首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to promote the transformation of a burnt Mediterranean forest area into a dehesa system, 10 t ha−1 of dry matter of the same sewage sludge in three different forms: fresh, composted and thermally‐dried, were added superficially to field plots of loam and sandy soils located on a 16 per cent slope. This application is equivalent to 13ċ8 t ha−1 of composted sludge, 50 t ha−1 of fresh sludge and 11ċ3 t ha−1 of thermally‐dried sludge. The surface addition of a single application of thermally‐dried sludge resulted in a decrease in runoff and erosion in both kinds of soil. Runoff in thermally‐dried sludge plots was lower than in the control treatment (32 per cent for the loam soil and 26 per cent for the sandy soil). The addition of any type of sludge to both soil types also reduces sediment production. Significant differences between the control and sludge treatments indicate that the rapid development of plant cover and the direct protective effect of sludge on the soil are the main agents that influence soil erosion rates. Results suggest that the surface application of thermally‐dried sludge is the most efficient way to enhance soil infiltration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
坡地开垦的径流泥沙响应   总被引:2,自引:0,他引:2  
Land use and land cover change is a key driver of environmental change. To investigate the runoff and erosion responses to frequent land use change on the steep lands in the Three Gorges area, China, a rainfall simulation experiment was conducted in plots randomly selected at a Sloping Land Conversion Program site with three soil surface conditions: existing vegetation cover, vegetation removal, and freshly hoed. Simulated rainfall was applied at intensities of 60 (low), 90 (medium), and 120 mm h 1 (high) in each plot. The results indicated that vegetation removal and hoeing significantly changed runoff generation. The proportion of subsurface runoff in the total runoff decreased from 30.3% to 6.2% after vegetation removal. In the hoed plots, the subsurface runoff comprised 29.1% of the total runoff under low-intensity rainfall simulation and the proportion rapidly decreased with increasing rainfall intensity. Vegetation removal and tillage also significantly increased soil erosion. The average soil erosion rates from the vegetation removal and hoed plots were 3.0 and 10.2 times larger than that in the existing vegetation cover plots, respectively. These identified that both the runoff generation mechanism and soil erosion changed as a consequence of altering land use on steep lands. Thus, conservation practices with maximum vegetation cover and minimum tillage should be used to reduce surface runoff and soil erosion on steep lands.  相似文献   

