首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four extruded diets differing in protein/fat concentrations, 378/389 g kg?1, 425/346 g kg?1, 480/308 g kg?1 and 524/256 g kg?1 were tested in a digestibility trial and a growth study. Apparent digestibility of protein and fat were not significantly different among the diets when tested in 1-kg Atlantic salmon, Salmo salar L., in sea water. The diets represented a range of digestible protein to digestible energy ratios (DP/DE ratios) of 14.1, 16.4, 18.8 and 21.9 g MJ?1. The 138-day growth study was performed with triplicate groups of Atlantic salmon of 1.0 and 2.5 kg initial weight. Irrespective of size; growth, feed conversion ratio (FCR), nitrogen and energy retention were poorer in fish fed the diet with DP/DE ratio of 14.1 g MJ?1 compared with the fish fed the other diets. A DP/DE ratio of 16.4 g MJ?1 was sufficient to produce maximum growth for the large fish, while the DP/DE ratio of 18.8 g MJ?1 produced the highest growth in the small fish. In the large fish, the lowest FCR was obtained on a DP/DE ratio of 16.4 g MJ?1, while there was no clear difference in FCR within the small fish when diets of DP/DE ratios of 16.4–21.9 g MJ?1 were fed. The carcass-to-body ratio in the small fish decreased with decreasing DP/DE ratios. The fish fed the diet of 21.9 g MJ?1 had significantly lower fat and dry matter and higher protein content than fish of similar size fed the other diets. Increased dietary lipid content seemed to improve astaxanthin deposition in the small fish, while the large fish showed no significant differences in astaxanthin deposition due to dietary treatment. This study indicates that a DP/DE ratio of 14.1 g MJ?1 in high-energy diets for Atlantic salmon in sea water is below the optimal DP/DE ratio for growth and feed utilization, and that the optimal DP/DE ratio decreases with increasing fish weight. DP/DE ratios around 19 g MJ?1 for fish weighing 1 to 2.5 kg, and 16–17 g MJ?1 for fish weighing 2.5 to 5 kg, are suggested to be optimal.  相似文献   

2.
The aim of the study was evaluation of whole oat meal as an ingredient in salmon diets. Atlantic salmon (145 g) were fed diets with 0, 100, 150, 200, 250 or 300 g kg1 of oats (oat series), or diets containing 300 g kg?1 of mixes of oats and maize (oat maize series). The mixes of oats/maize were 0/300, 60/240, 120/180, 180/120, 240/60 and 300/0 g kg?1. Net pens in sea water were used. The growth trial lasted 72 days and was followed by a digestibility trial. Oat starch, which had not been subjected to any form of heat treatment, was found to be well digested at low dietary incorporation levels. In the oat series, starch digestibility decreased with increasing starch level and lipid digestibility improved, whereas no changes were observed in protein digestibilities. The fish absorbed significantly more starch from the diet with oat/maize mix 180/120 g kg?1 than from the diet with only oats or maize. A significant growth reduction was observed in the oat series as oat inclusion increased. Absorbed starch (calculated value) was not significantly correlated to plasma glucose or insulin level, but was found to be positively correlated to liver glycogen in the maize oat series.  相似文献   

3.
Two trials with Atlantic salmon (Salmo salar) were conducted to evaluate the potential of krill meal to improve feed intake. In the first experiment, after transfer to sea water, salmon smolts were fed diets added 75 or 150 g kg?1 Antarctic krill meal in substitution for fish meal for 13 weeks. The apparent digestibility coefficient for crude protein and the majority of the amino acids was significantly lower in the feeds added krill meal (around 83.5%) than in the control diet (84.9%), whereas the digestibility of crude lipids, dry matter and energy was not significantly different among the three diets. Krill meal addition resulted in higher feed intake, which led to higher growth rates and final body weights. In the second experiment, large salmon were fed a diet containing 100 g kg?1 krill meal for 6 weeks before slaughter. Their feed intake and growth performance were assessed, and fillet and visceral fat contents were measured. Salmon fed the 100 g kg?1 krill meal diet tended to eat more, resulting in significantly increased growth rates, when compared to control fish. Fish fed krill meal also had a significantly lower condition factor.  相似文献   

