首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil in greenhouses is likely to suffer a gradual decline in aggregate stability. Determination of the effects of different fertiliser practices on soil aggregate stability is important for taking advantage of solar greenhouses. Soil aggregate stability and iron(Fe) and aluminium(Al) oxide contents were investigated in a 26-year long-term fertilisation experiment in greenhouse in Shenyang, China,under eight fertiliser treatments: manure(M), fertiliser N(FN), fertiliser N with manure(MN), fertiliser P(FP), fertiliser P with manure(MP), fertiliser NP(FNP), fertiliser NP with manure(MNP), and control without any fertiliser(CK). A wet sieving method was used to determine aggregate size distribution and water-stable aggregates(WSA), mean weight diameter and geometric mean diameter as the indices of soil aggregate stability. Different fertiliser treatments had a statistically significant influence on aggregate stability and Fe and Al oxide contents. Long-term application of inorganic fertilisers had no obvious effects on the mass proportion of aggregates. By contrast, manure application significantly increased the mass proportion of macroaggregates at the expense of microaggregates. All treatments, with the exception of FNP, significantly increased the stability of macroaggregates but decreased that of microaggregates when compared with CK. Aggregation under MP and MN was better than that under M and MNP; however,no significant differences were found among inorganic fertiliser treatments(i.e., FN, FP, and FNP). A positive relation was found between pyrophosphate-extractable Fe and WSA(r = 0.269), but no significant relations were observed between other Fe and Al oxides and aggregate stability.  相似文献   

2.
The study aimed to evaluate the effects of long-term fertilisation on soil aggregation and the associated changes in soil organic carbon (SOC) and nitrogen (N) pools in aggregates. The combined application of mineral fertiliser and manure improved soil aggregation, SOC and N content in aggregates, compared to manure or mineral fertiliser alone, and thus proved to be a suitable fertilisation strategy to increase C sequestration in agroecosystems.  相似文献   

3.
Anaerobic digestion is a process that is widely used for the treatment of organic wastes. The digestate can be used as a soil amendment or crop fertiliser. The aims of our work were to evaluate 1) the physicochemical composition and pathogen content in a digestate from poultry manure, according to international regulations, and 2) the effect of its soil application on the major chemical and biological soil properties and on the growth of Lactuca sativa. The experiment consisted of two groups of pots(with and without crop). Treatments applied to each group were as follows: low and high doses of digestate and inorganic fertiliser, and no application(control)(low dose: 70 kg nitrogen(N) ha~(-1) and 21 kg phosphorus(P) ha~(-1); high dose: 210 kg N ha~(-1) and 63 kg P ha~(-1)). Soil samples were taken 7 and 34 d(harvest) after treatment applications. Heavy metal and pathogen contents in the digestate were below the upper limit values. Despite the high pH and electrical conductivity values of the digestate, both soil parameters presented acceptable values for crop growth. Although there were no initial increases in total inorganic N and available P in soil with digestate application, an increase in the fresh weight of crop was observed with the high dose application. This is probably associated with the slow nutrient release from the digestate during the development of the crop. Changes in the microbial community were temporary and occurred at the initial sampling stage of the experiment.  相似文献   

