首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Weeds have negative impacts on crop production but also play a role in sustaining biodiversity in agricultural landscapes. This trade‐off raises the question of whether it is possible to promote weed communities with low competitive potential but high value to biodiversity. Here, we explored how weed communities respond to different vineyard management practices in South Africa's Western Cape, aiming to identify whether any specific practices are associated with more beneficial weed communities. Eight weed community characteristics representative of abundance, diversity and functional composition were used as indicators of competitive potential and biodiversity value. We explored how these responded to farm management strategy (organic, low input or conventional) and weed management practices (herbicides, tillage, mowing or combinations of these) using ordination and mixed models. Mown sites were associated with weed communities of high biodiversity value, with higher weed cover in both winter and summer, higher diversity and more native weeds. Mowing also promoted shorter weeds than either tillage or herbicides, considered to be less competitive with grapevines. However, high summer weed cover may be problematic where competition for water is critical, in which case tillage offers a method to limit summer weed cover that did not adversely affect diversity or native weeds. In contrast, herbicide‐treated sites had characteristics indicative of a lower biodiversity value and higher potential for competitiveness with few native weeds, lower diversity and relatively tall, small‐seeded weeds. Mowing in winter combined with tillage in spring may thus optimise the biodiversity benefits and production costs of Western Cape vineyard weeds.  相似文献   

2.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

3.
More than 200 species of weeds are infesting main crop fields in China, among which approximately 30 species are major weeds causing great crop yield losses. About 35.8 million hectares of crop fields are heavily infested by weeds and the annual reduction of crop yields is 12.3–16.5% (weighted average). Along with rural economic development, approximately 50% of the main crop fields undergo herbicide application. Chemical weed control has changed cultural practices to save weeding labor in rice, wheat, maize, soybeans and cotton. At the same time, continuous use of the same herbicides has caused weed shift problems and weed resistance to herbicides. Consequently, integrated weed management in main crops is being developed.  相似文献   

4.
Two experiments were conducted in 14 spring barley cultivars to investigate if crop tolerance to post‐emergence weed harrowing is related to morphological traits that reflect competitiveness. The experiments were carried out in organically grown fields where low weed densities and biomass production were assumed to be without significant influence on crop growth. The experiments showed that different cultivars responded differently to post‐emergence weed harrowing in terms of yield reduction. Taller and higher yielding cultivars with high leaf area index (LAI) tended to be less tolerant to post‐emergence weed harrowing than shorter and lower yielding cultivars with low LAI. This conclusion, however, is only valid for 13 of 14 cultivars because one very tall cultivar was tolerant to harrowing. Although the tallest and highest yielding cultivars were damaged the most, they remained the highest yielding cultivars after weed harrowing. This study is the first attempt to relate competitiveness of cereal cultivars to tolerance to harrowing, and it is thought provoking that competitiveness and tolerance is found to be counterproductive.  相似文献   

5.
Summary Differential competitive ability of six winter wheat cultivars and traits that confer such attributes were investigated for a range of seed rates in the presence or absence of weeds for a naturally occurring weed flora in two successive years in split-plot field experiments. Crop height and tillering capacity were considered suitable attributes for weed suppression, although competitiveness is a relative rather than an absolute characteristic. Maris Huntsman and Maris Widgeon were the most competitive cultivars whereas Fresco was the least competitive. Manipulation of seed rate was a more reliable factor than cultivar selection for enhancement of weed suppression, although competitiveness of cultivars Buster, Riband and Maris Widgeon was not enhanced by increased seed rate. Crop densities ranging between 125 and 270 plants m−2 were found to offer adequate weed suppression. Linear relationships were observed between individual and total weed species dry weight and reproductive structures per unit area.  相似文献   

