
11.
Depending on the top and subsoil textures, semi-arid soils exhibit cohesive and frictional properties that are associated with the relatively high soil strength, bulk density and penetration resistance. The objective of this study was to gain the knowledge of mechanical properties of the compacting chromic luvisols in order to improve the design of tillage tools. Therefore, we applied critical state soil mechanics to study the stress–strain behaviour of the luvisols using triaxial tests under laboratory conditions. Field investigations involved random collection of undisturbed soil samples which were subjected to triaxial testing first by isotropic consolidation and compression and then triaxial shearing. Plots of deviatoric stress against axial strain were made to determine the soil shear strengths at the critical states over different soil water levels and the two soil depths of 0–20 cm for the plough and 20–40 cm for the hard pan layers, respectively. An exponential model used to fit the deviatoric stress–axial strain test data accurately predicted the trends. Soil water significantly influenced the shear strength, cohesion (c′) and internal angle of friction (′) and hence the mechanical behaviour of the luvisols. The regression equations developed showed that c′ and ′ have quadratic relationships with soil water. The very high clay bonding strength in the subsoil (hard pan) layer resulted in high shear strength, bulk density and penetration resistance values for this soil layer. The increase in shear strength with decreasing water content affected the deviatoric stress–axial strain relationships between the upper and lower plastic limits of the sandy soil. Thus, as the soil dried, the soil ceased to behave in the plastic (ductile flow) manner and thus began to break apart and crumble. The crumbling was indicative of brittle failure. The transition stage from an increase to a decrease in c′ and ′ values with soil water occurred in the soil water content range of 6–10%. Knowledge of stress–strain behaviour of compacting soils is of practical significance in the design of appropriate tillage tools for the specific soil type.  相似文献   

12.
An experiment was performed to examine the chemical and biological effects on high clay sodic subsoil following the incorporation and incubation with organic amendments. The main treatments consisted of amendments with wheat shoots, lucerne pellets and peat, and these were compared to gypsum addition. Additional treatments were residues of chickpea and canola, chicken manure and sawdust. All materials were finely ground and added to crushed and sieved soil at the rate of 1% by weight. Wheat, canola and chickpea residues and chicken manure resulted in modest reductions in soil sodicity. Carbon and N mineralization were related to the soluble C/total N ratio in the amendment. The initial mineralization of wheat amendment was rapid due to its soluble C content, but then slowed to have the lowest loss, of around one third of added C, of all the plant residues after 174 days. In comparison, lucerne-amended soil increased total N and lost almost half of its C after the 174-day incubation. The canola stubble amendment showed the highest carbon loss, losing 64% of its added C. The addition of gypsum resulted in high soil electrical conductivity which suppressed respiration, compared to the control soil, indicating a detrimental effect on microbial activity due to the high electrolyte concentration in the soil. The peat amendment, with a low-soluble C content, showed a similar respiration rate to the control soil, confirming that a source of soluble C is important for the initiation of rapid biological activity. Soil pH was significantly increased (by 0.6 of a pH unit) with addition of chicken manure, and still remained higher than control soil after 174 days of incubation. Lucerne was the only plant residue to increase soil pH, with the effect being sustained for 56 days. The study demonstrated how some organic amendments can improve chemical fertility and biological activity in high clay sodic subsoil, and at the same time contribute, after 25 weeks incubation, to an increase in carbon content.  相似文献   

13.
冬小麦籽粒受挤压特性的有限元分析及试验验证   总被引:6,自引:9,他引:6  
为降低小麦籽粒在收获、贮藏、运输过程中的机械损伤,掌握小麦籽粒粉碎机理,运用有限元法建立小麦籽粒的力学模型,研究小麦籽粒在压缩载荷作用下的应力分布规律。在材料力学万能试验机上进行压缩试验,测得不同含水率9.1%~21.6%的小麦籽粒在3种压缩型式下的弹性模量为98.86~206.59 MPa,屈服强度为0.8~1.95 MPa,破碎负载为63.44~154.77 N,最大应变为0.71%~1.02%。结果表明:在3种压缩型式下,破碎负载、弹性模量、屈服强度随着含水率的增加均有明显下降;在同一含水率下,B型压缩时破碎负载最大,L型压缩时次之,H型压缩时最小;屈服强度和最大变形在采用B型和L型压缩时较大,在H型压缩时较小;其主要破碎形式为在腹沟位置产生裂纹。比较3种压缩型式下的试验值的和仿真值,二者最大差异是12%,验证了仿真数值解可行性。  相似文献   

