首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采集了甲醇/生物柴油(5%、10%、15%)混合燃料在柴油机燃烧的尾气颗粒。采用热重分析仪和切线法、Flynn-Wall-Ozawa(FWO)热解动力学方法,研究颗粒挥发及氧化规律,分析了颗粒热解特征温度和活化能。结果表明:随着甲醇掺混量的增加,颗粒中H_2O的质量分数由2.6%增加到3.5%,可溶有机物(soluble organic fraction,SOF)质量分数由26.1%增加到32.5%,SOF的质量变化速率增大,对应的峰值温度后移;在O_2氛围中,SOF挥发阶段与在N2氛围中的表现基本一致,但质量变化速率明显增大;碳烟(soot)质量减小,由70.3%减少到63.8%,soot质量变化率峰值增大;SOF析出温度变化较小,soot起始燃烧温度明显降低,由488℃降低到458℃,SOF起始燃烧温度与燃尽温度均有所降低,颗粒的热解总反应时间缩短;颗粒的热解反应活化能由140.3 k J/mol降低117.3 k J/mol,颗粒的热解性能增强,颗粒更易被氧化。研究结果可为甲醇/生物柴油燃烧颗粒的处理及柴油机颗粒捕集器(diesel particulate filter,DPF)再生提供依据。  相似文献   

2.
柴油机排放颗粒物的热重特性分析   总被引:8,自引:8,他引:0  
为了解不同粒径颗粒物在特定氛围下的氧化特性,该文利用MOUDI采样器收集到的柴油机颗粒物,在纯N2及纯O2环境下,对0.18~0.32、0.32~0.56、0.56~1.00和1.00~1.80 μm 4个粒径级颗粒分别进行热重分析试验。结果表明,随着粒径级的增大,颗粒物中水分和SOF(soluble organic fraction)的含量下降,而干碳烟(soot)和无机盐的含量增加。在纯N2氛围下,颗粒在SOF挥发阶段随着颗粒物粒径级减小,其SOF含量和失重峰值速率随之增加;但在soot热解阶段不同粒径级的失重速率趋同。程序升温终了时,各粒径级颗粒的热重曲线在纯N2氛围下缓滞停在不同位置,而在纯O2氛围下则渐趋归一。随着颗粒物粒径级的减小,热重曲线呈下降趋势,颗粒越细则越易升温(氧化)失重;而在纯O2氛围下,各粒径级在SOF挥发阶段表现出与纯N2氛围下一致的规律但失重速率峰值明显增加。在soot热解阶段,随着颗粒物粒度减小,比表面积增加使其吸附氧的能力增加,发生化学反应的活性增大,颗粒氧化的起燃温度降低,且起燃时刻对应的失重速率增加;各粒径级颗粒物的失重速率峰值出现在600~640℃之间,随着颗粒物粒径增大其soot所占含量随之增多,热解失重速率峰值亦显著增加。研究结果可为颗粒物处理的技术措施提供基础物性数据,有助于推动颗粒物处理装置的改进和优化。  相似文献   

3.
小型非道路柴油机排气管内颗粒的粒径分布与氧化特性   总被引:4,自引:4,他引:0  
为了深入了解柴油机颗粒在排气管内的变化过程,分析柴油机颗粒粒径分布和氧化特性的变化趋势,采用废气排放颗粒物粒径谱仪(engine exhaust particle Sizer,EEPS),测量了柴油机沿排气气流运动方向,不同位置的颗粒粒径,研究了不同位置颗粒粒径的分布规律;应用热重/差热同步分析仪,分析了沿排气气流方向不同位置颗粒的表观活化能、着火温度、燃尽特性指数等特征参数的变化规律。结果表明:沿柴油机排气气流方向,核态颗粒数量减小,聚集态颗粒数量增加;聚集态颗粒的粒径增大。热重试验结果表明:沿柴油机排气气流方向,在SOF挥发阶段和soot氧化过程中,颗粒失质量速率增加,失质量峰值对应温度降低;颗粒中H2O质量由1.3%增加到2.46%,SOF质量由38.21%增加到42.05%,soot质量由57.84%减少到52.24%,灰分质量由3.01%增加到3.25%;颗粒的指前因子由7.93×1012减小到4.67×1012,反应活化能由157.3降低到127.9,着火温度由546℃降低到501℃,降低了约8.2%,燃烧特性指数由8.16×10-9增加到1.62×10-8,燃尽特性指数上升了14.5%。该研究是对颗粒衍化机理的完善,可为颗粒捕集器的优化设计提供参考。  相似文献   

