首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了无损和高效地检测作物叶绿素含量,设计了一种采用主动光源的双波长便携式叶绿素含量检测装置,获取作物在红色范围660 nm附近的光谱深吸收和近红外850 nm附近的光谱强反射特征。采集作物叶片的反射光信号,经转换、调制和放大后,利用灰度标准板拟合反射率,660 nm和850 nm拟合的校正模型R~2分别为0. 993、0. 979。光源稳定性与抗干扰性测试结果显示,660 nm和850 nm光源的稳定性均方差分别为0. 007 9和0. 004 4,误差率分别为2. 378%和1. 223%;抗干扰性的均方差分别为0. 009 9和0. 018 7,误差率分别为2. 000%和4. 360%。通过叶绿素浸提溶液配比,设计了叶绿素梯度与双波长反射率的相关性试验,结果显示,660 nm和850 nm与叶绿素浓度相关系数分别为-0. 919和0. 272。660 nm附近叶绿素对光谱有深吸收的特征,将其作为主要测试波长;850 nm附近是叶片结构和以环境光学响应为主,反射光与叶绿素相关性不强,将其作为检测的参比波长。以田间玉米苗期植株为试验对象,利用双波长采集作物反射率,计算归一化植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)和土壤调整型植被指数(SAVI),其与SPAD仪器测量值的相关系数r分别为0. 892、0. 846、0. 867、0. 883。基于NDVI、DVI、RVI和SAVI建立SPAD多元线性回归模型,其决定系数R~2为0. 831。利用该装置提供的模型嵌入功能导入诊断模型可直接输出叶绿素诊断结果,为作物叶绿素含量快速检测提供支持。  相似文献   

2.
基于叶绿素在可见近红外波段的光谱吸收特征,以660nm红光作为叶绿素相对含量的检测依据,以940nm近红外光作为参比波长,介绍叶绿素相对含量测量原理,开发了一款便携式叶绿素诊断仪。该仪器由光源电路、光电接收电路(光电池接收面积为4mm×4mm)、单片机及外围电路等组成。经测试,红光和红外光在不同光强下,与光电池电压之间呈线性关系,线性拟合R~2为0.999、0.997。通过该仪器测定不同植物叶绿素相对值与经典比色值进行相关性比较,玉米、冬青的叶绿素a含量、叶绿素b含量以及总量与比色值呈极显著相关,R~2分别为0.759、0.750和0.770,0.806、0.771、0.796(p0.01)。测量叶绿素浓度较高的叶片,样机测量值、SPAD—502测量值与比色值分别做相关性比较,得到R2为0.796、0.772。实验表明,该仪器可较精确地测定植物叶绿素相对含量。  相似文献   

3.
苹果叶片氮素含量快速检测模型   总被引:1,自引:0,他引:1  
利用UV-2450型光谱分析仪测量苹果叶片光谱反射率,同时在实验室利用凯氏定氮法测量苹果叶片的氮素质量比,建立了适用于便携式检测仪的苹果叶片氮素含量快速检测模型.研究了苹果叶片光谱特性并进行了光谱反射率与氮素的相关性分析,获得了两个氮素敏感波长652 nm和772 nm.同时,利用分段减量精细采样法,构建了350 ~ 730 nm与740~880 nm波段内所有两两波段形成的归一化植被指数NDVI,并获取了与氮素含量相关性最高的波段组合(859 nm,364 nm)来构建苹果树NDVI.最后建立了基于苹果树NDVI、652 nm处反射率以及772 nm处反射率的偏最小二乘回归模型,建模精度达到0.904 8,均方根误差为0.159 7,检验模型精度达到0.917,均方根误差为0.283 3.  相似文献   

