首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficacy of various combinations of melengestrol acetate (MGA), GnRH, and PGF2alpha for the synchronization of estrus in Angus-based beef cattle was compared. Hormones were administered as follows: MGA, 0.5 mg x animal(-1) x d(-1) mixed in a grain carrier; GnRH, 100 microg i.m.; PGF2alpha, 25 mg i.m. In Exp. 1, 2, and 3, cows were randomly assigned to treatments by parity and interval postpartum. The detection of estrus and AI were conducted from d -2 until 72 to 96 h after PGF2alpha, at which time cows not detected to be in estrus received GnRH and fixed-time AI (TAI). Data were analyzed separately for primiparous and multiparous cows. In Exp. 1, cows (n = 799) at three locations received GnRH on d -7 and PGF2alpha on d 0 and either no further treatment (GnRH-PGF) or short-term MGA from d -6 through d -1 (STMGA). Among multiparous cows, conception rate at TAI was greater (P < 0.05) for STMGA (41%, 47/115) than for GnRH-PGF treated cows (26%, 24/92). Across herds and parity, synchronized AI pregnancy rate (SPR) was not affected (P > 0.10) by treatment (GnRH-PGF vs. STMGA; 54%, 210/389 vs. 57%, 228/402). In Exp. 2, cows (n = 484) at three locations received either STMGA or long-term MGA from d -32 through d -19, GnRH on d -7, and PGF2alpha on d 0 (LTMGA). Among primiparous cows, SPR was greater (P < 0.01) in LTMGA (65%, 55/85) than STMGA-treated cows (46%, 40/87). Treatment had no effect (P > 0.10) on SPR among multiparous cows (STMGA vs. LTMGA; 59%, 92/155 vs. 64%, 101/157). In Exp. 3, cows (n = 838) at four locations received the LTMGA treatment and either no further treatment or an additional period of MGA exposure from d -6 through d -1 (L&STMGA). Among primiparous cows, SPR tended to be influenced (P < 0.10) by the herd x treatment interaction and was greater (P < 0.01) among L&STMGA (86%, 19/22) than LTMGA-treated cows (56%, 14/25) at a single location. Among multiparous cows, SPR was lower (P < 0.05) in L&STMGA (46%, 165/358) than LTMGA-treated cows (55%, 184/336). In Exp. 4, Angus heifers (n = 155) received either STMGA or 14 d of MGA (d -32 through d -19) and PGF2alpha on d 0 (MGA-PGF). The detection of estrus and AI were conducted from d -2 to d 6. Interval to estrus was greater (P < 0.05) and estrous response was lower (P < 0.05) in STMGA than MGA-PGF-treated heifers. In conclusion, primiparous cows responded more favorably to longer-duration MGA treatments than did multiparous cows. All protocols achieved sufficient SPR to justify their use for improved reproductive management of postpartum beef cows.  相似文献   

2.
A study was designed to evaluate estrus response and fertility after treatment with melengestrol acetate (MGA) and prostaglandin F2 alpha (PGF2 alpha) in yearling beef heifers. Three hundred four heifers at three locations were allotted to one of two treatments: Treatment 1 served as a nonsynchronized control (CON); and heifers in Treatment 2 received .5 mg of MGA.animal-1.d-1 for 14 d and 25 mg of prostaglandin F2 alpha (PGF2 alpha) 17 d after MGA (MGA-PGF). Heifers in CON and MGA-PGF groups were artificially inseminated 12 h after observed estrus for 21 and 6 d after PGF2 alpha, respectively. Blood samples were collected from each heifer 10 d before and on the day MGA feeding began and 10 d before and on the day PGF2 alpha was administered. Heifers with concentrations of serum progesterone greater than 1 ng/mL on either date before administration of MGA or PGF2 alpha were considered pubertal. More (P = .02) prepubertal heifers that received MGA attained puberty by initiation of breeding than did CON heifers (72 vs 45%, respectively). The proportion of heifers that displayed estrus within 6 d after PGF2 alpha was greater (P less than .001) for MGA-PGF than for CON heifers (77 vs 25%, respectively) but was also influenced by location (P = .03). Conception rate at first service for MGA-PGF heifers that attained puberty during MGA feeding and before PGF2 alpha was not different (P = .50) from that of CON that attained puberty during the same period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Expanded use of artificial insemination in the beef cattle industry depends on successful application of treatments designed to synchronize estrus. Regulation of estrous cycles is associated with control of the corpus luteum (CL), whose life span and secretory activity are subject to trophic and lytic mechanisms. The advantages of melengestrol acetate (MGA) in estrous synchronization incorporate ease of administration, lower cost relative to other estrous synchronization products, and potential for use to induce estrus in prepubertal heifers. Treatments first designed to synchronize estrous cycles of normally cycling heifers by feeding MGA were imposed daily for 14 to 18 d at levels of .5 to 1 mg. The minimal daily effective dose required to inhibit ovulation was .42 mg. Longer feeding periods of MGA were associated with low fertility at the first synchronized estrus, but at the second estrus, conception was normal. Low fertility at the synchronized estrus resulted in development of alternative treatment practices, which combined feeding of MGA with injections or implants of estradiol-17 beta, estradiol cypionate, luteinizing hormone, human chorionic gonadotropin, pregnant mare serum gonadotropin, or oxytocin. Estrus was synchronized after MGA and estradiol-17 beta or estradiol cypionate treatments, but fertility was low. Short-term feeding of MGA (5 to 7 d) combined with prostaglandin F2 alpha or its analogs (PGF) on the last day of MGA reduced fertility at the synchronized estrus. The reduced conception at first service occurred in animals that began treatment after d 12 of the estrous cycle. However, feeding MGA for 14 d and then injecting PGF 17 d later avoided problems with reduced conception. Fertility of animals after this treatment was similar to that of contemporaries synchronized with Syncro-Mate-B. However, the length of the treatment period creates a need for increased management and may extend management beyond practical limits. Further research is warranted to address problems associated with reduced fertility after short-term treatment with MGA.  相似文献   