4.
为探究低温等离子体(non-thermal plasma,NTP)对柴油机排气中颗粒物(particulate matter,PM)不同组分的净化效果及作用规律。利用自行设计的NTP发生器以O2为气源生成NTP活性物质并喷射入柴油机排气中,在不同的反应温度下对PM进行净化试验。通过滤膜对反应前后的PM分别进行采样并进行热重分析。热重分析中采用变气氛的控制策略实现将PM中挥发性组分(volatile fraction,VF)和元素碳(elemental carbon,EC)失重过程的区分,并利用阿伦尼乌斯(Arrhenius)法对EC进行了氧化动力学分析。试验结果表明在反应温度为120℃时,NTP对PM的去除量最大,达到了66.79%,对EC的去除量也达到了各反应温度下的最大值。经NTP处理后,VF的挥发起始温度与终止温度无明显变化,PM中VF的质量分数下降了5.86%~13.90%,变化幅度随着反应温度的升高而提高。LVF(low volatile fraction)在VF中所占质量分数明显上升,表明NTP与VF中不同组分的反应速率有明显差异。EC在NTP的作用下氧化起始温度和终止温度降低了30~40℃。EC的表观活化能在NTP处理后从175.97~210.49 k J/mol降低至94.13~109.13 k J/mol。依据EC曲线变化可总结出反应温度的升高对NTP处理EC过程的影响主要体现在处于半氧化态的EC质量分数的上升。该文证实了NTP能够对柴油机排气中PM进行有效去除,为NTP应用于排气处理提供了试验依据。  相似文献   

5.
La2Cu(1-x)FexO4氧化去除柴油机碳烟微粒的试验分析   总被引:1,自引:1,他引:0  
制备的La2Cu(1-x)FexO4(x=0、0.1、0.2、0.3)系列催化剂与碳烟微粒紧密接触后,置于固定床连续流动反应系统,进行氧化碳烟活性评价的模拟试验,研究发现La2Cu0.9Fe0.1O4具有较好将其氧化的反应活性,这与H2-TPR试验结论相一致,且由TG-DTA试验表明模拟试验测试的数据具有可靠性。在堇青石和SiC载体上涂敷催化剂后进行程序升温试验,表明在200℃~350℃温度区间内2种材料载体对氧化碳烟微粒的活性相近。通过发动机台架试验验证了La2Cu0.9Fe0.1O4能有效氧化柴油机排放的碳烟微粒,且对工作过程进行了模拟计算,计算结果与试验结果具有一致性,表明通过数学模型能较好地描述催化氧化柴油机排放的碳烟微粒。  相似文献   

6.
柴油机微粒捕集器喷油助燃再生过程热工特性   总被引:1,自引:1,他引:0  
为获得柴油机微粒捕集器喷油助燃再生过程热工变化特性,在考虑微粒氧化反应次模型的基础上,建立壁流式蜂窝陶瓷过滤体喷油助燃再生数学模型,通过对速度场、压力场、温度场与微粒浓度场等多场耦合求解,研究其再生过程热工参数变化规律。结果表明:喷油助燃装置热工参数、排气特征对过滤体再生过程影响较大。适当增大气油配比、提高喷油压力与喷油速率及加大补气流量均使再生过程中过滤体孔道壁面峰值温度升高,沉积在过滤体孔道壁面上的微粒层氧化燃烧速率加快,缩短过滤体的再生时间,但随着气油配比、补气流量的进一步增大,空气对流散热损失增强,及喷油速率进一步提高,混合气过浓导致燃烧器燃烧性能恶化等影响,孔道沉积微粒氧化速率、壁面峰值温度下降,再生速率降低。排气流量对再生过程的影响与补气流量相似,但从分析结果来看,排气流量能否合适控制对过滤体的再生过程有重要影响。这些规律的提出,为实现微粒捕集器安全、可靠、高效地再生及其过程控制的优化等方面提供依据和技术参考。  相似文献   