4.
Because of the high costs associated with feed inputs, as well as increased concern about waste production on fish farms, there is considerable interest in developing growout diets which are both cost effective and low polluting. In two 12‐week growth trials, the response of subadult red drum, Sciaenops ocellatus, fed either a diet of 440 or 360 g protein kg?1 diet (44% or 36%) with varying E:P ratios were tested. In the first experiment, five diets containing 440 g protein kg?1 diet and one diet containing 360 g protein kg?1 diet (reference) were offered to red drum (mean initial weight of 186 g). The five test diets contained 83, 103, 123, 143, and 163 g lipid kg?1 diet, resulting in E:P ratios ranging from 34.3 to 38.9 kJ g protein–1. In experiment 2, five diets providing 360 g protein kg?1 diet and one diet containing 440 g protein kg?1 diet (reference) were offered to red drum (mean initial weight of 145 g). Dietary lipid levels included 83, 123, and 163 g lipid kg?1 diet, and dietary carbohydrate was diluted with 10% and 20% non‐nutritive bulk filler in two of the diets to result in E:P ratios ranging from 34.5 to 46.7 kJ g protein–1. In experiment 1, no significant differences in mean final weight, mean weight gain, feed efficiency, protein conversion efficiency or hepatosomatic index were observed between the five test diets providing 440 g protein kg?1 diet. Intraperitoneal fat generally increased with increasing dietary lipid. The results of experiment 2 indicate that amongst the test diets with 360 g protein kg?1 diet, mean final weight, mean weight gain, feed efficiency, protein conversion efficiency and hepatosomatic index were not significantly different. Intraperitoneal fat significantly increased with increasing dietary lipid. In both experiments, fish offered diets with 440 g protein kg?1 diet produced significantly higher growth and FE values as compared to fish receiving diets containing 360 g protein kg?1 diet. This study indicated that subadult red drum are tolerant of shifts in E:P ratios and utilize a wide range of dietary lipid and carbohydrate without compromising growth.  相似文献   

5.
A feeding trial with a duration of 12 weeks was conducted to determine the effects of various protein levels, in relation to diet digestibility and growth of the gilthead sea bream, Sparus aurata L. Four experimental fish meal/wheat meal based diets (A,B,C,D) containing 400, 450, 500 and 550 g kg?1 protein, respectively, were tested. The increase of the fishmeal content of the diet led to an increment of dry matter digestibility. Apparent digestibility coefficients of protein and lipids were always very high (being near or even over 90%). Energy digestibility coefficients increased from diet A to diet D, which corresponds to a decrease in the wheat meal content of the diet. Voluntary feed intake increased with the decrease of protein content of the diet (from diet D to diet A). In the other sense, feed/gain ratio decreased regularly as protein percentage increased (from diet A to diet D). The most favourable feed/gain ratio, 1.07, was noted for the group receiving 55% protein (diet D). Fish on the lowest protein diet (Diet A) showed the highest protein efficiency ratio (PER) and the highest percentage retention of the digestible protein intake. Other than slight positive differences between fish fed diets with 500 and 550 g kg?1 protein, no significant differences were observed for growth when dietary protein exceeded 450 g kg?1. Beyond this level, no significant difference in final average individual weight was observed. Although it is generally considered that the dietary protein requirement for gilthead sea bream is 400 g kg?1, our experiment demonstrates that to obtain high growth rates (>2.3% per day), a minimum of 450 g kg?1 protein in the diet is necessary. However, the most favourable values for growth rates and feed/gain ratio are obtained with 550 g kg?1 protein in diet, considering that no significant differences were observed for PER among diets B, C and D.  相似文献   