6.
Transgenic soybean, resistant to glyphosate, represents a revolutionary breakthrough in weed control technology. Transgenic soybean is the most dominant among all transgenic crops grown commercially in the world. In 2000, glyphosate-resistant (GR) soybean was planted to 25.8 million hectares globally, which amounts to 58% of the total global transgenic crop area. The United States soybean area planted with GR soybean has increased from 2% in 1996 to 68% in 2001. Glyphosate-resistant soybean as a weed management tool has provided farmers with the opportunity and flexibility to manage a broad spectrum of weeds. The use of glyphosate in GR soybean offers another alternative to manage weeds that are resistant to other herbicides. The rapid increase in GR soybean area is caused by the simplicity of using only one herbicide and a lower cost for weed control. Adoption of GR soybean has resulted in a dramatic decrease in the area treated with other herbicides. Glyphosphate-resistant soybean should not be relied on solely to the exclusion of other weed control methods, and should be used within integrated weed management systems. Over-reliance on GR soybean could lead to problems such as shifts in weed species and population, and the development of glyphosate-resistant weeds. The challenge is for soybean farmers to understand these problems, and for weed scientists to communicate with farmers that continuous use of glyphosate may diminish the opportunity of GR soybean as a weed management tool in the future.  相似文献   

7.
Weeds and weed control are major production costs in global agriculture, with increasing challenges associated with herbicide‐based management because of concerns with chemical residue and herbicide resistance. Non‐chemical weed management may address these challenges but requires the ability to differentiate weeds from crops. Harvest is an ideal opportunity for the differentiation of weeds that grow taller than the crop, however, the ability to differentiate late‐season weeds from the crop is unknown. Weed mapping enables farmers to locate weed patches, evaluate the success of previous weed management strategies, and assist with planning for future herbicide applications. The aim of this study was to determine whether weed patches could be differentiated from the crop plants, based on height differences. Field surveys were carried out before crop harvest in 2018 and 2019, where a total of 86 and 105 weedy patches were manually assessed respectively. The results of this study demonstrated that across the 191 assessed weedy patches, in 97% of patches with Avena fatua (wild oat) plants, 86% with Raphanus raphanistrum (wild radish) plants and 92% with Sonchus oleraceus L. (sow thistles) plants it was possible to distinguish the weeds taller than the 95% of the crop plants. Future work should be dedicated to the assessment of the ability of remote sensing methods such as Light Detection and Ranging to detect and map late‐season weed species based on the results from this study on crop and weed height differences.  相似文献   

8.
Broad-leaved weeds in pasture, such as Carduus nutans, Onopordum spp. and Echium plantagineum are a major problem for graziers in southern Australia. Previous attempts to combat these weeds with a single technique have only resulted in short-term success. An approach to long-term control, combining biological control with different grazing and herbicide strategies, was evaluated in an integrated weed management (IWM) programme, in south-eastern Australia. This IWM study was one of the few that has focused on biological control agents. During the field trials, the impacts of grazing and herbicide treatments on the weed and biological control agents, as well as on pasture composition, were monitored. This paper concentrates on the part of the study that focuses on the role and importance of pasture composition as part of weed management. The main pasture components were monitored using botanal , a sampling technique for estimating species composition and pasture yield in the field. IWM is a long-term ecological approach and after 3 years, major trends were just becoming apparent. This study shows that pasture composition can be manipulated to increase productivity and sustainability. It demonstrates that broad-leaved weeds can be reduced when high level pasture background management and chemical control are combined.  相似文献   

9.
A review of non-chemical weed control on hard surfaces   总被引:1,自引:0,他引:1  
Weed control research to date has mainly focused on arable land, especially regarding herbicides, but also regarding non‐chemical methods. Some of these experiences can be applied to hard surface areas. However, weeds on hard surface areas cause problems that are different from those on arable land. Additionally, crop tolerance does not need to be considered when choosing an appropriate weed control method on these areas. The aim of this review is to describe current knowledge of weeds and weed control methods on hard surface areas and reveal potential ways of advancement. One of the shortcomings of non‐chemical weed control on hard surfaces thus far, is a lack of proper definition of efficiency of the weed control methods. To obtain effective control, more frequently repeated treatments are required than chemical weed management, thereby increasing the costs of labour and fuel. One way to reduce costs can be by adjusting the level of control to the required visual street quality. Weeds are adapted to the hard surface environment and may be less susceptible to certain control methods. This review indicates that for efficient weed control on hard surfaces there is a need for combining weed control techniques, applying sensors for detecting weeds, adapting the energy dose to type of weed flora and prevention of weeds by improved construction of new surfaces.  相似文献   