14.
T.W. Lei  Q.W. Zhang  L.J. Yan  J. Zhao  Y.H. Pan 《Geoderma》2008,144(3-4):628-633
Soil erodibility and critical shear stress are two of the most important parameters for physically-based soil erosion modeling. To aid in future soil erosion modeling, a rational method for determining the soil erodibility and critical shear stress of rill erosion under concentrated flow is advanced in this paper. The method suggests that a well-defined rill be used for shear stress estimation while infinite short rill lengths be used for determination of detachment capacity. The derivative of the functional relationship between sediment yield and rill length at the inlet of rill flow, as opposed to average detachment rate of a long rill, was used for the determination of detachment capacity. Soil erodibility and critical shear stress were then regressively estimated with detachment capacity data under different flow regimes. Laboratory data of rill erosion under well defined rill channels from a loess soil was used to estimate the soil erodibility and critical shear stress. The results showed that no significant change in soil erodibility (Kr) was observed for different slope gradients ranging from 5 to 25 while critical shear stress increased slightly with the slope gradient. Soil erodibility of the loess soil was 0.3211 ± 0.001 s m− 1. The soil erodibility and critical shear stress calculations were then compared with data from other resources to verify the feasibility of the method. Data comparison showed that the method advanced is a physically logical and feasible method to calculate the soil erodibility and critical shear stress for physically-based soil erosion models.  相似文献   

15.
土壤紧实胁迫对黄瓜生长、产量及养分吸收的影响   总被引:14,自引:2,他引:14  
用容重分别为1.2、1.4和1.6.g/cm3的土壤进行盆栽试验,研究了土壤紧实度对黄瓜生长、产量及养分吸收的影响。结果表明,当土壤紧实度增大时,黄瓜秧苗的株高在定植后的15.d后受到显著抑制;第4叶的叶宽和叶长在定植后9~17.d内增加;茎粗则是在稍紧的土壤中(R.1.4)最大,过紧的土壤中(R.1.6)最小;根系伸长生长受阻,干物质质量及活力显著下降,根冠比降低;生物学产量、经济产量、经济系数的变化情况及植株对氮、磷、钾吸收量的变化与茎粗的变化趋势相同。在本试验条件下,容重为1.2.g/cm3的土壤利于株高及根系的生长,容重1.4g/cm3的土壤则利于茎粗、根系养分的吸收及产量的增加。  相似文献   

16.
连续3年试验研究了黄土母质生土当年施肥对谷类作物生产力与根际土壤营养及生物活性的影响。结果表明:黄土母质生土当年施肥促进了作物根系生长、生产力增加,强大的根土系统又促进了微生物的繁衍、酶活性及土壤营养的提高。黄土母质生土的熟化利用过程需用地养地相结合,重视生物改土。本研究表明,高粱、玉米均可作为生土改良沃化的先锋作物,高粱根系强壮,入土深,生物量大;而玉米虽根重、最大根长、一级节根数低于高粱,但根际土壤微生物数量多,酶活性高。而黍子根系柔弱,根际土壤生物活性较低,与高粱、玉米相比,不宜作为生土改良的先锋谷类作物。黄土母质生土对外源的辅助能(当年施肥)反应十分敏感,施肥的增产效应与土壤培肥都十分显著。黄土母质生土熟化沃化过程既是一个生土培肥改良过程,也是一个物质能量(营养)投入转化过程,并经植物物质生产过程、土壤微生物分解矿化过程及土壤生物化学酶系统促进过程三者互动,共同构成根土苗微生物物质能量转化的生态系统。  相似文献   