6.
This study assessed the suitability and cost efficacy of an equal blend of canola oil (CO) and poultry fat (PF) as a supplemental dietary lipid source for juvenile Atlantic salmon. Quadruplicate groups of Atlantic salmon (~400 g) held in 4000 L outdoor fibreglass tanks supplied with running (35–40 L min?1), aerated (dissolved oxygen, 7.88–10.4 mg L?1), ambient temperature (8.6–10.9°C) sea water (salinity, 26–35 g L?1) were fed twice daily to satiation one of three extruded dry pelleted diets of equivalent protein (488–493 g kg?1 dry matter) and lipid (267–274 g kg?1 dry matter) content for 84 days. The diets were identical in composition except for the supplemental lipid (234.7 g kg?1) source viz., 100% anchovy oil (AO; diet COPF‐0), 70.2% AO and 29.8% CO and PF (diet COPF‐30), and 40.3% AO and 59.7% CO and PF (diet COPF‐60). Atlantic salmon growth rate, feed intake, feed efficiency, protein and gross energy utilization, percent survival and whole body and fillet proximate compositions were not affected by diet treatment. Cost per kilogram weight gain was about 10% less for fish fed diet COPF‐60 than for diet COPF‐0. Percentages of saturated fatty acids in dietary and fillet lipids varied narrowly. Moreover, percentages of 18:1n‐9, monounsaturated fatty acids, 18:2n‐6, n‐6 fatty acids, 18:3n‐3, and ratios of n‐6 to n‐3 fatty acids in the flesh lipids were directly related to the dietary level of CO and PF whereas 22:6n‐3, the total of 20:5n‐3 (eicosapentaenoic acid; EPA) and 22:6n‐3 (docosahexaenoic acid; DHA), and n‐3 fatty acids revealed the opposite trend. Percentages of 22:6n‐3, EPA and DHA, and n‐3 fatty acids were significantly depressed in fish fed diet COPF‐60 versus diet COPF‐0. We conclude that a 1:1 blend of CO and PF is an excellent cost‐effective dietary source of supplemental lipid for Atlantic salmon in sea water.  相似文献   

7.
This study determined the digestibility of protein in partially dehulled sunflower meal (SFM) and then, as the main goal, the nutritive value of high‐temperature extruded (≤149°C) partially dehulled SFM (SFMEX) for post‐smolt Atlantic salmon Salmo salar in sea water. The digestibility study was conducted using the settling column approach (‘Guelph system’) for faeces collection as described by Hajen, Higgs, Beames and Dosanjh. In the nutritive value study, triplicate groups of 50 salmon (mean weight ~116 g) in 4000‐L outdoor fibreglass tanks supplied with 25–40 L min?1, filtered, oxygenated (dissolved oxygen, 7.0–8.5 mg L?1), 11–12°C sea water (salinity, 29–31 g L?1), were fed twice daily to satiation one of five steam‐pelleted dry diets that contained 422 g of digestible protein (DP) kg?1 and ~16.4 MJ of digestible energy (DE) kg?1 on a dry weight basis for 84 days. Low‐temperature‐dried anchovy meal (LT‐AM) comprised 68.2% of the basal diet protein whereas in four test diets, SFMEX progressively replaced up to 33.0% of the DP provided by LT‐AM in the basal diet (SFMEX≤271 g kg?1 of dry matter). Sunflower meal had 87.9% DP. Diet treatment did not significantly affect specific growth rate (1.39–1.45% day?1), feed efficiency (1.19–1.26), percentage of dietary protein retained (45.8–47.5), gross energy utilization (46.5–49.4%), per cent survival (96.0–99.3) or terminal whole body and muscle proximate compositions. We conclude that SFMEX can comprise ≥271 g kg?1 of the dry diet or ≥22.7% of the digestible dietary protein of post‐smolt Atlantic salmon in seawater without any adverse effects on their performance.  相似文献   

