首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study was conducted to evaluate the cross‐resistance of acetolactate synthase (ALS) inhibitors with different chemistries, specifically azimsulfuron (sulfonylurea), penoxsulam (triazolopyrimidine sulfonanilide) and bispyribac‐sodium (pyrimidinyl thio benzoate), in Echinochloa oryzicola and Echinochloa crus‐galli that had been collected in South Korea and to investigate their herbicide resistance mechanism. Both Echinochloa spp. showed cross‐resistance to the ALS inhibitors belonging to the above three different chemistries. In a whole plant assay with herbicides alone, the resistant/susceptible ratios for azimsulfuron, penoxsulam and bispyribac‐sodium were 12.6, 28.1 and 1.9 in E. oryzicola and 21.1, 13.7 and 1.8 in E. crus‐galli, respectively. An in vitro ALS enzyme assay with herbicides showed that the I 50‐values of the resistant accessions were approximately two‐to‐three times higher than the susceptible accessions, with no statistical difference, suggesting that the difference in ALS sensitivity cannot explain ALS inhibitor resistance in Echinochloa spp. for azimsulfuron, penoxsulam and bispyribac‐sodium. A whole plant assay with fenitrothion showed that the GR 50‐values significantly decreased in both the resistant E. oryzicola and E. crus‐galli accessions when azimsulfuron, penoxsulam and bispyribac‐sodium were applied with the P450 inhibitor, while no significant decrease was observed in the susceptible accessions when the P450 inhibitor was used. Thus, these results suggest that ALS inhibitor cross‐resistance for azimsulfuron, penoxsulam and bispyribac‐sodium is related to enhanced herbicide metabolism.  相似文献   

2.
The genus Echinochloa (Poaceae) includes numerous problematic weeds over a wide range of ecoregions in the world. To date, molecular markers for species identification and assessing phylogenetic relationship are still limited in the genus Echinochloa. In this study, we developed seven chloroplast molecular markers based on divergent chloroplast regions of E. crus‐galli and E. oryzicola. Furthermore, Marker #1 (psbA) was examined in more than 200 Echinochloa accessions and a phylogenetic tree grouped these Echinochloa accessions into four clades. Additionally, two different E. crus‐galli varieties (E. crus‐galli var. crus‐galli, E. crus‐galli var. praticola) and E. colona were successfully distinguished by this marker. The developed molecular markers contribute to better identification of Echinochloa taxa.  相似文献   

3.
Two major weeds in rice in the Philippines, Sphenochlea zeylanica Gaertn. and Echinochloa crus‐galli (L.) Beauv., are controlled with chemical and cultural methods. In the 1980s, after >10 years of continuous use of 2,4‐D, S. zeylanica evolved resistance to the chemical in those rice fields that had been treated with 2,4‐D once or twice every cropping season. In the 1990s, E. crus‐galli evolved resistance to butachlor and propanil in rice monocrop areas where both herbicides were used continuously for 7–9 years. Rice farmers continue to use 2,4‐D, butachlor and propanil extensively and are often unaware of herbicide resistance or the potential for cross‐resistance, its causes or its implications. In order to control herbicide‐resistant E. crus‐galli, farmers are shifting to locally available herbicides with different modes of action, such as bispyribac, an acetolactate synthase inhibitor, and cyhalofop, an acetyl coenzyme A carboxylase inhibitor. Follow‐up manual weeding or rotary weeding after herbicide spraying, a common farmers’ practice, removes the susceptible and resistant biotypes and could help to delay or prevent the evolution of resistance. Although the resistance mechanisms of both weeds are not determined yet, they could be related to enhanced degradation that is similar to the mechanisms that are shown by the resistant biotypes in other countries.  相似文献   

4.
Echinochloa crus‐galli (L.) Beauv. var. formosensis Ohwi (2n = 6x = 54, AABBCC genomes) and Echinochloa oryzicola (Vasinger) Vasinger (2n = 4x = 36, AABB) are major paddy weeds in East and Southeast Asia. E. oryzicola has been generally considered to be a paternal genome donor of E. crus‐galli s. l., which includes E. crus‐galli var. formosensis based on cpDNA sequences. Thus, molecular characterization using polymerase chain reaction‐restriction fragment length polymorphism analysis of cpDNA has been proposed as a reliable method for discriminating between the two species. In this study, we report that four accessions of E. crus‐galli var. formosensis from Okinawa, Nagasaki, Shizuoka and Tokyo had similar cpDNA sequences to E. oryzicola and had been misidentified as E. oryzicola using molecular methods. In addition, our results demonstrated that these accessions likely inherited their chloroplast genomes from E. oryzicola and not from an anonymous diploid species during polyploidization. Our findings provide new insights into the evolution of E. crus‐galli s. l. and suggest that identification using the cpDNA molecular method alone is not an appropriate approach to differentiate E. crus‐galli var. formosensis and E. oryzicola.  相似文献   