10.
Kava is a perennial pepper plant from the Oceanic region, which is commonly used as a drink by natives and for pharmacological purposes. Results of this study concluded that Kava has allelopathic potential and suppressed germination and growth of lettuce ( Lactuca sativa L), barnyardgrass ( E. crus-galli Beauv var. formosensis Ohwi.), and duck-tongue weed ( M. vaginalis Presl var. plantaginea Solms-Laub.) Moreover, Kava inhibited emergence of weeds in paddy soils. The inhibition of Kava became stronger as the applied concentration increased. In a greenhouse experiment, Kava had the greatest inhibition on emergence and weed growth in paddy soils when a dose of 1 ton ha−1 of Kava was divided and applied at 3, 16, and 23 days after watering. Inhibition by Kava varied among weed species. Results from this study suggest that Kava might be useful for weed control in rice or reduce dependence on herbicide.  相似文献   

11.
Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cultural control methods may increase soil nitrogen levels and alter microclimate at soil level; this may be of benefit to biocontrol agents, although physical disturbance to the soil and plant damage may be detrimental. Some weeds escape control by these methods; we suggest that these weeds may be controlled by biocontrol agents. It will be easiest to combine biological control with fire and cutting in grasslands; within arable systems it would be most promising to combine biological control (especially using seed predators and foliar pathogens) with cover‐cropping, and mechanical weeding combined with foliar bacterial and possibly foliar fungal pathogens. We stress the need to consider the timing of application of combined control methods in order to cause least damage to the biocontrol agent, along with maximum damage to the weed and to consider the wider implications of these different weed control methods.  相似文献   

12.
Field tests of a prototype microwave‐based weed killer machine were conducted on Abutilon theophrasti, Panicum miliaceum, lucerne and oilseed rape pure stands. The approach can be considered a thermal weed control method, the microwave radiation causing dielectric heating of plant tissue water that eventually kills the plant. The method could overcome the limitations of other thermal methods, such as fire risk with flaming or the heavy loads required for hot water treatments. Species were effectively controlled by microwave irradiation, but their sensitivity and the evolution of damage symptoms over time differed. Lucerne showed no sigmoidal response and was the least affected by the treatment, while a log‐logistic curve expressed the dose–response relationships of the other species quite well. The estimated microwave dose for a 90% dry weight reduction ranged from 1015 kJ m?2 in A. theophrasti to 3433 kJ m?2 in P. miliaceum. Energy cost evaluation indicated that increased efficiency is required for this technique to compete with other thermal methods. Microwave efficiency could be increased by a flux configuration that minimizes soil penetration and maximizes absorption by plants, which, in turn, depends on plant growth form.  相似文献   

13.
The demography of the annual dicotyledonous weed Papaver rhoeas and the efficacy of different management practices were studied during three consecutive years in winter cereals in the north‐east of Spain. These data were used to estimate the parameters of a weed life cycle model that was used to describe the population dynamics of this species and to predict the effect of various control strategies and integrated weed management (IWM) scenarios. Without control, the annual rate of increase was 40 (λt), and the minimum control level required to maintain the population stable was 99% of the emerged plants. The annual application of post‐emergence and/or pre‐emergence herbicides did not prevent the growth of the population. Using various cultural control tactics (delayed seeding, harrowing and fallow) resulted in different trends in the overall population depending on the techniques and combinations analysed. Simulations showed that delayed seeding, fallow and pre‐emergence herbicides are the best techniques to employ in IWM programmes, always using a combination of these and other more common practices (i.e. post‐emergence herbicides). Sensitivity analysis indicated interaction between the parameters and that the model was especially sensitive to seed losses and also to fecundity, seedling survivorship and emergence. The study shows that new strategies should be sought to control these parameters. To develop IWM programmes for P. rhoeas, the combination of two or more control strategies is required.  相似文献   