4.
The objective was to test the efficacy of an intravaginal progesterone insert and injection of PGF2alpha for synchronizing estrus and shortening the interval to pregnancy in cattle. Cattle were assigned to one of three treatments before a 31-d breeding period that employed artificial insemination. Control cattle were not treated, and treated cattle were administered PGF2alpha or an intravaginal progesterone-releasing insert (CIDR) for 7 d and treated with PGF2alpha on d 6. The treatments were applied in one of three experiments that involved postpartum beef cows (Exp. 1; n = 851; 56+/-0.6 d postpartum), beef heifers (Exp. 2; n = 724; 442.5+/-2.8 d of age), and dairy heifers (Exp. 3; n = 260; 443.2+/-4.5 d of age). Luteal activity before treatment was determined for individual cattle based on blood progesterone concentrations. In Exp. 1, there was a greater incidence of estrus during the first 3 d of the breeding period in CIDR+PGF2alpha-treated cows compared with PGF2alpha-treated or control cows (15, 33, and 59% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001). The improved estrous response led to an increase in pregnancy rate during the 3-d period (7, 22, and 36% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001) and tended to improve pregnancy rate for the 31-d breeding period for cows treated with CIDR+PGF2alpha, (50, 55, and 58% for control, PGF2alpha, and CIDR+PGF2alpha, respectively, P = 0.10). Improvements in rates of estrus and pregnancy after CIDR+PGF2alpha, were also observed in beef heifers. Presence of luteal activity before the treatment period affected synchronization and pregnancy rates because anestrous cows (Exp. 1) or prepubertal heifers (Exp. 2) had lesser synchronization rates and pregnancy rates during the first 3 d of the breeding period as well as during the entire 31-d breeding period. The PGF2alpha, and CIDR+PGF2alpha but not the control treatments were evaluated in dairy heifers (Exp. 3). The CIDR+PGF2alpha-treated heifers had a greater incidence of estrus (84%) during the first 3 d of the breeding period compared with the PGF2alpha-treated heifers (57%), but pregnancy rates during the first 3 d or during the 31-d breeding period were not improved for CIDR+PGF2alpha compared with PGF2alpha-treated heifers. In summary, the concurrent treatment of CIDR and PGF2alpha improved synchronization rates relative to PGF2alpha alone or control. Improved estrus synchrony led to greater pregnancy rates for beef cows and beef heifers but failed to improve pregnancy rates for dairy heifers.  相似文献   

5.
This review considers recently developed methods to control estrous cycles of postpartum beef cows with melengestrol acetate (MGA®, Pharmacia Animal Health, Kalamazoo, MI). Melengestrol acetate is an orally active progestin that will suppress estrus and prevent ovulation in cattle if consumed on a daily basis. The duration of feeding may vary among the various protocols that are available, but the level of feeding (0.5 mg/d per animal) is consistent and critical to success. Feeding MGA® for 14 d followed by injection of prostaglandin F (PGF) 17 to 19 d after MGA® withdrawal was developed as an effective method of estrous cycle control for heifers. Studies in postpartum beef cows identified significant improvements in specific reproductive endpoints among cows that received MGA® prior to the administration of PGF compared with cows that received PGF only, including increased estrous response and improved synchronized conception (CR) and pregnancy (PR) rates. Recently, an improvement in synchrony of estrus was reported, without compromising fertility, in postpartum beef cows that were pretreated, either short- or long-term, with MGA® prior to gonadotropin-releasing hormone (GnRH) and PGF. We proposed the general hypothesis that progestin (MGA®) treatment prior to the GnRH-PGF estrus synchronization protocol would successfully 1) induce ovulation in anestrous postpartum beef cows; 2) reduce the incidence of a short luteal phase among anestrous cows induced to ovulate; 3) increase estrous response, synchronized CR, and PR; and 4) increase the likelihood of successful fixedtime insemination. Protocols that utilize this sequential approach to control the estrous cycle include the MGA® Select and 7-11 Synch protocols. The flexibility in matching specific protocols with the particular management system involved is a major advantage in using MGA® to control estrous cycles in cows.  相似文献   