5.
Barnyardgrass, hexaploid Echinochloa crus‐galli, is considered to arise from the hybridization between tetraploid Echinochloa oryzicola and an unknown diploid species. The genetic relationship between E. crus‐galli and E. oryzicola was examined to investigate the position of E. oryzicola in the evolutionary process of E. crus‐galli, based on the nuclear DNA internal transcribed spacer (ITS) and the chloroplast cpDNA trnT‐L, trnL intron, and trnL‐F regions. New World E. crus‐galli was clearly separated from Eurasian E. crus‐galli and showed a close relationship to the American taxa, Echinochloa crus‐pavonis and Echinochloa walteri, in both the ITS and chloroplast DNA. The nrDNA ITS sequences indicated no differentiation between the Eurasian E. crus‐galli and E. oryzicola, in contrast to their clear divergence in the cpDNA sequence. The present results suggest that E. oryzicola is the male donor of E. crus‐galli.  相似文献   

6.
Echinochloa crus‐galli and Echinochloa muricata are common weeds in Belgian maize fields. Both species are morphologically difficult to distinguish and exhibit high morphological variability. Their response to herbicides varies from field to field. This study investigated whether the considerable morphological polymorphism found among Belgian Echinochloa accessions has a genetic background and whether it is consistently associated with differences in sensitivity to maize herbicides. For this purpose, accessions of E. crus‐galli and E. muricata were compared for morphological and genetic resemblance and tested for herbicide sensitivity. All accessions were planted in the field to examine the morphological traits. A cluster analysis was conducted to assess them for morphological diversity. DNA of leaf material was used for amplified fragment length polymorphism analysis to cluster the accessions genetically. Dose–response pot experiments were conducted in the glasshouse to assess the effectiveness of an acetolactate synthase (nicosulfuron), acetyl‐CoA carboxylase (cycloxydim) and 4‐hydroxyphenyl phosphate dioxygenase (topramezone) inhibiting herbicide. The genetic and morphological clusters were compared with the effective doses obtained from the dose–response bioassays. Morphological variation significantly correlated with genetic variation, but the relation with herbicide sensitivity was weak. Spikelet size and biomass characteristics are reliable discriminating characteristics for (sub)species classification. Intraspecies identification does not seem essential for optimisation of chemical control of E. crus‐galli and E. muricata in the field.  相似文献   

7.
Echinochloa crus‐galli is a serious weed worldwide. Microsatellite markers (simple sequence repeats, SSRs) are important molecular markers that are used widely for studying genetic diversity in plants. However, a limited number of SSRs is available for E. crus‐galli. The restriction site‐associated DNA (RAD) sequencing approach was combined with Illumina DNA sequencing for the rapid and mass detection of SSRs in E. crus‐galli. The RAD tags were generated from the genomic DNA of E. crus‐galli and were sequenced in order to produce 6921.6 Mb of high‐quality sequences with 45.1% guanine–cytosine content. In total, 3081 putative SSRs were detected, of which 82.2% were dinucleotide motif‐repeats. AT was the most frequent motif, accounting for 35.0% of the SSRs. In order to test the validity of the SSRs that were developed here, eight SSRs that were selected from putative SSRs were used to study the genetic diversity and structures of 20 E. crus‐galli populations that had been collected from rice fields in eastern China. Ninety‐seven alleles were amplified from the eight microsatellite loci among the 20 E. crus‐galli populations. These populations showed low genetic diversity and were classified on the basis of their genetic structures into three distinct groups that corresponded to the three regions of population sampling. The SSRs that were identified in this study represent a valuable resource for studying the genetic diversity, population biology and evolution of E. crus‐galli.  相似文献   

