共查询到14条相似文献,搜索用时 15 毫秒
1.
We monitored two Pinus taeda L. genotypes, planted in 170 L lysimeters, subjected to different combinations of fertilization and logging residue (LR) incorporation for 1 year. The objectives were to elucidate how soil amendments modified soil biological properties and belowground C cycling, and secondly, to determine if planting of contrasting genotypes have a detectable impact on total soil CO 2 efflux ( FS). LR incorporation resulted in decreased bulk density, increased total soil porosity, and increased total soil C and N contained within the fine-soil fraction. For most of the experiment we found no consistent differences between genotypes; however, on the final two sampling dates a pattern emerged of one clone showing greater FS. If this pattern continues or becomes stronger with increased occupation of soil by roots it may have an influence on total site net C exchange. Increased C loss by way of FS and soil leaching made up approximately 7% of total C incorporated as LR. Conservative estimates using a constant rate of decomposition showed that it would take a minimum of 15 years to fully decompose the incorporated LR. Our data suggest that moderate rates of LR incorporation following harvesting over multiple rotations could increase SOM without negatively impacting plant growth, which could increase soil C sequestration. 相似文献
2.
Storms can turn a great proportion of forests’ assimilation capacity into dead organic matter because of windthrow and thus its role as a carbon sink will be diminished for some time. However, little is known about the magnitude or extent to which storms affect carbon efflux. We compared soil CO 2 fluxes in wind-thrown forest stands with different time periods since a storm event, and with different management practices (deadwood cleared or left on-site). This study examined changes in soil CO 2 efflux in two windthrow areas in north-eastern Estonia and one area in north-western Latvia, which experienced severe wind storms in the summers of 2001, 2002 and 1967, respectively. We measured soil CO 2 fluxes in stands formerly dominated by Norway spruce ( Picea abies L. Karst.) with total and partial canopy destruction (all trees or roughly half of the trees in stand damaged by storm), in harvested areas (material removed after the wind storm) and in control areas (no damage by wind). Removal of wind-damaged material decreased instantaneous CO 2 flux from the soil surface. The highest instantaneous fluxes were measured in areas with total and partial canopy destruction (0.67 g CO 2 m −2 h −1 in both cases) compared with fluxes in the control areas (0.51 g CO 2 m −2 h −1), in the new storm-damaged areas where the material was removed (0.57 g CO 2 m −2 h −1) and in the old storm-damaged area where wood was left on site (0.55 g CO 2 m −2 h −1). The only factor affecting soil CO 2 flux was location of the measuring collar (plastic collar with diameter 100 mm, height 50 mm) - either on undamaged forest ground or on the uprooted tree pit, where the mineral soil was exposed after disturbance. New wind-thrown stands where residues are left on site would most likely turn to sources of CO 2 for several years until forest regeneration reaches to substantial assimilation rates. New wind-thrown stands where residues are left on site would most likely tend to have elevated CO 2 fluxes for several years until forest regeneration reaches to substantial assimilation rates. However, forest managers might be concerned about the amounts of CO 2 immediately released into the atmosphere if the harvested logs are burned. 相似文献
3.
Moso bamboo plantations ( Phyllostachys pubescens) are one of the most important forest types in southern China, but there is little information on the effects of their establishment and silvicultural practices on soil CO 2 efflux. The objectives of this study were to evaluate the effect of land use change from a natural broadleaf evergreen forest to Moso bamboo plantations and their management practices on soil CO 2 efflux in a subtropical region of China using static closed chamber method. Regardless of the land uses or management practices, the effluxes over a 12-month period had a seasonal pattern, with the maximum effluxes observed in summer and the minimum in winter. Whereas there was no significant difference in the total annual soil CO 2 efflux between the natural broadleaf evergreen forest (BL) and the conventionally managed bamboo forests (CM), soil CO 2 efflux in the intensively managed bamboo forest (IM) was significantly higher. Soil temperature was the most important environmental factor affecting soil CO 2 efflux rates for all three land uses. Soil moisture also had a significant positive correlation with soil CO 2 efflux rates. Soil temperature and moisture had greater influence on soil CO 2 efflux rate in the IM than the CM and BL forests. Soil dissolved organic C had a positive correlation with soil CO 2 efflux rate in the CM, but had no significant correlation with that in the IM or the BL forests. Our study for the first time demonstrated that conversion of the natural subtropical broadleaf evergreen forest to Moso bamboo does not increase soil CO 2 efflux. However, when bamboo forests are under intensive management with regular tillage, fertiliser application and weeding, significantly more soil CO 2 emission occurs. Therefore, best management practices should be developed to reduce soil CO 2 efflux in Moso bamboo plantations in the subtropical regions of China. 相似文献
4.