6.
The objective of this experiment was to determine the effect of a GnRH injection within a melengestrol acetate (MGA)-PGF2alpha (PGF) estrus synchronization protocol on follicular dynamics and synchronization of estrus. Pubertal crossbred beef heifers (n = 34) were randomly assigned to one of two treatments. Both treatment groups were fed MGA (0.5 mg x hd(-1) x d(-1)) for 14 d and injected (i.m.) with PGF (25 mg of Lutalyse) 19 d after MGA withdrawal. Melengestrol acetate was delivered in a feed supplement of 1.8 kg x hd(-1) x d(-1). Seventeen heifers received an injection of GnRH (100 microg Cystorelin) 12 d after MGA withdrawal and 7 d before PGF. The control group (n = 17) received only MGA-PGF. Estrus was detected four times/d for 7 d beginning on the day PGF was injected. Transrectal ultrasonography was performed daily on eight heifers from each treatment to monitor ovarian activity and characterize changes in follicular dynamics after MGA withdrawal and until ovulation after PGF. Each of the GnRH-treated heifers either ovulated or had a luteinized dominant follicle following GnRH and subsequently initiated a new follicular wave (8/8, 100%). All GnRH-treated heifers (17/17, 100%) and 94% of controls (16/17) exhibited estrus after PGF. Estrus was exhibited over a 132-h period (12 to 144 h) for control heifers compared with 60 h (48 to 108 h) for GnRH-treated heifers. The peak synchronized period for both treatments was between 48 and 72 h after PGF, during which time 76% (13/17) of the GnRH-treated heifers exhibited estrus compared with 63% (10/16) for controls. Seventy-one percent (12/17) of the GnRH-treated heifers exhibited estrus from 48 to 60 h after PGF, compared with 38% (6/16) for controls (P < 0.05). In summary, injection of GnRH within a 14- to 19-d MGA-PGF protocol increased the synchrony of estrus during the synchronized period and concentrated the period of detected estrus. This protocol may offer potential for the fixed-time insemination of replacement beef heifers.  相似文献   

7.
An estrus synchronization protocol (7-11 Synch) was developed to synchronize the first follicular wave and timing of ovulation in postpartum beef cows. In Exp. 1, follicular development and timing of ovulation in response to the following protocol were evaluated. Beef heifers (n = 12) and cows (n = 6), at random stages of the estrous cycle, were fed melengestrol acetate (MGA; .5 mg x animal(-1) x d(-1)) for 7 d and injected with PGF2alpha (PG; 25 mg) on the last day of MGA. A second injection of PG was administered 11 d after cessation of MGA. After the second injection of PG, estrus was synchronized in 6/12 heifers and 3/6 cows. The interval to estrus in heifers and cows was 54 and 64 h, respectively (P > .10). All animals exhibiting estrus ovulated first-wave follicles. Animals that failed to respond to the second injection of PG were in estrus later than 6 d after cessation of MGA and had corpora lutea that were unresponsive to the injection of PG. Based on the variation in interval to estrus following the first PG injection on the last day of MGA feeding in Exp. 1, an injection of GnRH (100 microg) was added to the protocol 4 d after the cessation of MGA to ensure ovulation or luteinization of dominant follicles and synchronization of first-wave follicular development. This revised protocol was termed "7-11 Synch." In Exp. 2, two estrus synchronization protocols were compared. Multiparous beef cows were stratified by breed and postpartum interval and randomly assigned to the 7-11 Synch (n = 44) or Select Synch protocols (GnRH injection followed by PG injection 7 d later; n = 45). Timing of estrus after the last PG injection (0 h) ranged from 42 to 102 h in the 7-11 Synch group and -30 to 114 h in the Select Synch group. Eight cows (18%) in the Select Synch group exhibited estrus 30 h before to 18 h after PG. Synchronized estrus peaked between 42 and 66 h after the last PG injection, and a maximum number of cows were in estrus at 54 h for both treatment groups. Synchrony of estrus from 42 to 66 h was greater (P < .05) in 7-11 Synch (91%: 41/44) than in Select Synch cows (69%: 31/45). Artificial insemination pregnancy rate from 42 to 66 h was greater (P < .05) in the 7-11 Synch group (66%: 29/44) than in the Select Synch group (40%: 18/45). In summary, the 7-11 Synch protocol improved synchrony of estrus without reducing fertility. This protocol has potential future application for fixed-time AI in beef cattle production systems.  相似文献   

8.
Spring-calving, crossbred (1/4 to 3/8 Brahman) primiparous (n = 56) and multiparous (n = 102) beef cows were used to evaluate the effects of progesterone, delivered via a controlled internal drug-releasing (CIDR) device, and prostaglandin F(2alpha) (PGF(2alpha)) on estrous behavior, synchronization rate, initiation of estrous cycles, and pregnancy rate during a 2-yr period. To determine luteal activity, weekly blood samples were collected 3 wk before initiation of a 75-d breeding season. Treated cows received a CIDR for 7 d beginning on d -7 of the breeding season. On d 0, CIDR were removed, and cows receiving CIDR were administered PGF(2alpha); control cows received no treatment. Cows were exposed to bulls, and estrous activity was monitored using a radiotelemetry system for the first 30 d of the breeding season. Treatment with CIDR-PGF(2alpha) increased (P < 0.05) the number of mounts received (22.5 +/- 3.0 vs. 13.7 +/- 3.9 for CIDR-PGF(2alpha) vs. untreated control cows, respectively) but did not influence duration of estrus or quiescence between mounts. Number of mounts received and duration of estrus were greater (P < 0.05) in multiparous compared with primiparous cows. Synchronization of estrus was greater (P < 0.05) in cows treated with CIDR-PGF(2alpha) (56%) compared with control cows (13%) during the first 3 d of the breeding season. More (P < 0.05) anestrous cows treated with CIDR-PGF(2alpha) than anestrous control cows were in estrus during the first 3 d (59 vs. 12%) and 30 d (82 vs. 63%) of the breeding season. Treatment with CIDR-PGF(2alpha) decreased (P < 0.05) the interval to first estrus after treatment during the first 30 d of the breeding season compared with control cows (5.5 +/- 1.1 vs. 9.0 +/- 1.4 d). First service conception rate was greater (P < 0.05) in CIDR-PGF(2alpha)-treated cows compared with control cows. Cyclic cows at initiation of the breeding season had an increased (P < 0.05) 75-d pregnancy rate compared with anestrous cows, and the pregnancy rate tended (P = 0.10) to be greater in multiparous compared with primiparous cows. We conclude that treatment of Brahman-influenced cows with progesterone via a CIDR for 7 d, along with administration of PGF(2alpha) at CIDR removal, increases the number of mounts received, improves synchronization and first service conception rates, decreases the interval to first estrus after treatment, and may be effective at inducing estrous cycles in anestrous cows.  相似文献   