14.
Seed‐attacking microorganisms have an undefined potential for management of the weed seedbank, either directly through inundative inoculation of soils with effective pathogenic strains, or indirectly by managing soils in a manner that promotes native seed‐decaying microorganisms. However, research in this area is still limited and not consistently successful because of technological limitations in identifying the pathogens involved and their efficacy. We suggest that these limitations can now be overcome through application of new molecular techniques to identify the microorganisms interacting with weed seeds and to decipher their functionality. However, an interdisciplinary weed management approach that includes weed scientists, microbiologists, soil ecologists and molecular biologists is required to provide new insights into physical and chemical interactions between different seed species and microorganisms. Such insight is a prerequisite to identify the best candidate organisms to consider for seedbank management and to find ways to increase weed seed suppressive soil communities.  相似文献   

15.
Three field experiments were conducted in lupin in 1997, 1998 and 1999 to study two aspects of selectivity of post‐emergence weed harrowing; the ability of the crop to resist soil covering (the initial damage effect), and the ability of the crop to tolerate soil covering (the recovery effect). Each year soil covering curves and crop tolerance curves were established in three early growth stages of lupin. Soil covering curves connected weed control and crop soil cover in weedy plots, and crop tolerance curves connected crop yield and crop soil cover in weed‐free plots. The experiments showed that both resistance and tolerance were unaffected by the growth stage of lupin within the range from the cotyledon to the 7–8 leaf growth stages. Tolerance to soil covering was also unaffected by year whereas the ability of the crop to resist soil covering was highly affected by year. Lupin showed high tolerance to soil covering but a rather low ability to resist soil covering. Harrowing at multiple growth stages supported the finding that lupin is fairly tolerant to soil covering. Advantages and disadvantages of using soil covering as a measure of crop damage is discussed. In conclusion, weed harrowing in lupin showed positive prospects because of high tolerance to crop soil cover.  相似文献   

16.
Effects of Azolla species on weed emergence in a rice paddy ecosystem   总被引:1,自引:1,他引:1  
The effects of Azolla pinnata R. Br. on weed emergence were evaluated in terms of plot area coverage by an A. pinnata mat, its biomass production and the amount of weed emergence, using fresh and dry weights, in a rice paddy field experiment. The experiment was conducted following a randomized block design with five combinations of fertilizer and A. pinnata treatments (control, A. pinnata  + superphosphate, A. pinnata  + urea, A. pinnata  + compound fertilizer, A. pinnata  + cow manure). The results revealed that after 18 days of inoculation, all superphosphate (T1) and cow manure (T4)-treated plots were fully covered by the A. pinnata mat. However, coverage of the urea (T2) and compound fertilizer (T3)-treated plots were only 80% and 70%, respectively. The full plot area coverage by the A. pinnata mat and the highest biomass production with superphosphate and cow manure-treated plots were able to completely inhibit two weed species ( Scirpus juncoides Roxb. var. hotarui Ohwi and Monochoria vaginalis Burm. f. Presl var. plantaginea (Roxb.) Solms-Laub) and significantly suppressed four other weeds ( Cyperus serotinus Rottb, Echinochla oryzicola Vasing, and Eclipta prostrata L.). In all the treatments, the fresh weight of weeds significantly reduced to 13, 29, 34, and 9%, respectively, for treatments T1, T2, T3, and T4. The dry weights also were significantly reduced to 10.00, 16.00, 22.00, and 7.26%, respectively, for treatments T1, T2, T3, and T4 over the control. The results revealed that there was a significant correlation among plot area coverage by the A. pinnata mat, its biomass production and weed emergence in a rice paddy field over the control. Azolla pinnata did not have any detrimental effect on the growth of rice plants.  相似文献   