8.
Barnyardgrass (Echinochloa crus‐galli) proliferation seriously threatens rice production worldwide. Whole‐plant bioassays were conducted in order to test the sensitivity to penoxsulam of 52 barnyardgrass populations and the resistance of six penoxsulam‐resistant populations to 12 other herbicides that are commonly used in rice fields. Among the 48 populations that had escaped penoxsulam control in the rice fields, 8.3% showed a very high level of resistance, 58.3% showed a high level of resistance and 10.4% showed a moderate level of resistance. Multiple resistance was confirmed in all six penoxsulam‐resistant populations that were tested further. They exhibited at least a moderate level of resistance; that is, to 6–10 of the total of 13 herbicides that was tested. Most of the six penoxsulam‐resistant populations showed at least a moderate level of resistance to bispyribac‐sodium, quinclorac, metamifop, cyhalofop‐butyl and oxadiazon, three populations held at least a moderate level of resistance to oxyfluorfen and pretilachlor, two populations also held at least a moderate level of resistance to pyrazosulfuron‐ethyl, pyribenzoxim and fenoxaprop‐P‐ethyl, but the resistance indices of the six populations to pendimethalin were all low. This study has confirmed resistance to pretilachlor and oxadiazon in weeds for the first time.  相似文献   

9.
A failure of acetyl‐coenzyme A carboxylase (ACCase)‐inhibiting herbicides to control a population of Hordeum leporinum Link (barleygrass) occurred following eight applications of these herbicides in both crops and pastures. This population was 7.6‐fold resistant to fluazifop‐P‐butyl compared with standard susceptible populations. The population was between 3.6‐ and 3.8‐fold resistant to other ACCase‐inhibiting herbicides, except butroxydim to which it was susceptible. ACCase extracted from resistant plants and assayed in the presence of herbicides in vitro was susceptible to fluazifop acid and other aryloxyphenoxypropanoate herbicides, but was 4‐fold less sensitive to sethoxydim compared with ACCase from susceptible plants. Resistant plants metabolised fluazifop acid about 1.3‐fold more rapidly compared with susceptible plants; however, sethoxydim was metabolised equally in both populations. Resistance to fluazifop‐P‐butyl and other aryloxyphenoxypropanoate herbicides may be the result of increased herbicide detoxification, whereas resistance to sethoxydim appears to be due to a modified target enzyme. Herbicide resistance in this population is unusual in that different mechanisms appear to confer resistance to the aryloxyphenoxypropanoate and cyclohexanedione herbicides. © 2000 Society of Chemical Industry  相似文献   

10.
G Li  S G Wu  R X Yu  T Cang  L P Chen  X P Zhao  L M Cai  C X Wu 《Weed Research》2013,53(5):314-321
Plant glutathione S‐transferase (GST) forms a major part of the herbicide detoxification enzyme network in plants. A GST cDNA was isolated from Echinochloa crus‐galli and characterised. The gene, designated EcGST1 (E. crus‐galli GeneBank no: JX518596 ), has a 684 bp open reading frame predicted to encode a 25 kD protein. Sequence alignment showed that EcGST1 is a GST homologue. Its expression in response to quinclorac treatment was monitored in seedlings (leaves and roots) and adult plants (leaves, roots, stems and seeds) of quinclorac‐resistant (R) and susceptible (S) biotypes of E. crus‐galli. EcGST1 expression was 1.5–3 times greater in the R plants than in the S plants. However, after exposure to quinclorac, the difference in the expression levels of EcGST1 in R plants, compared with S plants, increased to a ratio of 6–10. Enhanced EcGST1 levels should enable greater quinclorac detoxification following quinclorac stimulation in R plants. GST‐based metabolism may be partially responsible for resistance to quinclorac in E. crus‐galli. The results suggest a new resistance mechanism for this R biotype in Chinese rice fields.  相似文献   

11.
Repeated use of ACCase‐ and ALS‐inhibiting herbicides in northern Greece has resulted in the evolution of a population of Lolium rigidum resistant to diclofop and chlorsulfuron. The biotype from Athos was highly resistant to diclofop and also exhibited differential cross‐resistance to clodinafop, fluazifop, tralkoxydim and sethoxydim. Assay of ACCase activity confirmed that the resistant biotype was tenfold more resistant to diclofop than the susceptible biotype, suggesting that the resistance mechanism could involve an altered target site. The diclofop‐resistant biotype has also exhibited multiple resistance to chlorsulfuron and the mechanism for this is unknown. Seed‐bioassay was found to be a rapid, cheap and reliable method to identify populations of L rigidum resistant to ACCase inhibitors and chlorsulfuron. Moreover, root elongation in the seed bioassay was more sensitive to ACCase inhibitors and chlorsulfuron than shoot elongation. © 2000 Society of Chemical Industry  相似文献   