4.
为探究耕作方式、秸秆还田和生物炭添加结合对土壤团聚体粒径分布、团聚体养分特征、养分库储量及小麦-玉米周年产量的影响,本研究采用3因素2水平试验设计,分别为耕作方式:常规旋耕(CT),深翻耕作(DT);秸秆处理:秸秆还田(S)、秸秆不还田(NS);生物炭:生物炭添加(B)、无生物炭添加(NB),共8个处理。结果表明:无生物炭添加时,旋耕秸秆还田显著提高了0~15 cm土层团聚体稳定性及土壤养分库储量,而深耕秸秆还田显著改善了>15~30 cm土层土壤团粒组成,提升土壤肥力,促进作物增产。相关性分析表明,砂姜黑土中作物产量的提升更依赖于深层(>15~30 cm)土壤物理结构的改善和土壤肥力的提升。配施生物炭后如DT-S-B(深耕秸秆还田配施生物炭)较CT-NS-NB(旋耕秸秆不还田无生物炭)处理尤其使>15~30 cm土层团聚体稳定性显著增强,>2 mm粒级团聚体比例、重量平均直径和几何平均直径值分别增加165.88%、62.37%和119.81%,显著提高>2 mm粒级团聚体有机碳、全氮和全磷含量,提高了>2 mm粒级团聚体有机碳和养分固持能力,降低了<2 mm粒级团聚体有机碳和养分固持能力,使>15~30 cm土层土壤有机碳库储量、全氮、全磷和全钾库储量分别显著提升37.41%、38.99%、41.26%和9.84%,促使2年作物周年产量平均增加22.96%,但在深耕秸秆还田的基础上配施生物炭在短期内增产效果不显著。综上,深耕秸秆还田配施生物炭能够显著改善黄淮海南部砂姜黑土深层土壤团聚体粒径分布和稳定性,提升了土壤肥力和作物周年产量,保障了农田高效绿色可持续生产。  相似文献   

5.
秸秆还田对麦粱两熟农田土壤团聚体特征的短期效应   总被引:6,自引:0,他引:6  
冬小麦—夏高粱种植系统作为一种新型农业两熟制系统,是山西省杂粮可持续发展的一项有效措施。为阐明该种植系统农田土壤团聚体粒级分布及稳定性对秸秆还田量的短期响应,试验基于麦粱种植系统,分析了不还田(CK)、半量还田(HR)和全量还田(WR)对土壤团聚体粒级分布特征和稳定指数的影响。结果表明:秸秆还田后,能够显著降低0—30 cm土层 > 10 mm和 < 0.25 mm粒级机械稳定性团聚体含量,增加0.25~2 mm各亚粒级水稳性大团聚体含量,同时显著降低了土壤团聚体破坏率和不稳定团粒指数(p < 0.05);全量秸秆还田后较半量秸秆还田对农田土壤团聚体特征改善效果更为明显,但对10—20,20—30 cm土层改善效果逐渐减弱;全量还田相比半量还田,土壤机械稳定性团聚体平均重量直径、几何平均直径和大团聚体(> 0.25 mm)含量分别显著降低了12.2%,23.0%和5.3%,并显著提升了水稳性团聚体几何平均直径和大团聚体(> 0.25 mm)含量,降低了水稳性团聚体分形维数(p < 0.05)。此外,土壤团聚体稳定性与有机碳含量、孔隙度、含水量和作物产量呈显著正相关(p < 0.05)。综合表明,全量还田在短期年限内能够显著提高土壤团聚体稳定性,是改善晋中区麦粱两熟农田土壤团粒结构和增加作物产量的有效措施。  相似文献   

6.
For many centuries manure application to the soil has been common practice. Organic amendments and fertiliser applications can increase crop yields and soil organic matter (SOM). However, the long-term impacts on soil physical fertility are often neglected. This study was carried out on the Broadbalk Wheat Experiment at Rothamsted, UK, established in 1843 on an Aquic/Typic Paleudalf soil. Application of farmyard manure (FYM), N fertiliser and wheat straw on total organic C (CT), labile C (CL) and non-labile C (CNL), total N (NT), mean weight diameter (MWD) and unsaturated hydraulic conductivity (Kunsat) were studied on wheat (Triticum aestivum) and adjacent woodland and pasture areas. Manure additions, N fertiliser and straw incorporation increased all C fractions, particularly the CL fraction. The addition of 35 t ha−1 year−1 of FYM increased CT to 2.5 times that of the control (no fertiliser) treatment and CL to 5 times that of the control. With highest N application and straw returned, CT increased by 1.3 times and CL by 1.5 times that of the control treatment. There were linear relationships between rate of N fertiliser applied and all C fractions, with the rate of increase almost double with straw than straw removed. Manure application improved MWD, as did high N fertiliser additions with straw returned. Application of N fertiliser only increased MWD and Kunsat (at 10 mm tension) if straw was returned, while the addition of manure resulted in decreased Kunsat. The highest Kunsat rate was on the high N fertiliser, straw returned treatments. The uncropped areas all had high soil structural stability. Similar relationships occurred between all C fractions and NT and MWD for the high C soils, but relationships were much stronger with CL than the other C fractions in the low C soils. These results showed that soils with low C concentration are more reliant on CL for structural stability.  相似文献   