7.
为了验证NSR催化剂对柴油机NOx排放的存储还原性能,该文采用浸渍法制备了一系列NSR催化剂:x Ce(25-x)Ba/γ-Al2O3(x为质量分数,且x=8~12)和Pt10Ce15Ba/γ-Al2O3催化剂,并利用X射线衍射、扫描电子显微镜、能谱仪和透射电子显微镜对其性能进行表征;通过台架试验,研究了10Ce15Ba/γ-Al2O3和Pt10Ce15Ba/γ-Al2O3催化剂对NOx排放的存储还原性能。结果表明,Ba O和Ce O2的粒径变化范围为5~20 nm。随着x值增加,Ce O2晶粒尺寸变大且分散性变差;当x=10时,Ba O晶粒尺寸细小且分散性最好。当柴油机负荷低于50%时,10Ce15Ba/γ-Al2O3催化剂对NOx主要以吸附为主,NOx脱除率最高达80%;当柴油机负荷高于50%时,NOx开始脱附并被还原成N2,NOx脱除率最高为60%。与10Ce15Ba/γ-Al2O3催化剂作用相比,Pt10Ce15Ba/γ-Al2O3催化剂对NOx的吸附和脱除性能较好,其中柴油机负荷低于50%时,NOx脱除率接近100%,柴油机负荷高于50%时,NOx脱除率最高为75%。研究结果对NSR催化剂的开发以及在排放后处理领域的应用具有指导意义。  相似文献   

8.
利用热重分析仪对柴油机燃用0#柴油和乙醇柴油排放的颗粒进行热重及其动力学分析。研究表明,柴油中添加乙醇有助于降低柴油机的颗粒排放。通过颗粒的热重分析得出,颗粒氧化过程主要发生水分挥发、可溶性物质氧化和固体碳氧化3个过程,其中,固体碳约占颗粒总量的70%,可溶性有机物约占颗粒总量的25%。通过Coats-Redfern法对颗粒热重数据进行动力学计算分析,得出柴油机燃用0#柴油的颗粒的活化能为130.3 kJ/mol,燃用乙醇柴油的颗粒的热解活化能为122.9 kJ/mol,两拟合曲线的线性回归系数均大于0.99。为开发高效的颗粒催化剂及柴油机颗粒捕集器选择适当的可再生技术提供理论依据。  相似文献   

9.
麦草的热失重特性及动力学   总被引:1,自引:0,他引:1  
该文利用热失重分析法对麦草的热失重特性及动力学进行研究,探讨不同的升温速率和镍系催化剂对麦草热失重的影响,结果表明在220.6~391.2℃范围内麦草的失重量不受升温速率的影响,但要获得相同的失重率,对应的温度随升温速率的提高而增加。温度超过391.2℃以后,升温速率等于或超过20℃/min时,麦草的热失重规律基本不受升温速率影响;而麦草在10℃/min的速率升温下热解,热失重量最大。镍系催化剂对麦草热失重无明显影响;利用Kissinger法和Ozawa法分别计算出麦草未加催化剂和添加0.5%系催化剂的热失重动力学参数;其表观活化能分别为93.92、 119.80 kJ/mol和99.14和123.70 kJ/mol,频率因子ln A分别17.82、23.02 min和19.30、24.03 min-1。  相似文献   

10.
为了探究调合生物柴油掺烧甲醇对柴油机燃烧特性及微粒粒径分布的影响,该文利用燃烧分析仪及EEPS 3090型微粒粒径测试系统研究了柴油机燃用甲醇-调合生物柴油微乳化燃料的燃烧过程及微粒数量浓度分布特性。试验结果表明,与燃用调合生物柴油相比,柴油机掺烧甲醇后缸内燃烧压力、压力升高率以及放热率曲线均后移,压力升高率峰值及放热率峰值均增加;当柴油机处于低负荷时,排气中的微粒粒径均处于6~22 nm之间,呈现核态;在高负荷时,微粒粒径处于6~275 nm之间,主要呈现积聚态,且数量浓度呈单峰正态分布。随着甲醇添加比例的增加,核态微粒比例上升,积聚态微粒比例下降,且排气中微粒的总数下降。研究结果为甲醇-生物柴油混合燃料的燃烧及微粒排放控制提供了参考。  相似文献   