12.
Echinochloa oryzicola Vasing. (= Echinochloa phyllopogon Stapf ex Kessenko) is an obligate weed with an elaborated survival strategy in the flooded rice of Japan. In this review various adaptive characters of the weed, which comprise the survival strategy, are discussed through the life cycle. The weed is distributed only in flooded rice. Seeds (spikelets) buried in the soil exhibit annual cycles between dormant and non‐dormant state, and non‐dormant seeds recurrently appear in spring when rice growers start to prepare seedling beds and fields for rice transplanting. The non‐dormant seeds have unique characters metabolically adapted to submerged conditions to germinate and grow by the anaerobic respiration through alcohol fermentation. The weed has seemingly perfect mimicry of the rice plants throughout its development from seedling to heading, by which the weed escapes from manual weeding. In a rice paddy, the weed starts heading coincidentally with the rice plants at the period when the growers are reluctant to walk in the rice paddy to weed. Irrespective of plant height of the rice cultivar, the weed develops a few upper leaves above the rice canopy during the heading period of rice. This phenotypic plasticity of E. oryzicola in plant height is one of the characters conferring its competitive aggressiveness in flooded rice. When weeding is begun again after heading, the dormant weed seeds escape weeding by shattering and join the soil seedbank. The dormant seeds express the gene of an enzyme catalyzing ATP synthesis through the mitochondrial oxidative phosphorylation more abundantly, and have larger oxygen absorption and enzyme activity of the aerobic respiration than the non‐dormant seeds, suggesting that the dormant seeds maintain viability by the conventional aerobic respiration in the paddy soil drained from rice harvesting in fall to the next early spring. The various adaptive characters comprising the survival strategy of E. oryzicola in flooded rice consist of those inherited from the wild progenitor and those selected by the crop cultivation pressure. It is suggested that both the mimicry of the weed and the heading coincident with the rice plants have been acquired by the large selection pressure of frequent weeding, which has been done over the past hundred years. However, today, the manual weeding is substituted with herbicides, which cannot detect the mimicry and heading photoperiodic sensitivity. As a result, the dominant species of Echinochloa weeds in flooded rice is changing from E. oryzicola to Echinochloa crus‐galli var. crus‐galli that has neither mimicry nor photoperiodic sensitivity synchronizing to that of rice, but is more competitive against rice.  相似文献   

13.
Echinochloa crus‐galli is an important maize weed with significant variation in herbicide sensitivity. This differential response may reflect differences in selection pressure caused by years of cropping system‐related herbicide usage. The herbicide sensitivity of E. crus‐galli populations from three divergent cropping systems was evaluated in dose–response pot experiments. Populations were collected from sandy fields with (i) a long‐term organic cropping system, (ii) a conventional cropping system with maize in the crop rotation or (iii) a conventional cropping system with long‐term monocropping of maize. Each cropping system was represented by six E. crus‐galli populations. The effectiveness of three foliar‐applied maize herbicides (nicosulfuron, cycloxydim and topramezone) and two soil‐applied maize herbicides (S‐metolachlor and dimethenamid‐P) was tested at three doses and two runs. Foliar‐applied herbicides were applied at the three true leaves stage. Soil‐applied herbicides were applied immediately after sowing. The foliage dry weight per pot was determined 4 weeks after treatment. Plant responses were expressed as biomass reduction. Herbicide sensitivity was consistently lowest for populations from maize monocropping systems. Compared with populations from organic cropping systems, populations from monocropping systems showed 6.9%, 9.8% and 29.3% lower sensitivity to cycloxydim, topramezone and nicosulfuron respectively. Populations from the conventional crop rotation system showed intermediate sensitivity levels, which did not significantly differ from sensitivity levels of populations from the other cropping systems. Sensitivity to dimethenamid‐P and S‐metolachlor was not affected by cropping system. Environmental conditions influenced herbicidal response . This study indicated that integrated weed management may be necessary to preserve herbicide efficacy over the long term.  相似文献   