4.
基于SPAD的水稻氮素含量测量指标及模型研究   总被引:1,自引:0,他引:1  
叶绿素相对含量(SPAD)与水稻氮素含量有较好的相关性,但田间叶片的SPAD值测量影响因素较多。本文分析了在不同生长期,不同氮肥胁迫下水稻植株的氮素敏感叶片的叶绿素值的测量影响因素以及随氮素水平变化规律,构建最佳水稻氮素测量指标,并建立叶绿素值与水稻氮素含量检测模型。研究成果可为建立水稻信息专家库及水稻在线施肥系统提供决策依据。  相似文献   

5.
镉胁迫下菊苣叶片原位高光谱响应特征与定量监测研究   总被引:1,自引:0,他引:1  
探究镉胁迫下菊苣叶片高光谱响应特征,以实现基于叶片原位高光谱技术的作物镉胁迫快捷、精准监测。采用室内水培实验,供试品种为"欧洲菊苣"、"美洲菊苣"和"黔育一号",设置0、5、10、25、50、100、200μmol/L共7个镉胁迫梯度,于菊苣苗期测试叶片镉质量比及其原位高光谱反射率。分别利用逐步回归(SWR)、主成分回归(PCR)和偏最小二乘回归(PLS)的统计分析方法对叶片原始光谱(R)及一阶微分光谱(FDR)进行镉质量比预测,确定最佳光谱监测方式和有效波段,提高镉胁迫估测的时效性。此外,为进一步检验上述模型的稳定性,再次布置9个独立菊苣品种镉胁迫光谱验证实验(镉浓度为50μmol/L)。结果表明,镉胁迫显著影响菊苣叶片镉质量比及高光谱反射率变化特征;随镉梯度增加,3个品种菊苣镉含量均显著提升,叶片高光谱反射率在可见光-近红外区(400~1 300 nm)逐步降低,中红外区(1 300~2 400 nm)则未表现出一致性变化规律。全波段光谱分析模型间,以基于FDR光谱的PLS监测模型(FDR-PLS)表现最优,其独立验证集决定系数(R2)、均方根误差(RMSE)和相对分析误差(RPD)分别为0. 92、181. 3 mg/kg和2. 96。根据FDR-PLS模型中各波段无量纲评价指标:变量重要性投影值(VIP),确定菊苣叶片镉质量比有效波长分别为659、725、907、1 026、1 112、1 255、1 630 nm,实现了光谱降维和便捷分析的目的。此后,再次构建基于上述有效波段的菊苣叶片镉质量比FDR-PLS监测模型,其独立验证集R2、RMSE和RPD分别为0. 834、222. 4 mg/kg和2. 41,9个供试品种验证集R2、RMSE和RPD分别为0. 817、13. 0 mg/kg和1. 77,预测效果较为理想,能够满足无损和精准监测需求。  相似文献   

6.
基于反射光谱的苹果叶片叶绿素和含水率预测模型   总被引:4,自引:0,他引:4  
为探索苹果叶片叶绿素含量(质量比)、叶片含水率与反射光谱之间的关系,以华北地区苹果树为研究对象,分别测定了各个关键生长期苹果叶片的光谱反射率、叶绿素含量和叶片含水率。分析光谱反射率与叶绿素含量以及叶片含水率之间相关性发现,在不同生长时期,苹果叶片叶绿素a含量与反射光谱在515~590 nm和688~715 nm两组波段内具有较高的相关性,且果实成熟期数据显示相关度最高(R2=0.6)。在420~500 nm、640~680 nm、740~860 nm 3个波段叶片含水率与反射光谱有较高的相关性,且果实膨大期的叶片含水率在可见光波段的相关系数最大。根据所选敏感波段,分别利用多元线性回归、主成分分析和人工神经元网络建立基于反射光谱的苹果叶片不同生长时期叶绿素和含水率的预测模型。通过对所建立的预测模型进行校验,结果显示,利用主成分分析方法所建立的苹果叶片叶绿素含量预测模型的决定系数最高(R2=0.885 2),校验系数为0.828 9。该模型可以较为准确地预测苹果叶片叶绿素含量。而采用神经元网络所建立苹果叶片含水率预测模型的决定系数R2=0.862,校验系数为0.8375,预测效果最好。  相似文献   