This study examined the effect of tree species identity and diversity on soil respiration in a 3-year-old tropical tree biodiversity plantation in Central Panamá. We hypothesized that tree pairs in mixed-species plots would have higher soil respiration rates than those in monoculture plots as a result of increased primary productivity and complementarity leading to greater root and microbial biomass and soil respiration. In addition to soil respiration, we measured potential controls including root, tree, and microbial biomass, soil moisture, surface temperature, bulk density. Over the course of the wet season, soil respiration decreased from the June highs (7.2 ± 3.5 μmol CO 2/(m 2 s −1) to a low of 2.3 ± 1.9 μmol CO 2/(m 2 s −1) in the last 2 weeks of October. The lowest rates of soil respiration were at the peak of the dry season (1.0 ± 0.7 μmol CO 2/(m 2 s −1)). Contrary to our hypothesis, soil respiration was 19–31% higher in monoculture than in pairs and plots with higher diversity in the dry and rainy seasons. Although tree biomass was significantly higher in pairs and plots with higher diversity, there were no significant differences in either root or microbial biomass between monoculture and two-species pairs. Path analyses allow the comparison of different pathways relating soil respiration to either biotic or abiotic controls factors. The path linking crown volume to soil temperature then respiration has the highest correlation, with a value of 0.560, suggesting that canopy controls on soil climate may drive soil respiration. 相似文献
5.
We conducted a 1-year greenhouse experiment to assess the impact of nutrient manipulations on seedling growth, biomass partitioning, and leaf gas exchange between two fast growing Pinus taeda clones that differed in growth efficiency. After 1 year we observed significant treatment and treatment by clone effects on growth, biomass partitioning, and gas exchange parameters. Fertilization increased total seedling biomass 18% primarily through an increase in foliage and coarse-roots. Clones did not differ in total seedling biomass, however, clone 85 produced more stem than clone 93 leading to 37% greater stem:leaf, while clone 93 maintained more branch biomass. The logging residue treatment increased stem:leaf by 30%, but had no effect on total biomass or partitioning. Differences in leaf morphology resulted in significantly greater canopy leaf area in clone 93 than clone 85. Increased foliar N concentration from fertilization had only minor effects on specific photosynthesis under saturating light ( ASat), but lowered stomatal conductance ( gs), transpiration ( E), and internal to external CO 2 concentration ratio ( Ci/ Ca) as well as improved water use efficiency ( WUE) independently of genotype. When gas exchange data was scaled to the canopy level both genotypes achieved similar canopy level CO 2 assimilation rates, but our data suggests they did this by different means. Although we did see a small effect of nutrient limitations in total canopy photosynthesis under saturating light ( ACanopy), ASat, and total leaf area ( TLA), our foliar N concentration ([N]) indicated that our level of logging residue incorporation did not cause [N] to decrease below sufficiency limits. From a practical standpoint, a better understanding of strategies for capturing and partition C may lead to better selection of clonal material, thereby, optimizing productivity. 相似文献
6.