14.
为明确广东省稻菜轮作区中牛筋草对10种常用除草剂的抗性水平及抗性分子机制,采用整株生物测定法测定广东省稻菜轮作区内8个牛筋草种群P1~P8对草甘膦、草铵膦和乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACCase)抑制剂类等10种除草剂的抗性水平,并进一步分析P1和P8种群相关靶标酶基因5-烯醇丙酮酰莽草酸-3-磷酸合酶(5-enolpyruvyl-shikimate-3-phosphate synthase,EPSPS)、谷氨酰胺合成酶(glutamine synthetase,GS)和ACCase的部分功能区序列特征。结果显示,牛筋草P1~P8种群对草甘膦抗性指数为敏感种群的5.9倍~17.7倍,其中P8种群对草甘膦的抗性水平最高;8个种群对草铵膦也产生了不同程度的抗性,抗性指数为敏感种群的2.3倍~14.2倍,其中P1种群抗性最高。牛筋草P1和P8种群均对ACCase抑制剂类除草剂精喹禾灵、氰氟草酯和噁唑酰草胺产生了交互抗性;P1种群ACCase基因在第2 041位氨基酸处发生突变,该突变在牛筋草种群中首次发现;而P8种群ACCase基因则在第2 027位氨基...  相似文献   

15.
An Eleusine indica population was previously reported as the first global case of field‐evolved glufosinate resistance. This study re‐examines glufosinate resistance and investigates multiple resistance to other herbicides in the population. Dose–response experiments with glufosinate showed that the resistant population is 5‐fold and 14‐fold resistant relative to the susceptible population, based on GR50 and LD50 R/S ratio respectively. The selected glufosinate‐resistant subpopulation also displayed a high‐level resistance to glyphosate, with the respective GR50 and LD50 R/S ratios being 12‐ and 144‐fold. In addition, the subpopulation also displayed a level of resistance to paraquat and ACCase‐inhibiting herbicides fluazifop‐P‐butyl, haloxyfop‐P‐methyl and butroxydim. ACCase gene sequencing revealed that the Trp‐2027‐Cys mutation is likely responsible for resistance to the ACCase inhibitors examined. Here, we confirm glufosinate resistance and importantly, we find very high‐level glyphosate resistance, as well as resistance to paraquat and ACCase‐inhibiting herbicides. This is the first confirmed report of a weed species that evolved multiple resistance across all the three non‐selective global herbicides, glufosinate, glyphosate and paraquat.  相似文献   

16.
Laboratory experiments were conducted to analyze the iron (Fe) tolerance of paddy weeds and rice varieties (Oryza sativa) for germination and root elongation. Under a waterlogged soil condition, the Fe(II) content in a soil solution increased with an increase in the ratio of rice straw to the soil. In the presence of 0.9% (w/w) straw to soil, which corresponds approximately to 8 t of straw applied to an area of 1 ha × 10 cm depth in the field, ~80 mg L?1 of Fe(II) was produced in the soil solution. Based on this result, the seeds of rice and the weeds were incubated in a solution with <100 mg L?1 of Fe(II). The presence of 100 mg L?1 of Fe(II) suppressed the germination of Echinochloa crus‐galli var. crus‐galli, Cyperus serotinus, Cyperus difformis, and Monochoria korsakowii. However, it had no effect on the germination of Echinochloa oryzicola, Schoenoplectus juncoides (= Scirpus juncoides var. ohwianus), and Monochoria vaginalis. This level of Fe tolerance was the same as that of rice. These findings suggest that E. oryzicola, S. juncoides, and M. vaginalis can grow under more severe conditions than E. crus‐galli, C. serotinus, C. difformis, and M. korsakowii. In relation to seminal root elongation, the order of tolerance of Fe toxicity was O. sativa cv. Dunghan Shali > O. sativa cv. Hoshinoyume > E. oryzicola > M. vaginalis > S. juncoides. Thus, the results show that the tolerance of rice is greater than that of E. oryzicola, which had a comparatively strong tolerance among the weeds examined, and also that there are differences in tolerance among the rice varieties. These findings suggest that the difference in Fe tolerance is involved in weed control systems when organic materials are applied. If this difference is an important factor in the weed control system, Fe‐tolerant rice varieties, like cv. D. Shali, could facilitate weed control systems due to their higher Fe tolerance ability.  相似文献   