17.
This study aimed to compare predicted soil forces on a disk plow with measured forces within the tillage depth of clay (90 g kg−1 sand, 210 g kg−1 silt, 700 g kg−1 clay) and sandy loam (770 g kg−1 sand, 40 g kg−1 silt, 190 g kg−1 clay) soils. The model assumed the effects of both tilt angle and plowing speed. Two plowing speeds (4 and 10 km/h) at three tilt angles (15°, 20° and 25°) were compared and the draft, vertical, and side forces determined. A 3D nonlinear finite element model was used to predict the soil forces while a dynamometer was used to measure them on a disk plow in the field. An incremental method was used to deal with material nonlinearity and the Trapezoidal rule method was used to analyze the dynamic response of soil during tillage. Field tillage experiments were conducted to verify the results of the finite element model. It was found that increasing the tilt angle of the plow increased the draft and vertical forces and decreased the side force. Increasing plowing speed increased the draft and side forces and decreased the vertical force. Generally, the results from the finite element model were found to be compatible with the experimental results in clay soil, while in sandy loam the differences between predicted and measured data were probably due to problems of measuring soil mechanical characteristics in the triaxial test.  相似文献   

18.
Collembola and microbial biomass C were investigated in a field experiment with controlled agricultural traffic and crop rotation over a period of 27 months. The wheel-induced compactive efforts were applied according to management practices within the crop rotation of sugar beet, winter wheat, and winter barley. Increasing wheel traffic produced increasing soil compaction, mainly due to a reduction in surface soil porosity. Increasing soil compaction was accompanied by a decrease in microbial biomass C and the density of collembola. The influence of soil compaction on microbial biomass C was smaller than that of the standing crop. However, for collembola, especially euedaphic species, a reduction in pore space appeared to be of more importance than the effects of a standing crop. Within the crop rotation, microbial biomass C and the density of collembola increased in the order sugar beet, winter wheat, and winter barley.  相似文献   

19.
前期含水量对机械压实后黑土团聚体特征的影响   总被引:3,自引:0,他引:3  
以东北典型黑土区耕地土壤为研究对象,通过对不同前期含水量下机械碾压处理后土壤干筛团聚体和水稳性团聚体粒级分布、破坏率(PAD0.25)、分形维数(D)、平均重量直径(MWD)、平均重量比表面积(MWSSA)等特征指标的测定和分析,对比研究了干湿处理条件下模拟机械作业过程中土壤团聚体特征的变化。结果表明:黑土耕作区0~30 cm范围内团聚体组成上干筛团聚体以>2 mm粒级的团聚体比例最高,而水稳性团聚体则随着粒级的减小,比例逐渐增加。不同前期土壤含水量能够对机械压实黑土的团聚体组成分布、分形等特征产生影响,低含水量时,机械碾压在一定程度上能够促进土壤团聚体的团聚,但同等负荷下多次积累压实会削弱土壤的水稳定性和机械稳定性;而在高含水量时,机械碾压相对更易对黑土团聚体产生负效应,加剧破坏、抑制团聚,降低其水稳定性和机械稳定性。同时发现,MWSSA与其他常用团聚体特征值PA0.25、MWD、D、PAD0.25的线性关系达到了极显著水平,说明MWSSA同样可以作为分析和研究土壤团聚体特征的有效指标。研究结果可为科学指导大机械作业提供理论依据。  相似文献   

20.
肖潇  刘刚  李保国 《土壤学报》2013,50(6):1138-1142
双针热脉冲(DPHP)方法是目前用来测量土壤比热(c)、热导率(λ)和温度(T)的重要方法。然而,很多因素均会导致双针热脉冲法测得的λ和c存在误差,如土壤孔隙。本文用有限元法(FEM)对三种不同粒径石英砂的DPHP实验模拟表明:(1)土壤孔隙导致测得的温度空间分布存在显著的各向异性,加热针周围6 mm处不同方向的比热(c)之间相对相差达到了23%;(2)DPHP方法测得的土壤热特性标准差随粒径增大而增大,这与实际实验观察的结果一致;(3)土壤孔隙的存在使得DPHP法测得的土壤比热被高估,本模拟中加热针周围6 mm处c值被高估了约6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号