7.
通过分析叶片光谱反射率与其叶绿素含量的相关关系表明,温室番茄叶片的光谱反射率与其叶绿素含量的敏感波段为510~625 nm和690~710 nm,最佳波长为526 nm、609 nm和697 nm.利用最佳波长处的光谱反射率与多种建模方法如多元回归分析MLR(Multilinear Regression)、偏最小二乘回归分析PLSR(Partial Least Square Regression)建立了预测叶片叶绿素含量的模型,建模相关系数很相近,均大于0.740,但是PLSR在一定程度上消除了多重相关性的影响,模型验证时的相关系数(0.768)大于MLR模型(0.740);本研究在NDVI的基础上提出了一个新的光谱指数NDCI,并基于NDCI建立了叶片叶绿素含量的预测模型(Rc=0.753),获得了比较好的预测效果(Rv=0.761),为作物长势检测仪的开发奠定了基础.  相似文献   

8.
刘豪杰  赵毅  文瑶  孙红  李民赞  Zhang Qin 《农业机械学报》2015,46(S1):228-233,245
为了快速无损地检测大田作物冠层叶绿素含量,使用便携式多波段光谱探测仪针对农大8号(G1)、郑单(G2)、先玉(G3)和京农科(G4)4种玉米作物品种,在拔节期采集550、650、766、850 nm波长处太阳光信号和作物冠层反射光信号,用于建立玉米冠层叶绿素含量诊断模型。首先,利用作物冠层650 nm和550 nm波长反射率之间的差值 T D 剔除了土壤背景数据点( T D >0)。然后,组合计算了NDVI、RVI和DVI共12个植被指数,分析各植被指数与叶绿素含量之间的相关关系,结果显示与G1~G4品种叶绿素含量相关性最优的参数分别为RVI(766,550)、 DVI(850,650)、 NDVI(850,550)和RVI(766,550),相关系数均达0.6以上。数据按一定间隔聚类后,相关性分析结果表明多波段光谱探测仪对玉米叶绿素含量检测最优分辨率为0.5 mg/L,且NDVI(850,550)、NDVI(766,550)和RVI(850,550)与叶绿素含量的相关系数分别为0.837 0、0.773 7和0.767 7,达到了强相关水平。最后,建立了多品种通用型玉米拔节期叶绿素含量诊断模型,可为大田玉米拔节期叶绿素含量诊断提供技术支持。  相似文献   

9.
玉米叶片全磷含量高光谱遥感监测诊断模型研究   总被引:5,自引:0,他引:5  
刘冰峰  李军  贺佳 《农业机械学报》2015,46(8):252-258,280
在2012—2014年连续实施夏玉米磷素营养监测定位试验,在4种不同施磷量和2个夏玉米品种处理下,分别测定了拔节期、大喇叭口期、吐丝期和灌浆期玉米叶片光谱反射率及其对应叶片的全磷含量。选取了9个代表性光谱波段及其组合,利用前2年归一化光谱数据分品种与叶片全磷含量分别进行回归拟合。在各生育时期,每个品种选择决定系数和F值最高的4个模型,并利用第3年测定的光谱和全磷含量数据分别对两个品种进行均方根误差和相对误差的验证,选择均方根误差和相对误差较小的拟合模型。结果表明,在拔节期、大喇叭口期和灌浆期,玉米叶片全磷含量最佳的拟合光谱参量分别为波段(830+880)、(830+940)、(880+1 100)nm的归一化指数。  相似文献   