11.
纳米CeO2催化剂对柴油机碳烟颗粒和NO降低效果   总被引:2,自引:2,他引:0  
为采取后处理技术同时控制柴油机颗粒(PM)和一氧化氮(NO)排放,该研究采用沉淀法制备了3组纳米二氧化铈(CeO_2)催化剂,通过X射线衍射(XRD)法、BET法测比表面积与孔径、氢气程序升温还原法(H2-TPR)对其性能进行表征,并利用碳烟起燃温度和峰值温度以及NO向N_2的转化率分别对催化剂进行活性评价。试验结果表明:3组制备的CeO_2催化剂平均粒径依次为7、12和20 nm,明显小于商业级CeO_2;自制CeO_2相较于商业级CeO_2具有较大的比表面积,且比表面积越大催化活性越高;自制的CeO_2有3个较明显的H2还原峰,依次对应表面吸附氧、表面晶格氧以及体相晶格氧;CeO_2对碳烟颗粒催化氧化的效率由高到低依次为20、12和7 nm,这3组CeO_2催化剂较未添加催化剂时起燃温度依次降低了124,109,93℃,峰值温度依次降低了185,104,102℃;CeO_2对NO转化率最高可以达到70%,且温度窗口比较宽。研究结果对CeO_2在排放后处理领域的应用具有指导意义。  相似文献   

12.
针对不同EGR废气组分条件下产生的颗粒,采用热重分析的方法,分析了EGR废气组分对颗粒中主要物质含量的影响;考察了颗粒中挥发物析出温度、soot组分着火温度等4个特征温度、燃烧特性指数以及活化能的变化规律。结果表明,与引入废气和N2时相比,只通入CO2时产生颗粒的失质量百分数所占比例最大,颗粒中水分和可溶有机物(soluble organic fraction,SOF)含量增加明显,soot组分含量有较大幅度降低;在颗粒氧化过程中的高温反应阶段,与引入废气和N2时相比,只通入CO2时产生颗粒中soot组分的质量变化率峰值和峰值对应温度均最小;氧化特性参数的计算结果表明,与引入废气和N2时相比,只通入CO2时产生颗粒的挥发物析出温度TSOF1、挥发物起始燃烧温度TSOF2、soot组分着火温度Ti、soot组分燃尽温度Th均最低,燃烧特性指数增加明显,反应活化能最低。说明引入CO2后,颗粒中soot组分在达到相同失质量百分数时,所需的温度较低,反应所需能量较小,EGR废气中的CO2可以显著提高颗粒自身的氧化能力和反应活性,改善颗粒的氧化燃烧性能。  相似文献   

13.
为了研究柴油-航空煤油宽馏程混合燃料对柴油机燃烧与排放的影响,按照中国3号航空煤油(rocket propellant 3,RP3)的掺混比(体积比)分别为20%、40%与60%与国VI柴油进行混合,配制3种具有不同理化特性的柴油-RP3宽馏程混合燃料(D80K20、D60K40与D40K60),并通过台架试验,研究了最大扭矩转速2700 r/min所对应的100%、50%与10%负荷工况(分别记为A、B、C工况)下,D100、D80K20、D60K40和D40K60对柴油机缸内工作过程、排放、颗粒物浓度与粒径分布的影响规律。结果表明,3种工况下,与D100相比,RP3掺混比增加到60%时,缸内最大压力的变化范围小于0.2 MPa,预混燃烧放热率峰值增大13.21~27.43 J/°CA,滞燃期延长2.19~2.53°CA,燃烧持续期缩短1.73~1.91°CA,预混燃烧累积放热百分比增加4.66%~5.28%,缸内最高温度的上升幅度小于35 K,与放热率峰值和最大燃烧压力相对应的曲轴转角后移1.67~2.23°CA,有效热效率上升0.15%~0.46%。柴油-RP3宽馏程混合燃料能够显著降低柴油机碳烟排放,并且降低效果随着柴油机负荷的增加和RP3掺混比的增大更加明显,但对NOX排放没有明显的影响,与D100相比,柴油机在3种工况下燃用D40K60时的碳烟排放分别降低53.6%、44.1%、35%,NOX排放的上升幅度均小于2%,核态颗粒物数量浓度上升12.5%~90.6%,积聚态颗粒物数量浓度、颗粒物总数量浓度、颗粒物表面积浓度和总质量浓度分别降低20.1%~45.8%、14.2%~42.1%、32.5%~41.6%、28.5%~38.8%,且积聚态颗粒物的粒径朝小粒径方向移动。试验结果表明,柴油-RP3宽馏程混合燃料对柴油机燃烧与排放有重要的影响,能明显改善柴油机碳烟与NOX排放之间的trade-off关系,并且在降低柴油机颗粒物总数量浓度、总质量浓度以及表面积浓度方面具有较为显著的效果,有利于降低柴油机DFP载体上的颗粒物堆积、延长DFP再生周期。  相似文献   