3.
Runoff sediment from disturbed soils in the Lake Tahoe Basin has resulted in light scattering, accumulation of nutrients, and subsequent loss in lake clarity. Little quantified information about erosion rates and runoff particle‐size distributions (PSDs) exists for determining stream and lake loading associated with land management. Building on previous studies using rainfall simulation (RS) techniques for quantifying infiltration, runoff, and erosion rates, we determine the dependence and significance of runoff sediment PSDs and sediment yield (SY, or erodibility) on slope and compare these relationships between erosion control treatments (e.g., mulch covers, compost, or woodchip incorporation, plantings) with bare and undisturbed, or ‘native’ forest soils. We used simulated rainfall rates of 60–100 mm h−1 applied over replicated 0·64 m2 plots. Measured parameters included time to runoff (s), infiltration and runoff rates (mm h−1), SY (g mm−1 runoff), and average sediment concentration (SC, g L−1) as well as PSDs in runoff samples. In terms of significant relationships, granitic soils had larger particle sizes than volcanic soils in bulk soil and runoff samples. Consequently, runoff rates, SCs, and SYs were greater from bare volcanic as compared to that from bare granitic soils at similar slopes. Generally, runoff rates increased with increasing slope on bare soils, while infiltration rates decreased. Similarly, SY increased with slope for both soil types, though SYs from volcanic soils are three to four times larger than that from granitic soils. As SY increased, smaller particle sizes are observed in runoff for all soil conditions and particle sizes decreased with increasing slope. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This study evaluates surface runoff generation and soil erosion rates for a small watershed (the Keleta Watershed) in the Awash River basin of Ethiopia by using the Soil and Water Assessment Tool (SWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. The simulated surface runoff closely matched with observed data (derived by hydrograph separation). Surface runoff generation was generally high in parts of the watershed characterized by heavy clay soils with low infiltration capacity, agricultural land use and slope gradients of over 25 per cent. The estimated soil loss rates were also realistic compared to what can be observed in the field and results from previous studies. The long‐term average soil loss was estimated at 4·3 t ha−1 y−1; most of the area of the watershed (∼80 per cent) was predicted to suffer from a low or moderate erosion risk (<8 t ha−1 y−1), and only in ∼1·2 per cent of the watershed was soil erosion estimated to exceed 12 t ha−1 y−1. Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the watershed was divided into four priority categories for conservation intervention. The study demonstrates that the SWAT model provides a useful tool for soil erosion assessment from watersheds and facilitates planning for a sustainable land management in Ethiopia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
On the uplands of the Darling Downs, runoff and erosion during summer fallows are a major problem. Interflow has been reported in tilled catchments in this area and might be controlled to reduce surface runoff and soil erosion. In view of the lack of data on interflow in tilled soils, this paper reports rates of interflow in a tilled soil for a range of stubble mulch rates, and describes the mechanisms of flow observed.Plots 22.5 × 4 m carrying surface mulches of 3,2,1 and 0.1 t ha−1 wheat stubble were prepared on a shallow black, cracking clay on 6% slope. The plots were pre-wet, and then simulated rain at 95 mm h−1 was applied (using a rainulator) for a 50-min test period. Perched water tables developed in the tilled layer and interflow was clearly visible flowing out beneath the collection gutter at the downslope end of the plot. Interflow rates were calculated from
  • 1.(a) measurements of surface runoff on the rainulator plots at the end of the 50-min test periods;
  • 2.(b) measurements of steady, deep infiltration rate for the site made using a rotating disc rainfall simulator.
The interflow rates calculated for the rainulator plots were significantly related to stubble rates. Stubble appeared to increase interflow by reducing sediment loads in runoff water, thereby reducing the clogging of large voids in the tilled layer by sediment. Large, interconnected voids in the tilled layer must have been the major pathway for interflow.  相似文献   

6.
The effectiveness of a surface cover material (e.g. geotextiles, rock fragments, mulches, vegetation) in reducing runoff and soil erosion rates is often only assessed by the fraction of the soil surface covered. However, there are indications that soil structure has important effects on the runoff and erosion-reducing effectiveness of the cover materials. This study investigates the impact of soil pre-treatment (i.e. fine tilth versus sealed soil surface) on the effectiveness of biological geotextiles in increasing infiltration rates and in reducing runoff and interrill erosion rates on a medium and steep slope gradient. Rainfall was simulated during 60 min with an intensity of 67 mm h−1 on an interrill erosion plot having two slope gradients (i.e. 15 and 45%) and filled with an erodible sandy loam. Five biological and three simulated geotextiles with different cover percentage were tested on two simulated initial soil conditions (i.e. fine tilth and sealed soil surface). Final infiltration rates on a sealed soil surface (7.5–18.5 mm h−1) are observed after ca. 10 min of rainfall compared to ca. 50 min of rainfall on an initial seedbed (16.4–56.7 mm h−1). On the two tested slope gradients, significantly (α = 0.05) smaller runoff coefficients (RC) are observed on an initial seedbed (8.2% < RC < 59.8%) compared to a sealed soil surface (75.7% < RC < 87.0%). On an initial seedbed, decreasing RC are observed with an increasing simulated geotextile cover. However, on an initial sealed soil surface no significant effect of simulated geotextile cover on RC is observed. On a 15% slope gradient, calculated b-values from the mulch factor equation equalled 0.054 for an initial fine tilth and 0.022 for a sealed soil surface, indicating a higher effectiveness of geotextiles in reducing interrill erosion on a fine tilth compared to a sealed soil surface. Therefore, this study demonstrates the importance of applying geotextiles on the soil surface before the surface tilth is sealed due to rainfall. The effect of soil structure on the effectiveness of a surface cover in reducing runoff and interrill erosion rates, as indicated by the results of this study, needs to be incorporated in soil erosion prediction models.  相似文献   