10.
为了快速、无损检测植物叶片叶绿素含量,基于叶绿素a和叶绿素b在光波长约660nm和460nm处有最大吸收峰的现象,设计了一种便携式植物叶片叶绿素含量无损检测仪。该检测仪主要由单片机、光源模块、光传感器、电源模块和输入输出模块等组成;其软件采用Keil C51编写,主要包括主函数、按键子函数、光采集子函数、数据处理子函数、显示子函数等。以菠菜、大青菜和油麦菜为试验对象,研究了460nm和660nm处植物叶片的吸光度与叶绿素含量之间的关系,结果表明,随着叶绿素含量的增加,吸光度增大,其关系可用二元一次方程描述(决定系数为080)。与分光光度法相比,本文设计检测仪的叶绿素含量检测误差为-0.32~0.20mg/g,平均绝对误差为0.14mg/g;与SPAD-502型叶绿素仪相比,本文设计检测仪的SPAD值绝对测量误差为-3.3~1.8,平均绝对误差为1.1,且成本低,响应时间小于2s。  相似文献   

11.
基于无人机遥感的冬小麦叶绿素含量多光谱反演   总被引:1,自引:0,他引:1  
以杨凌地区冬小麦为研究对象,使用六旋翼无人机搭载RedEdge多光谱相机进行叶绿素监测试验。共选取65个样本,每个样本为1 m×1 m的样地,在样地内选取小麦冠层的7片叶片,测量相对叶绿素含量SPAD值,取平均值作为实测值,GPS记录位置信息。地面数据测量与无人机飞行测量同步进行。用Pix4D mapper软件对无人机多光谱影像进行拼接处理,得到4个波段下小麦冠层叶片反射率光谱图像,并利用ENVI 5.1软件提取光谱反射率数据。选取8种常用光谱参数,其中与小麦SPAD相关性较高的有SAVI、EVI2、DVI、RVI、NDVI、EVI和ARVI共7种,相关系数均在0.67以上。用7种光谱参数和小麦SPAD实测值,使用一元线性回归法和多元线性回归法构建反演模型并进行精度分析,结果表明:一元线性回归法构建的SPAD-SAVI模型精度最佳,决定系数(R~2)为0.866,均方根误差RMSE为0.245,可作为无人机遥感快速、无损监测冬小麦叶绿素的技术手段。  相似文献   

12.
根据大豆叶片氮素含量光谱检测技术研究结果,设计了具有4个通道、两种检测模式的便携式检测装置,分别采用540nm波段冠层反射率和比值植被指数RVI检测大豆开花前期和结荚前期叶片氮素含量.该装置由敏感波段光电传感器、信号放大电路、A/D转换器和单片机系统构成.单片机系统内建立了敏感波段冠层反射率及相关植被指数与大豆氮素含量的反演模型,可直接根据冠层反射率反演出大豆叶片氮素含量,也可通过串口通讯将反射率数据传给上位机进行进一步的处理.经田间试验验证,该仪器具有质量轻、价格低、操作简便和检测精度可行等优点,可以为大豆氮肥合理施用提供指导.  相似文献   

13.
基于激光诱导荧光光谱分析的黄瓜叶片叶绿素含量检测   总被引:4,自引:2,他引:2  
利用反射式激光诱导叶绿素荧光光谱分析技术对黄瓜活体叶片叶绿素含量进行检测实验研究。通过对中心波长为473nm和660nm 2种激发光的4种激发强度(2.5、5.0、7.5、10.0mW)条件下荧光光谱的分析,结果显示:在强度7.5 mW、波长473 nm的光源下激发产生的荧光光谱具有很好的准确性和稳定性;在此条件下,荧光参数F_(732)/F_(685)与植物活体叶片内叶绿素含量成极显著线性关系,并以此为基础建立了数学回归模型(R~2>0.93,p<0.001),模型回归系数显著,模型可靠性极好,准确地反映了荧光参数与叶绿素含量的关系。  相似文献   