8.
After feeding Atlantic salmon, Salmo salar L., five graded amounts of wheat starch from 0 to 310 g kg?1, low but increased levels of glycogen in kidney, heart and gills were determined. No variations were found in proximate or glycogen compositions of muscle, whereas the liver composition reflected the diet composition. Whole-body homogenates varied in dry matter and lipid levels; the variation was according to g lipid eaten per fish. Plasma glucose levels ranged above average levels only when the starch level in the feed was higher than 220 g kg?1. Although feed intake and thereby lipid intake increased as dietary carbohydrate increased in the present experiment, no differences in plasma concentrations of cholesterol and only small changes in triglycerides were determined. The increase in dietary carbohydrate was balanced with protein, and total plasma protein concentrations followed the decrease in feed protein content. Haematocrit, haemoglobin, mean cell volume and mean cell haemoglobin all showed significantly reduced levels as dietary starch increased, indicating a fibre effect from ‘left-over’ starch in the intestine followed by reduced absorption of divalent ions, such as iron.  相似文献   

9.
The aim of the present work was to test the capacity of Octopus vulgaris to use carbohydrates supplied in three diets: a diet without added carbohydrates (diet C0: 500 g kg?1 water, 200 g kg?1 gelatine, 100 g kg?1 egg yolk powder, 50 g kg?1 freeze‐dried Sardinella aurita and 150 g kg?1 freeze‐dried Todarodes sagittatus) and two obtained by substituting 50 g kg?1 of T. sagittatus by glucose (diet GLU50) or by starch (diet STA50). The most stable and best‐accepted diet was STA50 (SFR 1.26%BW day?1) although there were no significant differences in the growth rates obtained with the three diets: 10.12 g day?1, 9.37 g day?1 and 11.22 g day?1 for C0, GLU50 and STA50, respectively (P > 0.05). The feed efficiency indices were better for GLU50, of particular note being the protein productive value of 71.88% and a feed conversion ratio lower than 1. Protein and lipid digestibility were similar in all the three diets (96–98% for proteins and 85–94% for lipids), whereas carbohydrate digestibility was higher in GLU50 (98%) than in C0 (84%) and STA50 (0.33%). The content of carbohydrates increased in muscle and the digestive gland as a consequence of the increased carbohydrates intake.  相似文献   

10.
Juvenile haddock, Melanogrammus aeglefinus L. (initial weight, 13.5 ± 0.1 g) were fed practical diets containing digestible protein to digestible energy (DP DE?1) ratios of 25–30 g DP MJ DE?1as‐fed using three protein levels (450, 500 and 550 g kg?1) each at two lipid levels (110 and 160 g kg?1) for 63 days. The results showed mean weight gain and feed conversion ratio were highest for diets containing 28.5 and 30.2 g DP MJ DE?1. DP DE?1 ratio had no significant effect on protein efficiency ratio except at the lowest level (24.7 g DP MJ DE?1) indicating a protein sparing effect of higher lipid when dietary protein is below the requirement. Haddock appears to preferentially use protein as the prime source of DE. DP DE?1 ratio had little effect on apparent digestibility (AD) of protein while AD of lipid was significantly affected. Significant differences in AD of energy and organic matter were found to be inversely related to the carbohydrate level of the diet. DP DE?1 ratios of 28.5 g DP MJ DE?1 or lower resulted in significantly higher hepatosomatic indexes. The highest whole‐body nitrogen gains and energy retention efficiencies were achieved at 28.5 and 30.2 g DP MJ DE?1, whereas only slight differences in nitrogen retention efficiencies were observed. The highest levels of energy retained in the form of protein were achieved at 28.5 and 30.2 g DP MJ DE?1. The diet that provided the best growth, feed utilization and digestibility with minimal HSI contained 546 g kg?1 protein (513 g kg?1 DP), 114 g kg?1 lipid, 164 g kg?1 carbohydrate, 17.0 MJ kg DE?1 and a DP DE?1 ratio of 30.2 g DP MJ DE?1.  相似文献   