9.
Beef cattle were treated to synchronize estrus using one of three procedures, and effects on subsequent endocrine responses and fertility were studied. Procedures were 1) feeding .5 mg.head-1.d-1 of melengestrol acetate (MGA) for 21 d (M), 2) feeding .5 mg.head-1.d-1 of melengestrol acetate for 21 d followed 14 d later by a single injection of prostaglandin F2 alpha (M + P) and 3) two injections of prostaglandin (PGF) 14 d apart (P). In Exp. 1, 94 beef cows were assigned to be artificially inseminated 12 h after detection of estrus. Procedures for synchronizing estrus did not affect the proportion of cows observed in estrus within 7 d (mean = 70.2%). However, conception rate of cows treated with MGA alone was lower (P less than .01) than that of cows treated with PGF alone (31.8 vs 78.3%). The conception rate of cows in the M + P group was intermediate (57.1%) but greater than that of cows treated with MGA alone (P less than .10). In Exp. 2, 18 heifers were observed for estrus four times daily and bled daily from 1 wk before predicted estrus until second estrus or 35 d post-treatment. Heifers treated with MGA alone maintained lower concentrations of progesterone and higher concentrations of estradiol-17 beta before first estrus than heifers treated with MGA and PGF or PGF alone (P less than .01). Conception rate following insemination was lower after long-term feeding of MGA than after two injections of PGF. Delaying insemination until after a PGF-shortened cycle 14 d after MGA resulted in an intermediate conception rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Three experiments were conducted to evaluate methods to decrease or eliminate the detection of estrus inherent to a melengestrol acetate (MGA)-PGF2alpha (PGF) protocol for synchronization of estrus in heifers. In each experiment, all heifers received 0.5 mg of MGA x animal(-1) x d(-1) for 14 d (d -32 to -19) and PGF (25 mg, i.m.; d 0, 0 h) 19 d after the last feeding of MGA (MGA-PGF protocol). In Exp. 1, heifers (n = 709) were assigned to each of the following protocols: 1) the MGA-PGF protocol with AI 6 to 12 h after detection of estrus (estrus AI; MGA-PGF); 2) MGA-PGF plus 100 microg, i.m. of GnRH on d -7 (1x GnRH) and estrus AI; or 3) MGA-PGF, GnRH on d -7, and GnRH (100 microg, i.m.) at 48 h after PGF, coincident with insemination (2x GnRH-TB48). In Exp. 2, heifers (n = 559) received the MGA-PGF protocol and were inseminated by either estrus AI or fixed-time AI (TAI) at 60 h, coincident with an injection of GnRH (GnRH-TB60). In Exp. 3, all heifers (n = 460) received the MGA-PGF protocol and were inseminated by estrus AI when detected up to 73 h. Heifers not observed in estrus by 73 h received TAI between 76 and 80 h. Half the heifers inseminated by TAI received no further treatment (TB80), and the remaining half was injected with GnRH at insemination (GnRH-TB80). Variance associated with the interval to estrus and the proportion in estrus from d 0 to 5 was similar for 1x GnRH and MGA-PGF treatments in Exp. 1. Pregnancy rate (d 0 to 5) did not differ for the MGA-PGF and 1x GnRH treatments (62.5 and 60.4%, respectively), and both were greater (P < 0.05) than TAI pregnancy rate in the 2x GnRH-TB48 treatment (42.3%). In Exp. 2, the peak estrous response occurred 60 h after PGF. Pregnancy rate during the synchrony period was greater (P < 0.05) for the MGA-PGF (255/401; 63.6%) than the GnRH-TB60 (74/158; 46.6%) treatment. In Exp. 3, 75.7% of heifers (348/460) were detected in estrus by 73 h and were inseminated, with a conception rate of 74.4%. Pregnancy rates after TAI did not differ between TB80 and GnRH-TB80 (14/56 = 25% and 19/ 56 = 33.9%, respectively). Total pregnancy rate was 63.5% for heifers inseminated after detected estrus and by TAI. Collectively, these data indicate that the exclusive use of TAI for heifers treated with the MGA-PGF protocol resulted in lower pregnancy rates than when AI was performed after detection of estrus. However, estrus AI for 3 d and TAI at the end of d 3 could result in pregnancy rates similar to those achieved after a 5-d period of detecting estrus.  相似文献   