7.
降雨侵蚀因子和植被类型及覆盖度对坡耕地土壤侵蚀的影响   总被引:13,自引:4,他引:13  
为探讨降雨和植被对辽西褐土区农耕坡地土壤侵蚀的影响,2006-2010年采用坡面径流小区观测法研究了天然降雨条件下降雨侵蚀因子、植被覆盖度、植被类型对坡耕地地表径流量、土壤侵蚀量的影响。设5°和10°两个坡度水平,以甘薯和谷子为供试作物,2006-2007年对照区为天然荒草地,2008-2010年为裸坡地。结果表明,甘薯地径流量和侵蚀量与降雨量(R)、最大30 min雨强(I_(30))、R×I(平均雨强)、R×I_(30)正相关显著(P0.05);裸坡地径流量与R、R×I_(30)正相关显著(P0.05),侵蚀量与I_(30)、R×I_(30)正相关显著(P0.05),与降雨量相关不显著(P0.05)。甘薯地和裸坡地的径流量和侵蚀量与平均降雨强度正相关均不显著(P0.05)。回归分析表明,降雨量主要影响径流量,最大30 min雨强主要影响侵蚀量。中、高雨强下,侵蚀量与径流量显著正相关(P0.01)。甘薯地径流量和侵蚀量与植被覆盖度呈显著负指数关系(P0.05)。5°坡耕地,不同植被类型侵蚀量为甘薯地荒草地谷子地;10°坡耕地,荒草地侵蚀量总体最少。多元回归分析表明,对土壤侵蚀的影响为地表径流降雨侵蚀力(R×I_(30))植被覆盖度。通过连续5 a坡面径流小区观测,初步探明降雨和植被对辽西褐土区农耕坡地土壤侵蚀的影响,可为该区坡耕地土壤侵蚀的有效防治提供一定的理论依据和技术支撑。  相似文献   

8.
Degraded gypsic soils in the centre of Spain can be rehabilitated with organic amendment and shrub revegetation. Erosion has been measured on plots of 2×0·5 m2 under simulated rainfall of 70 mm h−1 and a kinetic energy of 18 J mm−1 m−2. Samples of water runoff and sediments were studied in the summer of the years 2002 and 2003. The presence of shrub Atriplex halimus (Chenonodiaceae) significantly reduces runoff from 16·9 to 6·7 ml m−2 min−1 and sediments from 0·16 to 0·02 g m−2 min−1. When sewage sludge is applied the differences among plots with and without bushes disappear. Although both treatments independently applied are efficient as erosion control measures, the combined use of revegetation and organic amendment allows a reduced dose of sewage sludge with the same effect on erosion. A low dose of sludge is desirable in view of the accumulation of toxic chemicals. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
冀北土石山区坡面尺度径流特征及其影响因素   总被引:5,自引:1,他引:4  
为了揭示区域水土流失规律,以冀北土石山区坡面径流小区定位观测资料为基础,对坡面尺度产流特征与地形因子、降雨因子、植被覆盖、水土保持工程措施等主要影响因素的关系进行分析,拟为该区水土流失防治及生态建设提供科学参考。研究结果表明:坡面径流小区的年径流量随坡度的增加出现先增后减的趋势,坡度临界值在11°00′左右;坡面径流小区的年径流量随坡长的增加而增加;不同坡度和不同坡长条件下,径流量与有效降雨量及平均降雨强度都成正相关,但与有效降雨量的相关系数要大于平均降雨强度的相关系数且在0.01水平上显著,与平均降雨强度的相关系数不显著;坡面径流小区的年径流量随着植被覆盖度的增加而减少,但覆盖度为60%和90%的草地径流小区的年径流量相差甚小,说明在水土保持治理过程中存在着临界植被覆盖度;水平阶、鱼鳞坑、梯田等水土保持工程措施通过改变下垫面状况,可以有效拦蓄径流,从而削弱降雨特征对径流的影响。  相似文献   