Stone pine ( Pinus pinea L.) stands have been usually managed as even-aged stands. Main objectives in management combine two main commercial productions, timber and pine nuts with other social aspects: soil protection, recreational use and biodiversity conservation. Multifunctional management, together with the occurrence of successive events affecting regeneration have oriented managers to propose a management schedule based on the establishment and preservation of a low-stocking multi-aged complex structure on favourable locations. Despite the recent effort on modelling growth and yield on even-aged stands of stone pine, no studies focusing on modelling dynamics for uneven-aged stands have yet been developed up to present.In this study, a proposal is presented for adapting and calibrating an existing tree-level model, originally developed for even-aged stands of stone pine (model PINEA2), to multi-aged complex stands. Data from four multi-aged trials and 61 plots from the National Forest Inventory were used to adapt the whole set of functions included in the original model. In our study, four different methods have been proposed to adapt the original equations: (1) direct validation and re-parameterization; (2) size class modelling; (3) refit of functions after removing typical even-aged covariates; and (4) multilevel calibration. Adaptation is based on assuming that a multi-aged stand of stone pine can be seen as the sum of independent, smaller, even-aged groups. The low densities of the stands, the early liberation of the most vigorous trees in all size classes and the major importance of root-level competition for water in Mediterranean forests are the main factors explaining these particular dynamics. Results show the suitability of the proposed method, attaining unbiased estimates with a degree of accuracy similar to that achieved in applying the original model to even-aged stands. The adapted model (PINEA_IRR) constitutes a flexible tool for the management and maintenance of stone pine stands, covering a wide range of within stand structural complexity, including forests in transition. 相似文献
7.
The amount and nutrient content of the above-ground litterfall was followed for 9 years in an unfertilized, PKMgB and NPKMgB fertilized Scots pine stand growing on a drained ombrotrophic bog in eastern Finland. The annual litterfall on unfertilized plots was 1995 kg ha −1, of which needles accounted for 74%. The effective temperature sum (threshold value + 5°C) explained 99% of the annual variation in the amount of needle litterfall when the data from one atypical year were excluded from the analysis. Nutrient concentrations were, except for Fe, higher in needle litter than in the other litterfall fractions. Nitrogen, P and K concentrations were low in autumn, and those of Ca and Mn high, possibly owing to variation in the mobility of elements during senescence. The annual litterfall input of N to the soil was 12.4 kg ha −1, and the corresponding values for P and K were 0.08 kg ha −1 and 1.81 kg ha −1, respectively. Fertilization reduced needle litterfall in the first year after treatment, but had no effect thereafter. The amount of other litterfall fractions was not affected by fertilization in any of the 9 years of the study. Nitrogen, P, K and B concentrations increased in the needle litter after both fertilization treatments. The results indicate long-term cycling of fertilizer nutrients on the site. 相似文献
8.
Variability of soil CO 2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO 2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees ( Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO 2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO 2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO 2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration. 相似文献
9.
The effects of three postharvest organic matter removal treatments on fermentation-humus (FH) layer and soil characteristics were compared in replicated trials in four second rotation New Zealand Pinus radiata plantation forests, planted 8–16 years prior to sampling. All sites were sampled in early 2002 and 2003. Increasing organic matter removal significantly decreased the mass of the FH layer in the treatment plots, the moisture content in the FH layer and mineral soil, the concentration of carbon in the FH layer and mineral soil, the pool of carbon stored in the FH layer, the concentration of nitrogen in the mineral soil and the pool of nitrogen stored in the FH layer. Mineral soil pH was significantly increased with increasing organic matter removal. The persistence of the significant differences in the FH layer and mineral soil characteristics strongly suggested that variations in organic matter removal have long-term effects on forest floor properties, and significantly influences carbon storage over the life of the rotation. 相似文献
10.