7.
The adverse effect of soil over-compaction on crop production efficiency was the basis for a programme to assess soil and crop responses to a zero traffic regime based on a 12 m gantry. The vehicle and its operating system, together with tasks ranging from fertilizer and spray application to draught and powered cultivations and cereals harvesting, are described. Results indicated that the gantry was a practical means of separating the cropped and wheeled (zero traffic) areas of a field. Cultivation draught and energy savings of up to 50% and 70%, respectively, were identified on a clay soil where traffic was eliminated from the cropped area. There was also evidence that this regime resulted in significant improvements to soil structure and crop establishment. The average yield of wheat from the zero traffic plots in 1989 was 6.8 t ha−1, compared with 5.7 t ha−1 from the conventionally managed soil. In the dry season of 1989–1990, the yield of oats was not differentially affected by treatment.  相似文献   

8.
Based on a 28‐year in situ experiment, this paper investigated the impacts of organic and inorganic fertiliser applications on soil organic carbon (SOC) content and soil hydraulic properties of the silt loam (Eumorthic Anthrosols) soils derived from loess soil in the Guanzhong Plain of China. There were two crop (winter wheat and summer maize) rotations with conventional tillage. The treatments included control without fertiliser application, organic manure application (M), chemical fertiliser application (NP), and the application of organic manure with chemical fertiliser (MNP). The results showed that the 28‐year organic manure applications (M and MNP) significantly (p < 0·05) increased SOC content at surface layer (0–10 cm), but the effect of chemical fertilisers alone on SOC was not significant. Organic manure treatments (M and MNP) apparently improved soil hydraulic properties. Compared with control, field capacity and total porosity significantly (p < 0·05) increased while soil bulk density significantly (p < 0·05) decreased for organic manure applications. The M and MNP treatments increased soil water retentions by 3·2–10·8%, which was dependent of suction tensions. However, the NP treatment had no significantly impact on soil water retention compared with control. Neither organic nor inorganic fertiliser applications significantly changed saturated hydraulic conductivity. However, a clear difference was observed for unsaturated hydraulic conductivity between the M and the control at 0–5 cm. Overall, long‐term applications of organic manuring increased SOC content and amended soil hydraulic properties. However, the effects of chemical fertilisers on these soil properties were limited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
通过对滨海盐化潮土小麦—玉米轮作2年田间定位试验,研究不同改良剂施用对土壤团聚体分布、稳定性及土壤团聚体中有机碳含量、各级团聚体有机碳对总有机碳贡献率的影响。试验共设置3个处理:对照(CK)、有机土壤改良剂(OSA)和有机—无机土壤改良剂(CSA),分析土壤团聚体分布、水稳性大团聚体(R_(0.25))、平均重量直径(mean weight diameter,MWD)、几何平均直径(geometric mean diameter,GMD)、分形维数(D)、有机碳储量(soil organic carbon storage,SOCS)和有机碳贡献率(contribution rate of organic carbon)。结果表明,滨海盐化潮土水稳性团聚体组成主要以0.25 mm粒径为主,改良剂施用后土壤R_(0.25)显著提高,其影响主要集中在5 mm和2~5 mm粒径级,OSA处理2个粒级团聚体含量较CK分别显著增加167.38%和59.00%,CSA处理分别显著增加89.17%和100.66%。施用OSA与CSA同时显著提高了土壤团聚体MWD和GMD值,说明2种改良剂的施用均有利于提高大团聚体数量及稳定性。施用改良剂2年处理土壤各粒级团聚体中有机碳含量均有所提高,OSA处理以1~2 mm粒级提高最多,CSA以2~5 mm粒级提高最多,且前者达显著水平。与CK相比,改良剂可促使土壤有机碳向大团聚体富集,显著提高1~2 mm粒级团聚体对土壤总有机碳的贡献率93.62%~109.76%,降低或显著降低1~2 mm粒级团聚体对土壤总有机碳的贡献率20.55%~24.92%。在小麦—玉米轮作模式下,改良剂施用不仅可以显著提高滨海盐化潮土水稳性大团聚体含量和稳定性,还可显著增加水稳性大团聚体有机碳含量与储量,是加强盐碱土壤有机碳库积累的有效措施。  相似文献   