17.
Two of the many benefits of including legume cover crops in a fallow cropping system are weed suppression and increased soil organic N. This study was conducted in order to examine the effect of hairy vetch (Vicia villosa) on weed growth and soil N through a fallow period in subtropical Okinawa, Japan. Together with an untreated control plot, hairy vetch was grown from November 2007 to April 2008 and subsequently incorporated into the soil. The weeds were allowed to develop uncontrolled for 2 months until the time when a cash crop would be planted. In the period after the incorporation of hairy vetch, the weed biomass in the hairy vetch (HV)+ plot was more than threefold greater than that in the HV? plot. Hairy vetch had a high tendency to uptake N in April before the incorporation of hairy vetch; the N uptake by the weeds was lower in the HV+ plot than in the HV? plot. After the incorporation of hairy vetch, the N uptake by the weeds in the HV+ plot was two‐to‐six times higher than that by the weeds in the HV? plot. The C/N ratios of hairy vetch and the weeds in the HV+ plot were lower than those of the weeds in the HV? plot. More than half of the hairy vetch residue and N in the residue had decomposed by 28 days after incorporation. The content of both the NH4‐N and NO3‐N in the HV+ soil was higher than that in the HV? soil. Moreover, the amount of NO3‐N increased during the growing period of hairy vetch and decreased after the incorporation of hairy vetch. The fallow soil into which hairy vetch had been incorporated displayed a greater weed biomass and resulted in a higher inorganic N content than the soil that had not supported hairy vetch.  相似文献   

18.
Experiments were conducted to evaluate the plant emergence and seed production of Chloris polydactyla and the efficacy of herbicides for its control. The plants emerged mainly when the seeds were placed on the soil surface at ≤ 3 cm depth. Isolated plants produced a great amount of seeds. The pre-emergence herbicides, acetochlor, atrazine + simazine, s-metolachlor, alachlor, and trifluralin, were effective for C. polydactyla control. The postemergence herbicides, clodinafop-propargil, haloxyfop-methyl, clethodim, fluazifop- p -butil, tepraloxydim, sethoxydim, and quizalofop- p -tefuril showed satisfactory control of the plants at a 20 cm height with six leaves. During the flowering stage (85 cm plant height), only glyphosate was effective in controlling C. polydactyla .  相似文献   

19.
Herbicides applied alone have failed to reduce weed populations in agricultural ecosystems. The use of this management strategy has followed other problems such as damage to ecosystems and organisms that live in it. Herbicide resistance in weeds has also occurred more quickly based on the application of herbicides. Today, most scientists are looking for new integrated weed management programs in agricultural ecosystems. Biological control is one of the most effective ways of weed management. In this way, living organisms are used to reduce and control weed species in arable lands. Weed seed predators, including predispersal and postdispersal predators as biological control agents, can be primary factors of weed seed mortality in agricultural ecosystems. This review has discussed factors influencing seed predator populations, activity, and granivory. Knowledge of the interrelations between factors and seed predators can contribute to designing future strategies that augment weed seed predator activity and enhance weed seed consumption as a component of an integrated weed management system.  相似文献   

20.
The impact of uprooting and covering plants on mortality and growth reduction was investigated in the laboratory using Lolium perenne L. and Lepidium sativum L. (harrowed 3–4 days after emergence) and Chenopodium quinoa Willd. (harrowed at emergence) as model weed species. Although the predominant initial effect of harrowing was to cover the plants, only 1–17% of the non-uprooted covered plants were killed because the depth at which they were buried by the harrow was shallow. Uprooting was more effective (47–61% mortality) but strongly dependent on soil moisture content. It accounted for 93 and 95% of L. sativum and C. quinoa mortality, but for only 60% of L. perenne mortality. In L. perenne , the species most sensitive to burying, a strong positive relationship was observed between the percentage of plants covered by harrowing and the fresh weight reduction of the total population 6 days after harrowing. The fresh weight reduction of the total L. sativum population was best related to the percentage of uprooted plants, but the percentage of covered plants also appeared to be a good predictor because of its correlation with uprooting. Most of the uprooted plants were also buried. The fresh weight reduction of the total C. quinoa population was not related to the covering effect of harrowing and only weakly related to the percentage of uprooted plants. The results indicate that the plant recovery process after harrowing needs further study and that field research methods should be refined so that they can better discern initial and final harrowing effects on weeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号