14.
郭辉  杨可明  张超 《农业机械学报》2019,50(10):153-158
为探测重金属铜污染胁迫对玉米叶片光谱的影响,判别玉米植株受铜污染胁迫的程度,在地面设置了11个梯度铜胁迫玉米盆栽实验,获取了玉米在出苗期、拔节期和出穗期的老叶光谱、叶绿素含量以及出穗期叶片铜含量,阐述了利用前3次谐波子信号振幅C1、C2与C3探测玉米叶片光谱弱畸变的机理,并选取出苗期、拔节期和出穗期玉米老叶光谱480~670 nm与670~750 nm两波段进行谐波分析,解析了前3次谐波子信号振幅C1、C2、C3与铜胁迫梯度间的规律。研究得出:出苗期,在Cu(100)到Cu(1200)梯度范围内,随铜胁迫程度增加,玉米老叶光谱在480~670 nm与670~750 nm两波段的谐波振幅C1逐渐增大,利用谐波振幅C1可以判别与区分玉米植株受铜胁迫程度;拔节期,在480~670 nm与670~750 nm两波段、所有设置胁迫梯度内,谐波振幅C1、C2、C3特征变化规律不明显;出穗期,从Cu(50)到Cu(1200)梯度范围内,除Cu(1000)外,在480~670 nm波段的谐波子信号振幅C1随胁迫梯度增加而增大;玉米出苗期与出穗期是利用谐波子信号振幅特征进行铜胁迫程度判别与分析的最佳生长阶段。  相似文献   

15.
杨树叶片叶绿素含量高光谱估算模型研究   总被引:3,自引:0,他引:3  
以盆栽107号杨树为研究对象,在验证杨树叶片的SPAD值可作为衡量其叶绿素含量指标的基础上,基于最佳指数-相关系数法(OIFC),提取了杨树叶绿素特征波段(中心波长350、715、1 150 nm),建立了以该组合波段原始光谱数据为自变量的杨树叶片叶绿素含量估算模型;利用相关系数法,提取了杨树叶绿素归一化植被指数的计算波段(中心波长705、953 nm)与一阶光谱导数的叶绿素特征波段(中心波长647、691、721 nm),且分别建立了基于归一化植被指数、叶面叶绿素指数、一阶光谱导数为自变量的杨树叶片叶绿素含量估算模型;比较分析所建立的模型精度,筛选出杨树叶片的叶绿素含量最优估算模型。结果表明:化学法测得杨树叶片叶绿素含量与其对应的SPAD值之间具有显著的幂函数关系,R2可达0.902 3。利用OIFC法提取的叶绿素最佳三波段组合的高光谱数据为自变量,与叶片叶绿素含量构建的模型预测值与实测值具有显著的线性关系,决定系数为0.944 5;相比其他模型,该模型的精度最高且均方根误差最小。可见,基于OIFC法构建的杨树叶绿素高光谱模型具有较高的精度,是估算杨树叶片叶绿素含量的最优模型。  相似文献   

16.
在水质测量评价中,通常将水体中叶绿素a的含量大小作为一个非常关键的指标。为获取石佛寺水库水体叶绿素a浓度反演模型,对石佛寺水库的水体进行光谱测量,获取水体光谱特征,并对采集的水样进行检测,得出叶绿素a浓度。在此基础上分析叶绿素a浓度与水体反射率的相关性,得到如下结论:石佛寺水库水体叶绿素a的浓度与反射比R_(702)/R_(674)和595 nm波长处反射率的一阶微分值都有较为明显的相关性(r~2分别为0.724 4和0.745 0)。  相似文献   