11.
The effect of the uterus on luteal lifespan and pattern of secretion of progesterone following early weaning of calves from anestrous beef cows was studied. Calves were weaned from 15 anestrous beef cows 23 to 33 d postpartum, and cows were allotted to a control (sham surgery, n = 8) or a hysterectomy (n = 7) group, with surgery performed at weaning. Cows in the hysterectomy group were injected (im) with 25 mg prostaglandin F2 alpha (PGF2 alpha) approximately 20 d after first estrus (d 0). The interval from weaning to estrus was longer (P less than .05) for the hysterectomy group (10.4 +/- 1.6 d) than the control group (6.2 +/- .5 d). In the control group, the first estrous cycle (8.8 +/- .3 d) was shorter (P less than .01) than the second estrous cycle (20.2 +/- .5 d). Following first estrus in the hysterectomy group, cows were not detected in estrus until after injection of PGF2 alpha and did not return to estrus. From d 0 to 5, mean concentrations of plasma progesterone were similar (P greater than .05) between groups for both estrous cycles; after d 5 of estrous cycle 1, concentrations of plasma progesterone decreased in the control group. Within the hysterectomy group, the pattern of secretion of progesterone from d 0 to 16 was similar after the first and second estrus. Furthermore, there was no difference in the pattern of secretion of progesterone from d 0 to 16 between hysterectomy (first or second estrous cycles) and control (second estrous cycle) groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We compared synchronization and pregnancy rates, and the increase in blood progesterone concentrations during luteal development, between (1) Ovsynch plus an intravaginal controlled internal drug release (CIDR) device protocol followed by timed embryo transfer (timed ET), and (2) a conventional estrus synchronization method using PGF(2 alpha) and ET in suckled postpartum Japanese Black beef cows. Cows in the PGF group (n=18) received a PGF(2 alpha) analogue when a CL was first palpated per rectum at 10-d intervals after 1 to 2 month postpartum. Cows (n=11), which showed estrus (Day 0) within 5 d of the PGF(2 alpha), and had a CL on Day 7, received ET. Cows in the Ovsynch+CIDR group (n=19) underwent the Ovsynch protocol plus a CIDR for 7 d (GnRH analogue and CIDR on Day-9, PGF(2alpha) analogue with CIDR removal on Day-2, and GnRH analogue on Day 0), with ET on Day 7. The ovulation synchronization (100%) and embryo transfer (100%) rates in the Ovsynch+CIDR group were greater (P<0.01) than the estrus synchronization (66.7%) and the embryo transfer (61.1%) rates in the PGF group. The postpartum interval at ET in the Ovsynch+CIDR group (62.5 +/- 2.5 d) was shorter (P<0.01) than in the PGF group (74.9 +/- 3.9 d). The pregnancy rate in the Ovsynch+CIDR group (57.9%) did not differ significantly from that in the PGF group (50.0%). Plasma progesterone concentrations were not significantly different in the two groups on Days 0, 1, 2, 5, 7, 14 and 21. In summary, higher synchronization and transfer rates, and shorter postpartum interval to ET, can be achieved with timed ET following the Ovsynch plus CIDR protocol than after estrus with the single PGF(2 alpha) treatment followed by ET in suckled postpartum recipient beef cows. Pregnancy rates were similar. Also, the increase in blood progesterone concentrations during luteal development following ovulation synchronized by the Ovsynch plus CIDR protocol was similar to that after estrus induced by the PGF(2 alpha) treatment.  相似文献   

13.
Two experiments were conducted to determine whether extending the interval between removal of melengestrol acetate (MGA) from feed and injection of prostaglandin F (PGF) from 17 to 19 d would affect synchronization of estrus, conception, and pregnancy rates of beef heifers. In both experiments, heifers were fed MGA for 14 d, and PGF was given at either 17 or 19 d after cessation of MGA feeding. Heifers were observed for estrus and artificially inseminated for 5 d after PGF injection. In Exp. 1, 240 yearling heifers were randomly assigned to either a 17- or a 19-d treatment group according to estrous status and day of the estrous cycle. In Exp. 2, 1409 yearling heifers on a cooperating ranch were randomly assigned to the same two treatment groups without knowledge of estrous status. The PGF injection at 19 d (Exp. 1) caused a higher (P<0.05) percentage of heifers to exhibit estrus by 72 h after the injection compared with heifers receiving the injection at 17 d. A greater percentage (P<0.01) of heifers in the 19-d group were in the late luteal phase of the estrous cycle at the time of PGF injection compared with the heifers in the 17-d group, and pregnancy rates were higher for the heifers in the late luteal phase. In Exp. 2, heifers injected with PGF at 19 d after MGA had a greater (P<0.05) percentage in estrus (10%) during the 5-d breeding period, and had higher (P<0.05) pregnancy rates in 5 d (7.6%) and 50 d of breeding (5.5%), compared with heifers injected with PGF 17 d after withdrawal of MGA. These results indicate that the PGF injection given at 19 d after removal of MGA from the diet increases synchronized estrous response and results in higher pregnancy rates in heifers compared with the 17-d injection treatment.  相似文献   