11.
Atlantic salmon fed diets devoid of fishmeal but added 0.5 g  kg?1 fish protein concentrate (FPC) showed reduced growth and lipid deposition without affecting protein accretion as compared to fish fed a fishmeal‐based control diet. The aim of the current study was to assess whether higher inclusion of FPC improved the growth and lipid deposition of Atlantic salmon (initial body weight 380 g) fed high plant protein diets. Quadruplicate groups of fish were fed diets containing 200 g kg?1 fishmeal of which was replaced with FPC (150, 112, 75, 38 and 0 g kg?1) for a period of 79 days. The rest of the diet protein was a mixture of plant proteins. The lipid source used was fish oil. A fishmeal‐based diet was included as a positive control for growth performance. None of the test diets differed from the positive control‐fed fish in voluntary feed intake, growth performance or nutrient accretion. Thus, the test diets were found appropriate to assess the effect of FPC inclusion. Replacement of fishmeal with increasing concentration of FPC did not affect voluntary feed intake (P = 0.56), but growth performance decreased (P = 0.02) resulting in an increased feed conversion ratio (P = 0.003). Viscerosomatic index decreased as diet FPC inclusion increased (P = 0.012) without affecting the dress out weight (P = 0.08). Thus, the apparently improved growth in fish fed the diets with the low FPC inclusion was because of a higher visceral mass. Possible reasons for the reduced visceral mass following addition of FPC to high plant protein diets are discussed.  相似文献   

12.
The ability of Litopenaeus vannamei (initial mean weight: 0.96 ± 0.02 g) to utilize different levels of cornstarch was examined in terms of growth indices, body composition, digestibility and microscopic structure of the hepatopancreas. Six isonitrogenous semipurified diets were fed to satiation to shrimp for 8 weeks in triplicate tanks (30 shrimps per tank) connected to a natural brackish water (6–8 g L?1) recirculating system. Diets contained different levels of cornstarch (100, 150, 200, 250, 300 and 350 g kg?1) as the source of carbohydrate and were balanced using cellulose. Weight gain (WG), survival rate and feed conversion rate (FCR) were considerably affected by cornstarch levels of diets. The highest WG (453.6 g kg?1) and best FCR was observed in shrimp fed the 150 g kg?1 (cornstarch level) diet and was significantly (P < 0.05) higher than those fed diets containing 250–350 g kg?1 cornstarch. However, the survival rate reached maximum in shrimp fed the 100 g kg?1 diet (96.7), some 30% higher than the lowest rate, which was found in shrimp fed the 250 g kg?1 diet. Body lipid tended to be higher in shrimp fed diets with higher cornstarch levels. The apparent digestibility of dry matter and crude fat increased with increasing levels of cornstarch and, hence, decreasing levels of cellulose. In addition, histological study on shrimp fed 10–350 g kg?1 diets exhibited histological changes. The overall conclusion was that the optimum cornstarch level may be set at 100–200 g kg?1 when the diets contain 380 g kg?1 protein.  相似文献   

13.
Dietary mannanoligosaccharide (MOS) from commercial product, Bio‐Mos supplementation, has been examined for its effects on weight gain and feed conversion of domestic mammals and birds, but very few studies have evaluated the responses of aquacultural species to MOS. A feeding and digestibility trial was performed to asses the potential beneficial effect of two levels of Bio‐Mos on growth, feed utilization, survival rate and nutrients’ digestion of gilthead sea bream (Sparus aurata) with an initial average weight of 170 g. Bio‐Mos was added at 2 or 4 g kg?1 to a fish meal–based control diet, and each diet was fed to triplicate groups of 1‐year‐old gilthead sea bream. After 12 weeks, there were no differences in survival rate among fish fed experimental diets (P > 0.05). It was observed that a significant improvability existed for both growth and feed utilization in fish fed diets supplemented with Bio‐Mos (P < 0.05). Body proximate composition remained unaffected by Bio‐Mos supplementation in fish fed experimental diets (P > 0.05). Apparent digestibility values for protein, carbohydrate and energy were appreciably affected by the inclusion of two different levels of Bio‐Mos, only lipid digestibility was the exception. In conclusion, the results of this trial indicate that 2 g kg?1 dietary supplementation with BIO‐MOS seem to be most positive for gilthead sea bream production.  相似文献   