10.
不同程度压实对土壤理化性状及作物生育产量的影响   总被引:14,自引:13,他引:14  
采用大、小四轮式拖拉机在冬小麦播种地上压地1到10遍,对照为未压实地,测定对小麦生育产量影响;同时进行了不同程度土壤压实后孔隙度为58%,52%,46%和40%的土壤理化性状测定试验。结果表明不同程度压实具有系统累积效应,为免耕、保护性耕作和减免中耕提供了运用依据。  相似文献   

11.
This study investigated the extent of soil damage caused by field traffic associated with different levels of soil moisture deficit (SMD). The hybrid SMD model was used for computing temporal patterns of SMD which can be accurately predicted for a range of soil types in Ireland. The aim of this study was to determine SMD threshold limits to trafficability for incorporation into a decision support system for safe slurry spreading. A tractor and a fully loaded single‐axle slurry tanker (total weight ca. 18 tonnes) were driven over well, moderate and poorly drained soils at SMD values of 0, 5, 10 and 20 mm during drying phases. The change in soil bulk density (SBD) was used as an indicator of soil compaction, and rut profile measurements were taken to determine soil deformation indicative of surface damage. The effect of traffic on the grass crop was determined by measuring dry matter yield at 30 and 60 days posttraffic in the wheel‐rut and nontrafficked area. Results showed that the SMD at the time of traffic had a significant (P < 0.05) effect on the magnitude of the changes in SBD on soils of different drainage status, and on rut dimensions following traffic. DMY was significantly (P < 0.05) reduced on the wheeled compared with the nonwheeled soil. No differences in the magnitude of DMY loss were identified between the sites having different drainage status. An SMD value of 10 mm was suggested as an SMD threshold for trafficability for safe slurry spreading purposes.  相似文献   

12.
菜地土壤有机碳分级以及总量变化的动态特征研究   总被引:1,自引:0,他引:1  
Fertilisers significantly affect crop production and crop biomass inputs to soil organic carbon(SOC). However, the long-term effects of fertilisers on C associated with aggregates are not yet fully understood. Based on soil aggregate and SOC fractionation analysis, this study investigated the long-term effects of organic manure and inorganic fertilisers on the accumulation and change in SOC and its fractions, including the C concentrations of free light fraction, intra-aggregate particulate organic matter(POM) and intra-aggregate mineral-associated organic matter(MOM). Long-term manure applications improved SOC and increased the concentrations of some C fractions. Manure also accelerated the decomposition of coarse POM(cPOM) into fine POM(fPOM) and facilitated the transformation of fPOM encrustation into intra-microaggregate POM within macroaggregates. However, the application of inorganic fertilisers was detrimental to the formation of fPOM and to the subsequent encrustation of fPOM with clay particles, thus inhibiting the formation of stable microaggregates within macroaggregates. No significant differences were observed among the inorganic fertiliser treatments in terms of C concentrations of MOM, intra-microaggregate MOM within macroaggregate(imMMOM) and intra-microaggregate MOM(imMOM). However, the long-term application of manure resulted in large increases in C concentrations of MOM(36.35%), imMMOM(456.31%) and imMOM(19.33%) compared with control treatment.  相似文献   