10.
植被和降雨是水土流失的关键因素,探究二者对水土流失的影响对开展水土保持具有重要意义。该研究基于鹰潭红壤生态试验站5种植被结构类型的径流小区2016-2018年93次降雨、径流、泥沙观测资料以及各小区植被结构参数,利用自组织映射(self-organizing maps,SOM)方法,根据雨量、历时、60 min最大雨强、平均雨强、降雨集中性等特征指标划分降雨模式,研究了不同降雨模式和植被结构类型的水土流失特征,并采用冗余分析(RDA)定量研究降雨与植被对林下水土流失的影响。结果表明,SOM方法能客观识别红壤区4种典型侵蚀降雨模式,R_Ⅲ模式(短历时、大雨强、雨量集中)是造成水土流失的主要降雨模式,R_Ⅳ模式(多雨量、大雨强、长历时)最具侵蚀性破坏力;植被结构类型显著影响水土流失,水土保持功能从大到小依次为:灌草混交林、草地、低灌林、乔木林、高灌林。RDA分析表明,降雨模式与植被结构类型能够改变降雨、植被对水土流失的影响,随着降雨模式由弱到强转变,植被的水土保持功能逐渐减小,降雨影响增强,水土流失由植被主控演变为平衡控制、降雨主控;随着植被结构类型由近地表植被向灌木、乔木的变化,植被的调节能力减小,降雨影响增强。  相似文献   

11.
Revegetation of road cuts and fills is intended to stabilize those drastically disturbed areas so that sediment is not transported to adjacent waterways. Sediment has resulted in water quality degradation, an extremely critical issue in the Lake Tahoe Basin. Many revegetation efforts in this semiarid, subalpine environment have resulted in low levels of plant cover, thus failing to meet project goals. Further, no adequate physical method of assessing project effectiveness has been developed, relative to runoff or sediment movement. This paper describes the use of a portable rainfall simulator (RS) to conduct a preliminary assessment of the effectiveness of a variety of erosion‐control treatments and treatment effects on hydrologic parameters and erosion. The particular goal of this paper is to determine whether the RS method can measure revegetation treatment effects on infiltration and erosion. The RS‐plot studies were used to determine slope, cover (mulch and vegetation) and surface roughness effects on infiltration, runoff and erosion rates at several roadcuts across the basin. A rainfall rate of ≈60 mm h−1, approximating the 100‐yr, 15‐min design storm, was applied over replicated 0·64 m2 plots in each treatment type and over bare‐soil plots for comparison. Simulated rainfall had a mean drop size of ≈2·1 mm and approximately 70% of ‘natural’ kinetic energy. Measured parameters included time to runoff, infiltration, runoff/infiltration rate, sediment discharge rate and average sediment concentration as well as analysis of total Kjeldahl nitrogen (TKN) and dissolved phosphorus (TDP) from filtered (0·45 μm) runoff samples. Runoff rates, sediment concentrations and yields were greater from volcanic soils as compared to that from granitic soils for nearly all cover conditions. For example, bare soil sediment yields from volcanic soils ranged from 2–12 as compared to 0·3–3 g m−2 mm−1 for granitic soils. Pine‐needle mulch cover treatments substantially reduced sediment yields from all plots. Plot microtopography or roughness and cross‐slope had no effect on sediment concentrations in runoff or sediment yield. RS measurements showed discernible differences in runoff, infiltration, and sediment yields between treatments. Runoff nutrient concentrations were not distinguishable from that in the rainwater used. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
研究了人工模拟降雨条件下不同污泥施用量对赤红壤坡地上水土流失特征的影响。结果表明:污泥撒施后的前期(1d和18d)径流中,各施用量处理的径流颗粒物浓度及流失量均达到峰值,撒施60t/hm2对应峰值分别为4517.0mg/L和79.3g/m2,为撒施120t/hm2对应峰值的83.8%和96.7%,此后撒施60t/hm2径流颗粒物浓度和流失量不同程度高出撒施120t/hm2处理,是同期对应值1.1~4.1倍。模拟试验期内,撒施60t/hm2径流量是撒施120t/hm2同期指标的1.2~2.3倍,撒施污泥用量越低,径流累积产生量和颗粒相(颗粒物和悬浮物)累积流失量越高,但污泥用量对穴施上述指标并无明显影响。  相似文献   