The effects of nitrogenous fertilisation on litter fall, FH layer and soil characteristics were investigated in replicated trials in six second rotation New Zealand Pinus radiata plantation forests. Four trial sites also incorporated three different post-harvest organic matter removal treatments. All sites were sampled in early 2002 and 2003. Fertilisation significantly increased the nitrogen content and decreased the carbon:nitrogen ratio of the litter fall. Fertilisation significantly increased the mass of the FH layer in the treatment plots, moisture content in the FH layer, the concentration of nitrogen in the FH layer and the pool of carbon and nitrogen stored in the FH layer. Fertilisation significantly increased the nitrogen concentration of the mineral soil, and decreased the mineral soil carbon:nitrogen ratio and pH. Several significant site × fertilisation interaction terms indicated that variations in the fertilisation regimes and site characteristics substantially influenced the effects of fertilisation. Fertilisation did not significantly decrease the relative differences between the organic matter removal treatments. The significant differences in the litter fall, FH layer and mineral soil characteristics strongly suggest that nitrogenous fertilisation has the capacity to significantly alter the forest floor environment, and may be able to increase carbon storage over the life of the rotation. 相似文献
11.
Soil surface CO 2 flux ( Sflux) is the second largest terrestrial ecosystem carbon flux, and may be affected by forest harvest. The effects of clearcutting on Sflux have been studied, but little is known about the effect of alternative harvesting methods such as selective tree harvest on Sflux. We measured Sflux before and after (i) the creation of forest canopy gaps (simulating group tree selection harvests) and (ii) mechanized winter harvest but no tree removal (simulating ground disturbance associated with logging). The experiment was carried out in a sugar maple dominated forest in the Flambeau River State Forest, Wisconsin. Pre-treatment measurements of soil moisture, temperature and Sflux were measured throughout the growing season of 2006. In January–February 2007, a harvester created the canopy gaps (200–380 m 2). The mechanization treatment consisted of the harvester traveling through the plots for a similar amount of time as the gap plots, but no trees were cut. Soil moisture and temperature and Sflux were measured throughout the growing season for 1 year prior to harvest and for 2 years after harvest. Soil moisture and temperature were significantly greater in the gap than mechanized and control treatments. Instantaneous Sflux was positively correlated to soil moisture and soil temperature at 2 and 10 cm, but temperature at 10 cm was the single best predictor. Annual Sflux was not significantly different among treatments prior to winter 2007 harvest, and was not significantly different among treatments after harvest. Annual (+1 std. err.) Sflux averaged 967 + 72, 1011 + 72, and 1012 + 72 g C m −2 year −1 in the control, mechanized and gap treatments, respectively, for the 2-year post-treatment period. The results from this study suggest selective group tree harvest significantly increases soil moisture and temperature but does not significantly influence Sflux. 相似文献
12.
The sustainability of plantation forests is closely dependent on soil nitrogen availability in short-rotation forests established on low-fertility soils. Planting an understorey of nitrogen-fixing trees might be an attractive option for maintaining the N fertility of soils. The development of mono-specific stands of Acacia mangium (100A:0E) and Eucalyptus grandis (0A:100E) was compared with mixed-species plantations, where A. mangium was planted in a mixture at a density of 50% of that of E. grandis (50A:100E). N 2 fixation by A. mangium was quantified in 100A:0E and 50A:100E at age 18 and 30 months by the 15N natural abundance method and in 50A:100E at age 30 months by the 15N dilution method. The consistency of results obtained by isotopic methods was checked against observations of nodulation, Specific Acetylene Reduction Activity (SARA), as well as the dynamics of N accumulation within both species. The different tree components (leaves, branches, stems, stumps, coarse roots, medium-sized roots and fine roots) were sampled on 5–10 trees per species for each age. Litter fall was assessed up to 30 months after planting and used to estimate fine root mortality. Higher N concentrations in A. mangium tree components than in E. grandis might be a result of N 2 fixation. However, no evidence of N transfer from A. mangium to E. grandis was found. SARA values were not significantly different in 100A:0E and 50A:100E but the biomass of nodules was 20–30 times higher in 100A:0E than in 50A:100E. At age 18 months, higher δ15N values found in A. mangium tree components than in E. grandis components prevented reliable estimations of the percentage of N derived from atmospheric fixation (%Ndfa). At age 30 months, %Ndfa estimated by natural abundance and by 15N dilution amounted to 10–20 and 60%, respectively. The amount of N derived from N 2 fixation in the standing biomass was estimated at 62 kg N ha −1 in 100A:0E and 3 kg N ha −1 in 50A:100E by the 15N natural abundance method, and 16 kg N ha −1 in 50A:100E by the 15N dilution method. The total amount of atmospheric N 2 fixed since planting (including fine root mortality and litter fall) was estimated at 66 kg N ha −1 in 100A:0E and 7 kg N ha −1 in 50A:100E by the 15N natural abundance method, and 31 kg N ha −1 in 50A:100E by the 15N dilution method. The most reliable estimation of N 2 fixation was likely to be achieved using the 15N dilution method and sampling the whole plant. 相似文献
13.