13.
Abstract. When over exploited and coupled with climatic conditions, tropical soils are subject to increased erosion and a loss of soil organic matter. Countermeasures include the incorporation of organic materials such as crop and animal residues. We studied the effect of adding crop residues and manure to soil, at five sites in Ethiopia, on carbohydrate properties, aggregate stability and the C and N distribution within water-stable aggregates. The effects of organic amendments varied between sites. The largest content of carbohydrates was obtained in the control treatment at Holeta, Ginchi (90 kg ha–1 mustard meal), Jimma (5 t ha–1 cow dung + 9 t ha–1 coffee husk), Awassa (forested soil), and Sirinka (soil alley-cropped with Leuceanae ). The aggregate stability of these soils was highly correlated with the OM content but not with carbohydrates. The smaller aggregates (<1.00 mm) accumulated more carbohydrates than the larger (>1.00 mm), thereby suggesting a protecting effect within the finer soil fractions. A protecting role played by humified OM components was also indicated by the C and N distribution as well as the C:N ratios which showed preferential accumulation in small rather than in large aggregates. The isotopic 13C-OC values of carbohydrate extracts were generally low, suggesting that OM was from plants with C3 photosynthetic pathways. Soil treatments with maize alone or combined with coffee husks at Jimma decreased the δ13C‰ values slightly, revealing that maize contributed a share of the labile OM. Despite the improvement in the soil OM content, neither the carbohydrate content nor the aggregate stability were increased to the level of the forested sites, suggesting that the additions of crop residues and manure were not alone sufficient to restore the soil physical quality.  相似文献   

14.
Agricultural production systems are complex involving variability in climate, soil, crop, tillage management and interactions between these components. The traditional experimental approach has played an important role in studying crop production systems, but isolation of these factors in experimental studies is difficult and time consuming. Computer simulation models are useful in exploring these interactions and provide a valuable tool to test and further our understanding of the behavior of soil–crop systems without repeating experimentation.Productivity erosion and runoff functions to evaluate conservation techniques (PERFECT) is one of the soil–crop models that integrate the dynamics of soil, tillage and crop processes at a daily resolution. This study had two major objectives. The first was to calibrate the use of the PERFECT soil–crop simulation model to simulate soil and crop responses to changes of traffic and tillage management. The second was to explore the interactions between traffic, tillage, soil and crop, and provide insight to the long-term effects of improved soil management and crop rotation options. This contribution covers only the first objective, and the second will be covered in a subsequent contribution.Data were obtained from field experiments on a vertisol in Southeast Queensland, Australia which had controlled traffic and tillage treatments for the previous 5 years. Input data for the simulation model included daily weather, runoff, plant available water capacity, and soil hydraulic properties, cropping systems, and traffic and tillage management. After model calibration, predicted and measured total runoffs for the 5-year period were similar. Values of root mean square error (RMSE) for daily runoff ranged from 5.7 to 9.2 mm, which were similar to those reported in literature. The model explained 75–95% of variations of daily, monthly and annual runoff, 70–84% of the variation in total available soil water, and 85% of the variation in yield. The results showed that the PERFECT daily soil–crop simulation model could be used to generate meaningful predictions of the interactions between crop, soil and water under different tillage and traffic systems.Ranking of management systems in order of decreasing merit for runoff, available soil water and crop yield was (1) controlled traffic zero tillage, (2) controlled traffic stubble mulch, (3) wheeled zero tillage, and (4) wheeled stubble mulch.  相似文献   