14.
A digestibility and a growth trial were conducted in this study respectively. Firstly, the apparent digestibility coefficients (ADC) of nutrients and energy in meat and bone meal, porcine meal (PM), hydrolysed feather meal, poultry by‐products meal, fishmeal (FM), soybean meal and spray‐dried blood meal were determined. In experiment 2, an 8‐week growth trial was conducted to evaluate the effects of the substitution of FM by PM under the digestible ideal protein concept at two protein levels in the diets of Japanese seabass, Lateolabrax japonicus. A FM‐based control diet (FM diet; FM: 320 g kg?1, crude protein: 434.9 g kg?1, crude lipid: 124.6 g kg?1) and three other diets were formulated to contain 115 g kg?1 PM and only 160 g kg?1 FM. Two diets were formulated on a crude protein basis without (PM diet) or with (PMA diet) essential amino acid (EAA) supplementation respectively. A low‐protein diet was designed (LPMA diet, crude protein: 400.9 g kg?1, crude lipid: 96.3 g kg?1) with the same level of FM and PM but with the same digestible protein/ digestible energy and EAA profile as the FM diet. The results showed that nitrogen and total amino acid digestibility of the tested ingredients were ranged from 85.6% to 95.5% and from 87.6% to 95.5% respectively. Apparent digestibility coefficients of protein for FM and PM were 91.2% and 95.9% respectively. In the growth trial, the weight gain rate and feed conversion ratio of fish fed the PMA diet did not show a significant difference from those of the control group, but were significantly higher than those of the PM and LPMA groups (P<0.05). Growth was related linearly to lysine and methionine intakes. It was shown that PM could be utilized in the Japanese seabass diet up to 115 g kg?1 to replace about 160 g kg?1 of FM protein under an ideal protein profile. Essential amino acid deficiency (diet PM) or a lower protein level despite having an ideal amino acid profile (diet LPMA) could not support the optimal growth of Japanese seabass.  相似文献   

15.
Six isonitrogenous (390 g kg?1) and isoenergetic (16.2 kJ g?1) diets with varying carbohydrate : lipid (CHO : L) ratios (202.5–1.74), were fed to triplicate groups of 25 fish in indoor recirculation system. Over 8‐week‐growth trial, best weight gain (WG), specific growth rate, feed conversion ratio, protein efficiency ratio and protein production value (P < 0.05) were observed in fish‐fed diets with CHO : L ratio of 7.5. Fish fed either the lowest (1.7) or highest (202.5) CHO : L ratio tended to produce lower (P < 0.05) growth and feed conversion efficiencies. The values of viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio increased as dietary CHO : L ratios decreased. There were no significant differences in whole body and liver crude protein among dietary treatments. Whole body and liver lipid increased as CHO : L ratios decreased. Plasma cholesterol and triacylglyceride levels increased linearly as dietary CHO : L ratios decreased. Activities of glucokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate; however, activities of lipase (LPS) and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Based on a second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 275 g kg?1 of carbohydrate and 59 g kg?1 of lipid, corresponding to a CHO : L ratio of 4.7, in a diet holding 390 g kg?1 of crude protein and 16.3 kJ g?1 of gross energy, proved to be optimal for grass carp. These results indicated that utilization of dietary lipid and carbohydrate was moderate in grass carp, but the fish were a little more capable of utilizing lipid compared with carbohydrate.  相似文献   