[目的]为科学评价皆伐、火烧对中亚热带常绿阔叶林不同深度土壤有机碳吸存的影响, [方法]以福建省中亚热带36年生米槠人促更新林为研究对象,采用非散射红外CO 2浓度探测仪和Licor-8100土壤碳通量系统,并结合Fick扩散法计算并分析0~80 cm不同深度土层CO 2通量的日动态特征。 [结果]表明:(1)火烧地(RB)和皆伐地(RR)不同土层CO 2浓度均出现明显下降,其中,对照(CK)地土壤CO 2浓度值(0~80 cm)分别是RB和RR的1.9、1.3倍;(2)各试验地土壤CO 2通量(0~80 cm)表现为RB(1.99 μmol·m 2·s -1)>RR(0.99 μmol·m 2·s -1)>CK(0.96 μmol·m 2·s -1),除2040 cm土层外,RB土壤各层CO 2通量均显著高于RR和CK( P<0.05);(3)试验地不同土层CO 2通量(0~80 cm)日变化幅度表现为RB>RR>CK,其中,RB土壤各层的变化幅度均显著大于RR和CK( P<0.05),而RR与CK间的差异表现在0~5、10~20、20~40 cm土层(P<0.05);(4)拟合分析表明,各试验地不同深度土壤CO 2通量与土壤温度呈显著相关,且 RB的决定系数( R2)显著高于RR和CK;不同试验地各土层温度、含水量的双因素模型拟合效果均优于单因素模型; Q10值显示,皆伐、火烧后初期土壤各层的温度敏感性得到明显提高。 相似文献
14.
The dynamics of nutrients were compared over three years in a clonal Eucalyptus plantation and in a native savanna in Congo. This paper focuses on the changes in the chemical composition of solutions during their transfer through the soil in both ecosystems. The main characteristics of the soil (Ferralic Arenosol) were similar in the two ecosystems, and the low inter-stand variability allowed reliable comparisons of the influence of afforestation on the soil solution chemistry. Rainfall amounted to about 1400 mm per year during the experimental period. In both ecosystems, an enrichment was observed for most elements during the transfer of solutions through the foliage, but N uptake occurred. Concentrations of H+ and dissolved organic carbon (DOC) in solutions increased through the litter layer in both stands. In the Eucalyptus ecosystem, a quick uptake of nutrients by a dense root mat inside the forest floor likely explained why the concentrations of gravitational waters were not enhanced markedly for ‘base cations’, despite the mineralization of high amounts of nutrients during the litter decay. Soil solutions were collected by zero tension lysimeters (ZTL) at a depth of 15 cm, but these lysimeters were inefficient at collecting gravitational solutions beyond this depth. By contrast, tension lysimeters (TL) maintained at a suction of −60 kPa, collected soil solutions at the depths of 15, 50 cm, 1, 2, 3, 4 m in both ecosystems and 6 m in the plantation. In the topsoil of both stands, the nutrient concentration decreased sharply when the time of residence of solutions increased. This pattern highlighted the crucial role of the inputs by throughfall, stemflow and mineralization of the litter layer for the nutrition of these stands. A combination of high nutrient requirements of the stands and low availability of exchangeable cations in this highly weathered soil might account for the extremely low nutrient concentrations in solutions collected by TL, regardless of the depth. 相似文献
|