13.
Soil-surface seals and crusts resulting from aggregate breakdown reduce the soil infiltration rate and may induce erosion by increasing runoff. The cultivated loess areas of northwestern Europe are particularly prone to these processes.Surface samples of ten tilled silty loamy loess soils, ranging in clay content from 120 to 350 g kg−1 and in organic carbon from 10 to 20 g kg−1, were packed into 0.5 m2 plots with 5% slopes and subjected to simulated rainfall applied at 30 mm h−1. The 120 minutes rainfall events were applied to initially field-moist soil, air-dried soil and rewetted soil to investigate the effect of soil moisture content prior to rainfall. Runoff and eroded sediments were collected at 5 minutes intervals. Aggregate stability of the soils was assessed by measuring particle-size distribution after different treatments.All soils formed seals. Runoff rates were between 70 and 90% by the end of the rainfall event for field-moist plots. There were large differences between soil runoff rates for the air-dried and rewetted plots. Interrill erosion was associated with runoff, and sediment concentration in runoff readily reached a steady-state value. Measurements of aggregate stability for various treatments were in good agreement with sealing, runoff and erosion responses to rainfall. Runoff and erosion were lower for air-dried plots than for field-moist plots, and were either intermediate or lowest for rewetted plots, depending on soil characteristics. Soils with a high clay content had the lowest erosion rate when they were rewetted, whereas the soil with a high organic-carbon content had the lowest erosion rate in air-dry conditions. The results indicate the complexity of the effect of initial moisture content, and the interactions between soil properties and climate.  相似文献   

14.
黄丘一区坡面水土流失规律研究   总被引:7,自引:0,他引:7  
<正> 为了探索黄丘—区坡面水土流失规律,寻求水土流失与其影响因素之间的关系,为合理利用水沙资源、水土保持规划与措施设计提供科学依据,我们进行了该项试验研究。 一、径流场布设概况 1954~1958年,我们在绥德辛店沟布设径流小区,由9个逐步发展到66个;1958~1961年,径流小区缩减为8个;1962~1964年,在韭园沟内王茂庄大咀峁布设自然地貌全坡长径  相似文献   

15.
雨强和植被覆盖度对红壤坡面产流产沙的影响   总被引:2,自引:3,他引:2  
为探究雨强和植被覆盖度对花岗岩红壤坡面产流产沙的影响,通过室内人工模拟降雨试验,分析了不同雨强(0.5,1.0,1.5 mm/min)和植被覆盖度(0,20%,40%,60%)下坡面侵蚀的产流、产沙规律及相关关系。结果表明:(1)同一雨强下,初始产流时间随植被覆盖度增加而延迟,并随雨强增大而提前,雨强越大,产流时间提前越明显;(2)各坡面径流率、侵蚀率随植被覆盖度增加而减小,且植被覆盖度越高,径流率和侵蚀率波动范围越小,侵蚀过程越稳定;(3)有植被覆盖的坡面,产沙主要以0.25 mm的水稳性团聚体为主,侵蚀泥沙中0.25 mm水稳性团聚体比重随雨强增大而增加,且增加的幅度随覆盖度的提高而减小;(4)雨强、植被覆盖度均与产流时间、径流率、侵蚀率呈现极显著相关关系(P0.01),且坡面产流过程与雨强变化的相关性大于其与植被覆盖度变化的相关性,坡面产沙过程与植被覆盖度变化的相关性大于其与雨强变化的相关性,不同雨强下植被覆盖坡面累积径流量和累积产沙量关系符合幂函数模型(R~20.98)。研究结果可为南方红壤丘陵区水土流失治理与生态恢复提供科学参考。  相似文献   