15.
依托紫色土坡耕地长期施肥试验观测平台,研究生物炭、秸秆对紫色土坡耕地团聚体有机碳分布的影响。长期施肥试验处理包括不施肥(CK)、无机氮磷钾肥(NPK)、秸秆还田(RSD)、生物炭与无机氮磷钾配施(BCNPK)、秸秆与无机氮磷钾配施(RSDNPK)。利用湿筛法,进行土壤团聚体粒径分组,随后测定各粒径团聚体含量及其有机碳含量,并计算团聚体平均质量直径(MWD)和几何平均直径(GMD)。结果表明,RSD、RSDNPK和BCNPK处理的表层SOC含量比CK处理增加43.1%~90.5%,SOC储量提高65.1%~74.3%,其中RSDNPK处理、BCNPK处理较NPK处理SOC显著增加25.2%~33.1%(P0.05), SOC储量显著提高23.2%~30.0%(P0.05)。团聚体MWD和GMD均为RSD处理RSDNPK处理BCNPK处理NPK处理CK处理; RSD处理0.25~2 mm的团聚体含量高达45.5%,较CK处理提高57.7%;秸秆和生物炭配施处理(RSDNPK处理和BCNPK处理)0.25~2mm的团聚体含量为41.3%~45.7%,而0.053mm粒径团聚体含量却降低54.1%~55.4%。NPK处理、RSD处理与CK处理的增长趋势相似,呈随团聚体粒径减小,团聚体有机碳含量先增大后减小,继而再增大的趋势;而RSDNPK、BCNPK处理则呈随粒径减小团聚体有机碳含量增加的趋势。生物炭和秸秆的施用能显著提升土壤有机碳含量,增强土壤结构稳定性,但生物碳的施用对提升土壤有机碳含量效果优于秸秆的施用,秸秆的施用对稳定土壤结构效果更优,因此生物炭和秸秆的施用可作为紫色土耕地土壤肥力维持和提升的有效管理措施。  相似文献   

16.
Soil erodibility is a function of land use as it affects the stability of soil aggregates. The use of soil conditioners like polyvinyl alcohol (PVA) may help in reducing the soil erodibility, but it is important to economize the use of PVA. A study was carried out to evaluate the interactive effects of land use and PVA concentration on the water-drop stability of natural soil aggregates collected from eroded, forest, agricultural and grass lands. The water-drop stability of these aggregates was monitored using single raindrop simulator. The water-drop stability was lowest in eroded soils, followed by soils from agriculture, forest and grass lands. The smaller aggregates were more stable than the bigger ones. The water-drop stability of aggregates of different sizes and from different lands increased with the application of polyvinyl alcohol (PVA). The mean water-drop stability increased with the application of PVA at the rate of 0.05% by 40% in 2–5 and 5–10 mm aggregates. Increasing the PVA concentration to 0.1 and 0.2% increased water-drop stability value by 71–73% and 87–88%, respectively. The PVA application at the rate of 0.1% could increase the water-drop stability of soils under eroded land equivalent to that of the untreated grassland soils.  相似文献   

17.
Several studies have shown the importance of organic material in the formation and stability of soil aggregates. The organic matter of soil (SOM) is affected among other factors by the application of farmyard waste and compost, as well as tillage and crop rotation. This paper examines the aggregation and stability of a sandy soil (Haplic Fluvisol) in the valley of Mexico when treated with either 40 Mg ha−1 of compost or urea (80 kg ha−1 of N) and sown to amaranth (Amaranthus hypochondriacus L.) under dryland conditions. The application of compost resulted in a significantly larger proportion of aggregates in the fractions >1 mm (1.0–2.0, 2.0–2.3, 2.3–4.7 mm) than in the smaller fraction (<1 mm). However the stability of the macroaggregates >1 mm in the compost treatment was not higher than in contrasting treatments which did not include organic matter. Compost, which was applied under drought conditions, did not increase the aggregate stability of the soil probably because of the restricted transformation of the compost and microorganism activity.  相似文献   

18.
南亚热带不同母质发育土壤团聚体特征及其稳定性   总被引:4,自引:0,他引:4  
团聚体是土壤的基本结构单位,其稳定性是评价土壤质量的重要指标。以南亚热带地区不同母质(石灰岩、第四纪红黏土、砂页岩)发育的土壤作为研究对象,采用湿筛法和LB法测定不同母质发育土壤团聚体稳定性特征。结果表明:(1)随着土层深度的增加,土壤容重呈上升趋势,而孔隙度、有机质和游离氧化铁含量呈下降趋势。砂页岩母质发育的土壤有机质含量最高,为22.44~42.97 g/kg。石灰岩和第四纪红黏土母质发育的土壤以黏粒(40.93%,42.51%)和粉粒(41.69%,42.31%)为主,砂页岩母质发育的土壤黏粒含量最低,为33.79%。(2)经湿筛法处理后,石灰岩母质发育土壤水稳性团聚体含量为91.58%~92.31%,第四纪红黏土母质发育土壤水稳性团聚体含量为76.45%~90.80%,砂页岩母质发育土壤水稳性团聚体含量为79.18%~86.67%,3种土壤团聚体的稳定性都随着土层深度增加而降低。(3)LB法处理后土壤团聚体MWD值均表现为慢速湿润处理预湿润振荡处理快速湿润处理,砂页岩母质发育的40—60 cm土层对消散和机械破碎作用最为敏感,其相对消散指数RSI和相对机械破碎指数RMI分别为0.78和0.42。不同母质土壤团聚体稳定性均与黏粒、有机质、游离态铁含量呈正相关。  相似文献   