14.
在一台高压共轨柴油机上进行燃用调合生物柴油(B0、B10和B20)台架试验,利用MOUDI颗粒分级采样系统和气相色谱-质谱联用仪(GC-MS)分别研究氧化催化器(diesel oxidation catalyst,DOC)结合颗粒氧化催化器(particle oxidation catalyst,POC)对颗粒物的粒径质量浓度分布和可溶性有机组分(SOF)的影响。结果表明:随着生物柴油的掺混比增加,各粒径范围的排气颗粒物质量浓度均下降,质量浓度峰值均在0.18~0.32μm;颗粒物SOF中脂类、酸类质量分数增加,烷烃类、芳香烃、酚类物质质量分数减少;B0和B20的碳原子数质量分数均呈现近似以C16为峰值的正态分布。加装DOC+POC后,3种燃料颗粒物的质量浓度均降低,聚集态颗粒的质量浓度转化率高于粗颗粒态,其中B20聚集态转化率最高,为58.36%;随着生物柴油的掺混比增加,DOC+POC对SOF的转化率增大,其中B20颗粒中SOF转化率达65.15%;DOC+POC对脂类和酸类物质净化作用明显,加装DOC+POC后,B20脂类和酸类物质的质量分数降幅分别为55.45%和43.27%;DOC+POC对B20颗粒物中SOF的C12~C18氧化作用明显。  相似文献   

15.
不同干燥方式对柠檬片干燥特性及品质的影响   总被引:3,自引:3,他引:0  
为探索不同干燥方式对柠檬片干燥特性及品质的影响,该研究采用真空冻结冷冻干燥、传统冷冻干燥、热风干燥3种方式进行对比干燥试验。结果表明,真空冻结冷冻干燥柠檬片工艺耗时比传统冷冻干燥节省5 h,但是热风干燥2倍以上;耗电量比传统冷冻干燥节省14.27%,但是热风干燥5倍以上;真空冻结冷冻干燥、传统冷冻干燥、热风干燥柠檬片维生素C保存率分别为66.03%、45.45%、19.14%,复水比分别为4.60、3.97、2.24,差异显著(P0.05);热风干燥柠檬片色差值显著(P0.05)高于两组冷冻干燥柠檬片,而两组冷冻干燥柠檬片色差值未见显著差异(P0.05);真空冻结冷冻干燥柠檬片中5种主要挥发性风味化合物保存率显著(P0.05)高于传统冷冻干燥柠檬片,热风干燥柠檬片保存率最低(P0.05)。3组干燥柠檬片残留水均呈现自由水、不易流动水、结合水3个横向弛豫时间峰位,干燥样品残留水分中结合水占比例最高,不易流动水和自由水占比例较小,热风干燥柠檬片横向弛豫时间峰位相对其他两组呈现小幅度的右移趋势;两组冷冻干燥柠檬片感官特征总评分差异不显著(P0.05),热风干燥柠檬片在色泽、质地、柠檬味上远不及两组冷冻干燥柠檬片感官特征丰富。真空冻结冷冻干燥是高附加值柠檬片的首选干燥方法。该研究结果为柠檬片干燥加工技术提升提供参考。  相似文献   

16.
生物柴油混合比对柴油机排放颗粒特性的影响   总被引:4,自引:4,他引:0  
为研究负荷和生物柴油对柴油机排放颗粒的影响,该文利用高分辨率透射电镜研究了电控高压共轨增压中冷柴油机在转速2000r/min、扭矩75和225N·m2种负荷下,燃用混合比为0、10%、50%和100%4种掺混比例(分别记做B0、B10、B50和B100)的黄连木籽生物柴油/柴油混合燃料时,产生排放颗粒的微观形貌和结构。结果表明,除B100产生排放颗粒中基本粒子的形状和粒径分布呈现出不规则性外,其余燃料的排放颗粒均由球形的基本粒子构成且粒径具有单分散特性;基本粒子具有多层类石墨微晶结构,碳层之间受到扭转和平移,存在无序内核区;B100在转速2000r/min、扭矩225N·m工况时的基本粒子平均粒径为45.57nm,与其余3种混合燃料排放颗粒的粒径相差很大。负荷和掺混比例在50%以内的生物柴油/柴油混合燃料对基本粒子的平均粒径影响不大。研究结果可为柴油机颗粒生成机理和后处理系统的设计提供参考。  相似文献   