14.
In Exp. 1, 187 lactating beef cows were treated with injections of GnRH 7 d before and 48 h after prostaglandin F2alpha (PGF2alpha; Cosynch) or with Cosynch plus a 7-d treatment with an intravaginal progesterone (P4)-releasing insert (CIDR-B; Cosynch + CIDR). In Exp. 2, 183 lactating beef cows were treated with the Cosynch protocol or with Cosynch plus a 7-d treatment with norgestomet (Cosynch + NORG). In Exp. 1 and 2, blood samples for later P4 analyses were collected on d -17, -7 (first GnRH injection), 0 (PGF2alpha injection), and at timed artificial insemination (TAI; 48 h after PGF2alpha). In Exp. 3, 609 lactating beef cows were treated with the Cosynch + CIDR protocol or were fed 0.5 mg of melengestrol acetate (MGA) per day for 14 d before initiating the Cosynch protocol 12 d after the 14th d of MGA feeding (MGA + Cosynch). Blood samples were collected as in Exp. 1 and 2, plus additional samples on d -33 and -19 before PGF2alpha. In Exp. 4, 360 lactating beef cows were treated with a Cosynch + CIDR protocol, with TAI occurring at either 48 or 60 h after PGF2alpha, while receiving either GnRH or saline to form four treatments. Blood samples were collected as in Exp. 1 and 2. In Exp. 1, addition of P4 reduced the ability of the first GnRH injection to induce ovulation in anestrous cows with low P4 before PGF2alpha but improved (P = 0.06) pregnancy rates (61 vs 66%). In Exp. 2, the addition of NORG mimicked P4 by likewise increasing (P < 0.01) pregnancy rates (31 vs 51%) beyond those after Cosynch. In Exp. 3, the Cosynch + CIDR protocol increased (P < 0.001) pregnancy rates from 46 to 55% compared to the MGA + Cosynch protocol. In Exp. 4, administration of GnRH at TAI improved (P < 0.05) pregnancy outcomes (50 vs 42%), whereas timing of TAI had limited effects. We conclude that a progestin treatment concurrent with the Cosynch protocol improved pregnancy outcomes in all experiments, but pretreatment of cows with MGA was not as effective as the CIDR insert or NORG implants in this Cosynch-TAI model. Most of the improvement in pregnancy rates was associated with the increase in pregnancy rates of anestrous cows, regardless of whether ovulation was successfully induced in response to GnRH 7 d before PGF2alpha. Injection of GnRH at TAI following the Cosynch + CIDR protocol increased pregnancy rates in cycling cows with high P4 before the PGF2alpha injection and in anestrous cows with low P4 before PGF2alpha injection.  相似文献   

15.
Although treatment of cycling cows with low concentrations of melengesterol acetate (MGA) results in formation of persistent follicles, in the absence of corpora lutea, it is not known whether persistent follicles form in anestrous cows in response to a similar treatment. The objective of this experiment was to determine the effect of long-term MGA treatment (14 d) on follicular dynamics and the secretion of estradiol in anestrous postpartum beef cows. Treatment groups (replicated over 2 yr) included the following: anestrous control (AC; n = 11), anestrous MGA (AM; n = 16), and cycling MGA (CM; positive control; n = 16). Angus-crossbred cows were assigned to treatment by age, cow body condition, and days postpartum. Cows were fed carrier (AC group) or 0.5 mg MGA x animal(-1) x d(-1) (AM and CM groups) for 14 d beginning approximately 38 d postpartum. Cows allotted to the CM group were injected with PGF2alpha, on the first day of MGA treatment to induce luteolysis. The preceding treatment (CM) results in formation of persistent follicles and secretion of elevated concentrations of estradiol. Ovaries of each cow were examined daily by transrectal ultrasonography beginning 5 to 7 d preceding the initiation of feeding MGA or carrier and continued until ovulation or 7 d following MGA feeding. There was no difference among groups in the stage of follicular wave or diameter of the largest follicle at the start of carrier or MGA feeding. The length of the follicular wave present at the start of MGA feeding was greater (P < 0.01) for cows in the CM (14.5 d, yr 1; 18.3 d, yr 2) group compared to the AM (9.4 d, yr 1; 7.9 d, yr 2) or AC (9.7 d, yr 1; 10.7 d, yr 2) groups. Maximum follicular diameter over both years was greater (P < 0.01) for the CM (20.6 mm) group than the AM (15.1 mm) or AC (16.4 mm) groups. Circulating concentrations of estradiol were also increased (P < 0.05) in the CM group compared to the AM or AC groups. However, MGA appeared to have no effect (P > 0.05) on the number of follicles recruited, growth rate of the dominant follicle during the first 6 d oftreatment, or growth rate to the maximum follicular diameter. In summary, MGA treatment did not increase the duration ot the follicular wave, maximum follicular diameter, or secretion of estradiol in anestrous postpartum cows, nor did MGA affect the number of follicles recruited or growth rate of dominant follicles in cycling or anestrous animals.  相似文献   