19.
黄悦  张风宝    高晶霞  申楠    杨明义   《水土保持研究》2022,29(6):431-437
土壤团聚体稳定性是影响土壤质量、入渗、抗侵蚀能力及根系生长的重要土壤物理性质,同时也是判断土壤是否退化的重要指标。目前国内外关于团聚体稳定性的研究以分析团聚体水稳性为主,团聚体结构稳定性相关研究较少,而使用高能水分特性法(HEMC)测定团聚体结构稳定性重现性高,可检测不同处理间微小差异且试验及计算过程精准可控,在国外已有较多研究。研究通过HEMC法分析了土壤改良剂、土地利用与土壤管理和不同土壤理化性质下团聚体结构稳定性的特征及影响因子,结果表明不同处理间土壤团聚体结构稳定性差异较明显,且有机质与黏粒含量是影响团聚体结构稳定性的主要因素,而国内还鲜有相关报道。该研究就HEMC方法的原理、测定过程、数据处理、指标计算及相关研究进展进行了总结,并结合我国大力提倡保护耕地资源、修复退化土壤及实施植被恢复的大背景,对利用该方法进行土壤结构、土壤质量、土壤抗蚀性等方面的研究提出了一些建议,期望能够推广利用该方法,为土壤质量演变、构建和评价健康土壤提供基础数据支持。  相似文献   

20.
Wheel traffic and tillage effects on runoff and crop yield   总被引:1,自引:0,他引:1  
Traffic and tillage effects on runoff, soil water and crop production under rainfall were investigated over a period of 6 years on a heavy clay vertosols (vertisols) in Queensland, Australia. A split plot design was used to isolate traffic effects, while the cropping program and treatments were broadly representative of extensive grain production practice in the northern grain region of Australia. Treatments subject to zero tillage and stubble mulch tillage each comprised pairs of 90 m2 plots, from which runoff was recorded. A 3 m wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the complete surface area of the other received a single annual wheeling treatment from a working 100 kW tractor.

Mean annual runoff from controlled traffic plots was 81 mm (36.3%) smaller than that from wheeled plots, while runoff from zero tillage was reduced by 31 mm (15.7%). Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from controlled traffic and zero tillage plots, representing best practice, was 112 mm (47.2%) less than that from wheeled stubble mulch plots, representing conventional cropping practice. Rainfall infiltration into controlled traffic zero tillage soil was thus 12.0% greater than into wheeled stubble mulched soil. Rainfall/runoff hydrographs show that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still present in large and intense rainfall events on wet soil.

Plant available water capacity (PAWC) in the 0–500 mm zone increased by 10 mm (11.5%) and mean grain yields increased by 337 kg/ha (9.4%) in controlled traffic plots, compared with wheeled plots. Mean grain yield of zero tillage was 2–8% greater than that of stubble mulch plots for all crops except for winter wheat in 1994 and 1998. Increased infiltration and plant available water were probably responsible for increased mean grain yields of 497 kg/ha (14.5%) in controlled traffic zero tillage, compared with wheeled stubble mulch treatments. Dissipation of tractive and tillage energy in the soil is the apparent mechanism of deleterious effects on the soils ability to support productive cropping in this environment. Controlled traffic and conservation tillage farming systems appear to be a practicable solution.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号