17.
排气余热辅助低温等离子体再生柴油机颗粒捕集器试验   总被引:4,自引:2,他引:2  
为探究低温等离子体(non-thermal plasma,NTP)对无外加热源的柴油机颗粒捕集器(diesel particulate filter,DPF)的再生过程与再生效果,搭建了排气余热辅助NTP再生DPF的试验系统。借助发动机停机后的排气余热,利用DBD(dielectric barrier discharge)型NTP发生器,对处于降温过程的DPF进行再生试验研究。结果表明:随着DPF温度的下降,NTP中O3的分解反应减弱,PM(particulate matter)氧化反应加剧,DPF内部出现温度不降反升的现象,氧化区域自DPF前端逐渐向后端延伸,DPF径向中点处氧化反应最为剧烈,DPF轴向剖面上残余积碳呈现?形。再生后DPF内部残余积碳中可溶性有机成分SOF(soluble organic fraction)明显减少,且NTP处理能够降低PM中SOF及DS(dry soot)的表观活化能。整个再生过程中,DPF内部大量积碳被氧化去除。排气余热辅助的NTP再生技术,实现了对无外加热源的DPF的有效再生,使得DPF排气背压下降达69%。该文证实了排气余热辅助NTP再生DPF的可行性,为NTP再生DPF技术的应用提供了试验依据。  相似文献   

18.
掺混正戊醇能够降低柴油机颗粒物排放,但掺混正戊醇对柴油混合燃料颗粒物的形貌结构和氧化活性的影响规律尚不明确。该研究采用高分辨率透射电子显微镜、拉曼光谱仪和同步热分析仪研究了柴油机中分别燃用不同掺混比的正戊醇/柴油混合燃料时生成颗粒物的形貌、纳观结构和氧化活性。结果表明,正戊醇掺混体积比分别为0、15%和30%的3种混合燃料燃烧颗粒物的微观形貌相似,低倍率时表现为由基本碳粒子聚合而成的团聚形貌,高倍率时呈现出典型的"外壳-内核"结构;随着正戊醇掺混比例的增加,颗粒物的基本碳粒子直径减小,微晶长度减小而微晶曲率增加,D1峰与G峰的峰面积比增加。说明颗粒物结构更为无序,石墨化程度降低。同时,随着正戊醇掺混比例的增加,3种燃料燃烧颗粒物的氧化温度逐渐降低,依次为:616.9、609.9和583.6℃,说明其对应的氧化活性逐渐升高。分析表明,正戊醇/柴油混合燃料燃烧生成的颗粒物高氧化活性与其更为无序的纳观结构相关。  相似文献   

19.
为了提高柴油机颗粒捕集器(diesel particulate filter,DPF)的压降特性和碳烟承载量,该文提出了一种不规则六边形孔道结构,并利用AVL-Fire软件建立其三维模型,针对不同排气流量,排气温度,碳烟负载以及灰分堆积情况对DPF压降特性进行数值分析,并与四边形孔道结构进行对比。结果表明:在不同排气流量条件下,建立的数学模型模拟值与实际试验值相对误差处于2.54%~5.69%之间,计算值和试验值的数值差异较小,变化趋势一致;在同等排气流量和排气温度条件下,不规则六边形孔道结构DPF的压降特性优于四边形孔道结构;不同碳烟加载方式会影响DPF压降特性,递减分布压降最高,递增分布压降最低,且不同分布方式下不规则六边形孔道结构具有更低的压降;灰分在DPF内部以层状方式分布对压降影响较大,以尾端方式分布对压降影响较小;不规则六边形孔道DPF具有更陡峭的碳烟过滤效率曲线和更低的压降曲线,表明其能有效地提高碳烟及灰分承载能力,其中碳烟捕集效率上升时间同比降低34%;不同灰分堆积方式下,不规则六边形孔道结构有更小的DPF压降和更高的碳烟承载量,该文可为优化DPF结构,降低DPF压降,减小DPF再生频率提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号