16.
Our hypothesis was that estrus synchronization in beef cattle using melengestrol acetate (MGA) and an injection of progesterone (P4) and 17beta-estradiol (E2) to regress dominant ovarian follicles would improve pregnancy rate (number conceived/number in group) to AI compared with feeding only MGA or injecting PGF2alpha. During 2 yr, peripubertal heifers (n = 52) and cows (n = 327) received either 1) MGA for 18 d (d 0 = 1st d of MGA) plus an injection of P4 and E2 in sesame oil (vehicle) on d 11 to regress persistent ovarian follicles (MGA+P4), 2) MGA for 18 d plus vehicle on d 11 (MGA), or 3) two injections of PGF2alpha 10 d apart (d 7 and 17, PG). Concentration of P4 was assessed in blood samples obtained on d 0, 7, and 17 to indicate estrual status (anestrual or estrual) during treatment to induce estrus synchrony. Observations for detection of estrus occurred every 6 h for 180 h following treatment cessation. Females showing estrus were inseminated 6 to 12 h after estrus detection. Conception to AI was determined by ultrasonography 35 to 40 d later. Conception rate was greater (P < .05) in females in the PG than in those in the MGA group but did not differ from conception rate of females in the MGA+P4 group. Among anestrual females, estrus synchrony rates were greatest (P < .10) among females treated with MGA+P4. Among females that were estrual before treatment cessation, estrus synchrony rates were greater (P < .10) among females treated with MGA+P4 or PG than among those given MGA. Pregnancy rates were greater (P < .05) among females that were anestrual before treatment cessation and treated with MGA or MGA+P4 than among those treated with PG. Estrus synchronization using MGA+P4 and E2 differentially improves estrus synchronization and pregnancy rates among anestrual and estrual beef cattle while maintaining conception rates similar to those of PGF2alpha-treated females.  相似文献   

17.
Postpartum anestrous interval in beef cows is a major factor contributing to reproductive failure during a defined breeding season. Our objectives were to determine the ability of a controlled internal drug-releasing device (CIDR, 1.9 g of progesterone), a normal dose of melengestrol acetate (MGA, 0.5 mg x cow(-1) x d(-1)), or a high dose of MGA (4.0 mg x cow(-1) x d(-1)) to induce ovulation and to eliminate short estrous cycles. Multiparous beef cows (n = 100) were equally assigned to one of four treatments: CIDR, normal MGA, high MGA, or control by age, days postpartum, body condition, and body weight. All cows were fed carrier (0.9072 kg x cow(-1) x d(-1)) with (normal MGA, 0.55 mg/kg; high MGA, 4.41 mg/kg) or without MGA for 7 d (d -6 to 0). On d -6, CIDR were inserted and then removed on d 0. Estrous behavior was monitored continuously from d -6 until 29 using HeatWatch electronic mount detectors. Blood was collected on d -13, and three times weekly from d -6 to 29. Treatment influenced (P = 0.03) the percentage of cows that were detected in standing estrus. Beginning on d 2, more CIDR-treated cows had exhibited standing estrus compared with high MGA-treated or control cows, but CIDR- and normal MGA-treated cows did not differ. The percentage of CIDR-treated cows that had ovulated was greater (P < 0.05) than the percentage of normal MGA-treated, high MGA-treated, or control cows beginning on d 4. The percentage of cows that exhibited standing estrus before the first postpartum ovulation (CIDR = 65%, normal MGA = 57%, high MGA = 35%, control = 30%) did not differ (P = 0.09) among treatments. Luteal life span following the first ovulation postpartum and the percentage of cows with a normal luteal life span (i.e., progesterone > 1 ng/mL for > or = 10 d) was greater (P < 0.01) in CIDR-treated cows (14.0 +/- 0.8 d; 20/20, 100%) compared with normal MGA-treated (6.2 +/- 1.0 d; 3/13, 23%), high MGA-treated (9.6 +/- 1.0 d; 8/14, 57%), or control cows (6.1 +/- 0.9 d; 4/17, 24%), and greater (P < 0.03) in high MGA-treated cows than in normal MGA-treated or control cows. In the present study, treatment of early postpartum suckled beef cows with CIDR induced ovulation and initiated estrous cycles with a normal luteal life span in more cows than did treatment with MGA. Treatment with MGA (normal or high dose) did not induce ovulation earlier than in control cows, but a high dose of MGA increased the percentage of cows with normal luteal life spans following the first ovulation postpartum.  相似文献   

18.
The objective of this study was to determine if factors associated with the biostimulatory effect of bulls alter breeding performance of primiparous, suckled beef cows using a progestin-based estrous synchronization protocol. We tested the hypotheses that the estrous synchronization response and AI pregnancy rates differ among cows exposed to bulls, continuously exposed to bull urine, and exposed to fence-line contact with bulls or cows not exposed to bulls or bull urine. Data were collected from 3 experiments performed over consecutive years. Cows were assigned to the following treatments: bull exposure (BE; n = 26) or no bull exposure (NB; n = 25) in Exp. 1, bull urine exposure (BUE; n = 19) or steer urine exposure (SUE; n = 19) in Exp. 2, and fence-line contact with bulls (BFL; n = 26) or no bull exposure (NB; n = 26) in Exp. 3. Synchronization protocols in each experiment included the use of a controlled internal drug release device (d -10), PGF(2alpha) (d -3), and GnRH and fixed-time AI (TAI; d 0). Cows that were observed in estrus by 60 h after PGF(2alpha) were inseminated 12 h later. Cows not observed in estrus by 60 h after PGF(2alpha) were TAI at 72 h and given GnRH (100 mug). Pregnancy was determined by ultrasonography 35 d after TAI. In Exp. 1, 2, and 3, cows were exposed directly to bulls, bull urine, or bull fence-line contact for 35, 64, and 42 d, respectively. Data were analyzed between treatments within each experiment. The proportion of estrous cycling cows did not differ between treatments at the beginning of each experiment; however, more (P < 0.05) BE and BFL cows were estrous cycling at the beginning of the estrous synchronization protocol than NB cows in Exp. 1 and 3. The proportion of cows that showed estrus and interval to estrus after PGF(2alpha) did not differ between treatments in Exp. 1 and 3. However, in Exp. 2, more BUE cows tended (P = 0.09) to have shorter intervals to estrus and to exhibit estrus after PGF(2alpha) than SUE cows. Overall, AI pregnancy rates were greater (P < 0.05) for BE and BUE cows than for NB and SUE cows in Exp. 1 and 2, respectively. There was no difference in AI pregnancy rates between BFL and NB cows in Exp. 3. The presence of bulls and exposure to bull urine appeared to improve breeding performance of primiparous beef cows using a progestin-based estrous synchronization protocol, whereas fence-line bull exposure was insufficient to cause this biostimulatory effect. We propose that a novel urinary pheromone of bulls may be responsible for the enhancement of fertility in the primiparous, postpartum cow.  相似文献   