17.
基于高分一号卫星数据的冬小麦叶片SPAD值遥感估算   总被引:13,自引:0,他引:13  
以陕西省关中地区冬小麦不同生育期冠层高光谱反射率为数据源,模拟国产高分辨率卫星高分一号(GF-1)的光谱反射率,提取18种对叶绿素敏感的宽波段光谱指数,构建了基于遥感光谱指数的冬小麦叶片叶绿素相对含量(SPAD)遥感监测模型,并利用返青期的GF-1卫星数据对研究区的冬小麦叶片SPAD值进行了估算和验证。结果表明:返青期、孕穗期和全生育期SPAD值均与TGI指数相关性最高,相关系数分别为-0.742、-0.740和-0.483。拔节期和灌浆期SPAD值分别与SIPI指数和GNDVI指数相关性最高,相关系数分别为0.788和0.745。GNDVI、GRVI和TGI植被指数在各个生育期都和冬小麦叶片SPAD含量在0.01水平下呈显著相关。基于此3类植被指数构建的冬小麦叶片SPAD值回归模型精度较高,其中基于随机森林回归算法的估算模型效果最优,各类模型均在冬小麦拔节期的预测效果最佳。GF-1号卫星数据结合SPAD-RFR模型对研究区冬小麦叶片SPAD的估算结果最为理想,可用于大面积空间尺度的冬小麦叶片SPAD值遥感监测。  相似文献   

18.
为了满足田间作物长势快速检测与指导变量管理的需求,基于作物叶绿素光谱响应特征波长筛选与优化,开发了一款便携式作物叶绿素检测仪。首先,采用高光谱仪采集玉米冠层325~1 075 nm反射光谱,并采样萃取叶片叶绿素含量真值,开展叶绿素敏感响应波长筛选。经蒙特卡洛无信息变量消除(MC-UVE)算法在10~100个特征波长范围内进行变量筛选,表明采用50个特征波长时具有最优的叶绿素含量检测能力。其次,选择AS7265x型光谱传感器,以半峰宽20 nm的12个区间覆盖筛选的50个波长,设计的叶绿素检测仪包括传感器、主控制器、显示和控制等模块,实现作物冠层反射光数据采集、处理、显示和存储功能。开展传感器反射率标定与田间应用测试,基于传感器获取的反射率构建叶绿素含量偏最小二乘检测模型验证集决定系数为0.628;进一步组合归一化红边植被指数(NDRE:730、900 nm)和绿光归一化差值植被指数(GNDVI:535、900 nm),检测模型精度提高到0.69,模型嵌入系统最终实现了田间叶绿素含量快速检测,为作物长势高效分析提供了技术支持。  相似文献   

19.
研究烤烟叶片叶绿素含量与高光谱参数的相关性,建立叶绿素含量估算模型,为构建或筛选系统的烟叶烘烤特性评价指标奠定基础.以云烟87为研究对象,测定不同成熟度水平和不同烘烤温度下,叶片叶绿素含量及400~1000 nm光谱反射率,以烤烟叶片高光谱反射率与烤烟叶片叶绿素含量为数据源,用SPA(连续投影算法)对高光谱数据进行特征...  相似文献   

20.
为了给精准施肥灌溉及病虫害防治等提供基础数据支撑,开展以作物垂直分层叶绿素监测的模拟研究.于2019—2020年进行了不同施氮水平下夏玉米叶绿素含量与光谱反射率监测试验,并模拟了夏玉米叶绿素含量垂直分层规律.结果表明:夏玉米的叶绿素含量随着冠层深度的增加呈侧放的铃型;利用叶绿素最敏感波段699~722 nm的反射率构建夏玉米叶绿素模拟代价函数,实现了基于PROSAIL的夏玉米叶绿素含量垂直分层模拟;综合分析不同生育期各层叶绿素的估算精度,在平均叶绿素模拟相对误差RE控制在45%范围内基础上,进一步厘清了夏玉米叶绿素垂直分层模拟效果,即第1层叶片在抽雄期与灌浆期、其他层在全生育期模拟的决定系数R2在0.114 5~0.799 3,均方根误差RMSE在2.41~12.13 μg/cm2,相对误差在9.67%~98.22%.相关研究结果可为作物叶绿素垂直分层模拟应用提供理论与技术支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号