16.
《CATENA》2007,69(2-3):177-185
Land preparation for mechanisation in vineyards of the Anoia–Alt Penedès region, NE Spain, has required major soil movements, which has enormous environmental implications not only due to changes in the landscape morphology but also due to soil degradation. The resulting cultivated soils are very poor in organic matter and highly susceptible to erosion, which reduces the possibilities of water intake as most of the rain is lost as runoff. In order to improve soil conditions, the application of organic wastes has been generalised in the area, not only before plantation but also every 3–4 years at rates of 30–50 Mg ha 1 mixed in the upper 30 cm.These organic materials are important sources of nutrients (N and P) and other elements, which could reduce further fertilisation cost. However, due to the high susceptibility to sealing of these soils, erosion rates are relatively high, so a higher nutrient concentration on the soil surface increases non-point pollution sources due to runoff.The aim of this study is to analyse the influence of applied composted cattle manure on infiltration, runoff and soil losses and on nutrients transported by runoff in vineyards of the Alt Penedès–Anoia region, NE Spain. In the two plots selected for the analysis, composted cattle manure had been applied in alternate rows 1 year previous to the study. In each plot soil surface samples (0–25 cm) were taken and compared to those of plots without manure application. The study was carried out at laboratory scale using simulated rainfall. Infiltration rates were calculated from the difference between rainfall intensity and runoff rates, and the sediment and total nitrogen and phosphorus were measured for each simulation. In addition, the influence of compost was investigated in the field under natural rainfall conditions by analysing the nutrient concentration in runoff samples collected in the field (in the same plots) after seven rainfall events, which amount different total precipitation and had different erosive character.Compost application increases infiltration rates by up to 26% and also increases the time when runoff starts. Sediment concentration in runoff was lower in treated (13.4 on average mg L 1) than in untreated soils (ranging from 16.8 to 23.4 mg L 1). However, the higher nutrient concentration in soils produces a higher mobilisation of N (7–17 mg L 1 in untreated soils and 20–26 mg L 1 in treated soils) and P (6–7 mg L 1 in untreated soils and 13–19 mg L 1 in treated soils). A major part of the P mobilised was attached to soil particles (about 90% on average) and only 10% was dissolved. Under natural conditions, higher nutrient concentrations were always recorded in treated vs. untreated soils in both plots, and the total amount of N and P mobilised by runoff was higher in treated soils, although without significant differences. Nutrient concentrations in runoff depend on rainfall erosivity but the average value in treated soils was twice that in untreated soils for both plots.  相似文献   

17.
The Brazilian Cerrado has been converted to farmland, and there is little evidence that this expansion will decrease, mainly because agriculture is the country’s main economic sector. However, the impacts of intense modification of land use and land cover on surface runoff and soil erosion are still poorly understood in this region. Here, we assessed surface runoff and soil loss in a woodland Cerrado area under a former pasture area, which was abandoned and has undergone a natural regeneration process for 7 years (RC). Its results were compared with that found in an undisturbed area of woodland Cerrado (CE), 40-month-old eucalyptus (3.0 × 1.8 m) (EU), and pasture under rotational grazing (PA). The study was conducted on Red Acrisol located in the Brazilian Cerrado. We performed rainfall simulations on a plot of 0.7 m2 and using three constant rainfall intensities of 60, 90, and 120 mm h−1 for 1 h. For each rainfall intensity, we carried out four repetitions using different plots in each treatment, i.e. 12 plots per treatment studied and 48 plots in total. We noted that the soil physical properties were improved in RC and, consequently, water infiltration and soil erosion control; RC presented surface runoff and soil loss different from EU and PA (α = 0.05). The macroporosity and soil bulk density affected surface runoff in RC and PA because the RC was used as pasture and is currently regenerating back to the cerrado vegetation. As the rainfall intensity increased, EU became more similar to PA, which showed the highest surface runoff and soil loss. Our findings indicate that natural regeneration processes (pasture to the cerrado vegetation) tend to improve the soil ecosystem services, improving infiltration and reducing surface runoff and soil erosion.  相似文献   