19.
Two progestin-based protocols for the synchronization of estrus in beef cows were compared. Cyclic, nonlactating, crossbred, beef cows were assigned by age and body condition score to one of two treatments. Cows assigned to the MGA Select protocol were fed melengestrol acetate (MGA; 0.5 mg x cow(-1) x (-1)) for 14 d, GnRH was administered (100 microg i.m. of Cystorelin) 12 d after MGA withdrawal, and PGF2alpha (25 mg of i.m. Lutalyse) was administered 7 d after GnRH. Cows assigned to the 7-11 Synch protocol were fed MGA for 7 d and were injected with PG on d 7 of MGA, GnRH on d 11, and PG on d 18. Transrectal ultrasonography was performed daily to monitor follicular dynamics from the beginning of MGA feeding through ovulation after the synchronized estrus. All cows exhibited estrus in response to PG. Mean interval to estrus was shorter (P < 0.01) for 7-11 Synch-treated cows (56 +/- 1.5 h) than for cows assigned to the MGA Select protocol (73 +/- 4.7 h). Mean interval from estrus to ovulation did not differ between treatments (P > 0.10). Variances for interval to estrus differed (P < 0.01) between treatments. Mean follicular diameter at GnRH injection, PG injection, and estrus did not differ (P > 0.10) between treatments. Relative to MGA Select, serum estradiol-17beta concentrations were higher (P < 0.01) for 7-11 Synch 2 d and 1 d before, on the day of GnRH injection, in addition to 4 d after GnRH, and 24 h after PG. Mean progesterone concentrations were greater (P < 0.01) for MGA Select cows from 4 d before to 7 d after GnRH. Forty-four percent of the variation in interval to estrus between treatments was explained by differences in estradiol-17beta concentrations 24 h after PG. This study suggests that follicular competence is likely related to steroidogenic capacity of the follicle and the endocrine environment under which growth and subsequent ovulation of the dominant follicle occurs.  相似文献   

20.
We determined whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or estrous detection plus TAI, and whether adding a controlled internal device release (CIDR) to GnRH-based protocols would enhance fertility. Estrus was synchronized in 2,598 suckled beef cows at 14 locations, and AI was preceded by 1 of 5 treatments: 1) a CIDR for 7 d with 25 mg of PG F(2alpha) (PGF) at CIDR removal, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received 100 mug of GnRH and TAI at 84 h (control; n = 506); 2) GnRH administration, followed in 7 d with PGF, followed in 60 h by a second injection of GnRH and TAI (CO-Synch; n = 548); 3) CO-Synch plus a CIDR during the 7 d between the first injection of GnRH and PGF (CO-Synch + CIDR; n = 539); 4) GnRH administration, followed in 7 d with PGF, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received GnRH and TAI at 84 h (Select Synch & TAI; n = 507); and 5) Select Synch & TAI plus a CIDR during the 7 d between the first injection of GnRH and PGF (Select Synch + CIDR & TAI; n = 498). Blood samples were collected (d -17 and -7, relative to PGF) to determine estrous cycle status. For the control, Select Synch & TAI, and Select Synch + CIDR & TAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed using the AM/PM rule. Pregnancy was diagnosed by transrectal ultrasonography. Percentage of cows cycling at the initiation of treatments was 66%. Pregnancy rates (proportion of cows pregnant to AI of all cows synchronized during the synchronization period) among locations across treatments ranged from 37% to 67%. Pregnancy rates were greater (P < 0.05) for the Select Synch + CIDR & TAI (58%), CO-Synch + CIDR (54%), Select Synch & TAI (53%), or control (53%) treatments than the CO-Synch (44%) treatment. Among the 3 protocols in which estrus was detected, conception rates (proportion of cows that became pregnant to AI of those exhibiting estrus during the synchronization period) were greater (P < 0.05) for Select Synch & TAI (70%; 217 of 309) and Select Synch + CIDR & TAI (67%; 230 of 345) cows than for control cows (61%; 197 of 325). We conclude that the CO-Synch + CIDR protocol yielded similar pregnancy rates to estrous detection protocols and is a reliable TAI protocol that eliminates detection of estrus when inseminating beef cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号