17.
Echinochloa colona is the most common grass weed of summer fallows in the grain‐cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate‐resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate‐susceptible populations was evaluated in three field experiments and on both glyphosate‐susceptible and glyphosate‐resistant populations in two pot experiments. The treatments were knockdown and pre‐emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha?1 provided good control of small glyphosate‐susceptible plants (pre‐ to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha?1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre‐emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.  相似文献   

18.
Phalaris minor (littleseed canary grass) is a major weed in wheat fields in some parts of Iran. Diclofop‐methyl, fenoxaprop‐P‐ethyl, and clodinafop‐propargyl are three acetyl coenzyme A carboxylase (ACCase)‐inhibiting herbicides that are commonly used to control this grass in wheat fields. Thirty‐four P. minor populations with suspected resistance to ACCase‐inhibiting herbicides were sampled from wheat fields in the provinces of Fars and Golestan in Iran. The dose–response assays that were conducted under controlled greenhouse conditions indicated that 14 populations were resistant to fenoxaprop‐P‐ethyl, seven populations were resistant to both fenoxaprop‐P‐ethyl and diclofop‐methyl, and three populations were resistant to fenoxaprop‐P‐ethyl, diclofop‐methyl, and clodinafop‐propargyl. These populations showed different levels of resistance to the applied herbicides, compared to the susceptible population. These results suggest that different mechanisms of resistance could be involved. The enzyme assay revealed that the existence of modified ACCase in the three most‐resistant populations (AR, MR4, and SR3) is responsible for the resistance of these populations.  相似文献   

19.
BACKGROUND: The increasing use of ACCase‐inhibiting herbicides has resulted in evolved resistance in key grass weeds infesting cereal cropping systems worldwide. Here, a thorough and systematic approach is proposed to elucidate the basis of resistance to three ACCase herbicides in a Lolium multiflorum Lam. (Italian rye grass) population from the United Kingdom (UK24). RESULTS: Resistance to sethoxydim and pinoxaden was always associated with a dominant D2078G (Alopecurus myosuroides Huds. equivalent) target‐site mutation in UK24. Conversely, whole‐plant herbicide assays on predetermined ACCase genotypes showed very high levels of resistance to diclofop‐methyl for all three wild DD2078 and mutant DG2078 and GG2078 ACCase genotypes from the mixed resistant population UK24. This indicates the presence of other diclofop‐methyl‐specific resistance mechanism(s) yet to be determined in this population. The D2078G mutation could be detected using an unambiguous DNA‐based dCAPS procedure that proved very transferable to A. myosuroides, Avena fatua L., Setaria viridis (L.) Beauv. and Phalaris minor Retz. CONCLUSION: This study provides further understanding of the molecular basis of resistance to ACCase inhibitor herbicides in a Lolium population and a widely applicable PCR‐based method for monitoring the D2078G target‐site resistance mutation in five major grass weed species. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
Lolium rigidum (annual or rigid ryegrass) is a widespread annual weed in cropping systems of southern Australia, and herbicide resistance in L. rigidum is a common problem in this region. In 2010, a random survey was conducted across the grain belt of Western Australia to determine the frequency of herbicide‐resistant L. rigidum populations and to compare this with the results of previous surveys in 1998 and 2003. During the survey, 466 cropping fields were visited, with a total of 362 L. rigidum populations collected. Screening of these populations with the herbicides commonly used for control of L. rigidum revealed that resistance to the ACCase‐ and ALS‐inhibiting herbicides was common, with 96% of populations having plants resistant to the ACCase herbicide diclofop‐methyl and 98% having plants resistant to the ALS herbicide sulfometuron. Resistance to another ACCase herbicide, clethodim, is increasing, with 65% of populations now containing resistant plants. Resistance to other herbicide modes of action was significantly lower, with 27% of populations containing plants with resistance to the pre‐emergent herbicide trifluralin, and glyphosate, atrazine and paraquat providing good control of most of the populations screened in this survey. Ninety five per cent of L. rigidum populations contained plants with resistance to at least two herbicide modes of action. These results demonstrate that resistance levels have increased dramatically for the ACCase‐ and ALS‐inhibiting herbicides since the last survey in 2003 (>95% vs. 70–90%); therefore, the use of a wide range of integrated weed management options are required to sustain these cropping systems in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号