18.
地表糙度是影响土壤侵蚀的因素之一。为进一步明确地表糙度的侵蚀效应,通过野外模拟降雨试验,研究了地表糙度在降雨前后、不同坡度、不同植被覆盖度、不同空间坡段的动态变化特征,探讨了地表糙度变化规律及其影响因素。结果表明:在降雨过程中,土地利用类型、雨强、降雨顺序、坡度和植被覆盖度都会对糙度产生影响。随着降雨场次的增加,地表糙度逐渐增大;在试验范围内,坡度越大,地表糙度增加幅度越大,增加趋势越明显;植被覆盖度越大,地表糙度变化越小。坡面的各个坡段变化情况整体遵循上述规律,但在某些坡段内出现空间变异性,导致有些坡段可以拦蓄径流泥沙,消减侵蚀,而有些坡段可以增加潜在的冲刷,加剧侵蚀;多个因子以及因子间的交互效应成为影响糙度变化的主要因素。研究结果为揭示地表糙度的侵蚀特征提供了一定的理论依据,同时也为黄土高原水土流失治理奠定理论基础。  相似文献   

19.
北京山区灌草坡面水土流失特征及其影响因素   总被引:5,自引:0,他引:5  
为了揭示区域坡面水土流失规律,以北京山区灌草坡面径流小区定位观测资料为基础,对坡面径流量和侵蚀量与降雨、植被盖度、坡度等主要影响因子进行偏相关分析.结果表明:1)在一定降雨和下垫面条件下,径流量的主要影响因子是降雨量和最大30 min降雨强度,侵蚀量的主要影响因子是径流量、植被覆盖度和最大30 min降雨强度;2)就降雨因子而言,影响径流量的关键性降雨因子是降雨量、降雨历时和最大30 min降雨强度,而影响侵蚀量的关键性降雨因子是最大30 min降雨强度;3)径流量和侵蚀量与植被盖度之间表现出显著的负相关关系,即植被盖度越大,径流量和侵蚀量越小;4)不同坡度等级的径流量和侵蚀量差异显著,随着坡度的增加,径流量和侵蚀量呈现出先增加后减小的趋势;5)灌草坡面的水土保持作用显著,重视和发展植被恢复与重建工作,对北京山区生态环境改善和水土流失治理具有重要的意义.  相似文献   

20.
This research aims to improve erosion control practice in the Loess Plateau, by studying the surface erosion processes, including splash, sheet/interrill and rill erosion in four contrasting soils under high rainfall intensity (120 mm h−1) with three-scale indoor artificial experiments. Four contrasting soils as sandy loam, sandy clay loam, clay loam and loamy clay were collected from different parts of the Loess Plateau. The results showed that sediment load was significantly impacted by soil properties in all three sub-processes. Splash rate (4.0–21.6 g m−2∙min−1) was highest in sandy loam from the north part of the Loess Plateau and showed a negative power relation with the mean weight diameter of aggregates after 20 min of rainfall duration. The average sediment load by sheet/interrill erosion (6.94–42.86 g m−2∙min−1) was highest in clay loam from middle part of the Loess Plateau, and the stable sediment load after 20 min showed a positive power relation with the silt content in soil. The average sediment load increased dramatically by rill and interrill erosion (21.03–432.16 g m−2∙min−1), which was highest in loamy clay from south part of the Loess Plateau. The average sediment load after the occurrence of rill showed a positive power relation with clay content and a negative power relation with soil organic matter content. The impacts of slope gradient on the runoff rate and sediment load also changed with soil properties. The critical factors varied for different processes, which were the aggregate size for splash erosion, the content of silt particles and slope gradient for sheet/interrill erosion, and the content of clay particles, soil organic matter and slope gradient for rill erosion. Based on the results of the experiments, specific erosion control practices were proposed by targeting certain erosion processes in areas with different soil texture and different distribution of slope gradient. The findings from this study should support the improvement of erosion prediction and cropland management in different regions of the Loess Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号