16.
This study evaluated the effects of soy protein ratio, lipid content and the minimum dietary level of krill meal in plant‐based diets over the growth performance and digestibility of Litopenaeus vannamei. Nine plant‐based diets varied the soybean meal (SBM) and soy protein concentrate (SPC) inclusion ratio at 1 : 2.3, 1 : 1 and 2.5 : 1, and their dietary lipid content at 121.4 ± 9.4, 102.3 ± 1.2, and 79.9 ± 1.2 g kg?1 (in a dry matter basis). An additional diet containing 120 g kg?1 of fish meal (salmon by‐product) was used as a control. Krill meal was included at 0, 5, 10, 20 and 30 g kg?1 in a new set of plant‐based diets. After 10 weeks in clear‐water tanks of 0.5 m3, no effect of SBM:SPC ratio and dietary lipid content was detected on shrimp survival. However, dietary lipid levels of 80 and 121 g kg?1 combined with a high SPC to SBM resulted in the lowest final body weight and the poorest apparent crude protein digestibility, respectively. Krill meal increased feed intake at only 10 g kg?1, while at 20 g kg?1, it accelerated shrimp growth, increased yield and reduced food conversion ratio.  相似文献   

17.
In experiment 1, juvenile sea urchins (n = 80, 0.088 ± 0.001 g wet weight and 5.72 ± 0.04 mm diameter) were held individually and fed ad libitum one of three semi‐purified formulated diets (n = 16 individuals treatment?1). In the diets, protein was held constant (310 g kg?1 dry, as fed) and carbohydrate level varied (190, 260, or 380 g kg?1 dry, as fed). Wet weights were measured every 2 weeks. Total wet weight gain was inversely proportional to dietary carbohydrate level and energy content of the respective diet. In experiment 2, sea urchins (5.60 ± 0.48 g wet weight, n = 40) fed 190 g kg?1 carbohydrate consumed significantly more dry feed than those fed 260 g kg?1, but not more than those fed 380 g kg?1 carbohydrate. Based on differential feed intake rates, sea urchins that consumed more feed also consumed higher levels of protein and had the highest weight gain. Consequently, protein content and/or protein: energy ratio may be important in determining feed utilization and growth among sea urchins in this study. The average digestible energy intake was approximately 70 kcal kg?1 body weight day?1, suggesting daily caloric intake of juvenile Lytechinus variegatus is lower than in shrimp and fish.  相似文献   

18.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

19.
The present experiment was performed to study how fluoride from krill meal enriched muscle, whole fish and bone of adult Atlantic salmon (Salmo salar) reared in sea water. Atlantic salmon (mean weight 0.5 kg) were divided into four triplicate groups and fed a commercial fish meal based diets with 0, 100, 200 and 300 g krill kg?1 feed, respectively, for 12 weeks. The fluoride concentrations in the experimental feeds were analysed to be 18, 132, 235 and 358 mg kg?1, respectively. Growth, mortality and feed efficiency were recorded through the experiment. Fluoride concentration was measured in muscle, whole‐body, and bone initially and after 12 weeks of feeding. The fluoride concentrations in the samples were determined by alkali fusion and fluoride ion‐selective electrode. Growth, mortality and feed efficiency ratio were not affected by the dietary treatments. The results showed that fluoride concentration in muscle, whole body and bone were not affected by the dietary fluoride level. The fluoride concentration in the tissues showed great variation among replicates of the group given the same diet. Fillets of the fish varied between 0.3 and 1.4 mg fluoride kg?1 wet weight, whereas the whole‐body concentration of fluoride varied between 3.3 and 6.1 mg kg?1 wet weight and the fluoride bone concentration varied between 5.8 and 7.2 mg kg?1 fresh weight. These results suggest that Atlantic salmon are highly tolerant of dietary fluoride given as krill meal with concentration of fluoride up to 350 mg kg?1 diet, and that accumulation of fluoride from feeding diets containing krill meal does not lead to tissue accumulation in the fish, at least over a short period of time.  相似文献   

20.
The ability of juvenile carnivorous southern catfish (Silurus meridionalis Chen) to use different levels, kinds and physic state (glucose, raw cornstarch and precooked cornstarch) of dietary carbohydrate was evaluated in term of growth performance. All diets contained 100 g kg?1 lipid and 16 kJ metabolizable energy. Three isonitrogeneus (400 g kg?1) diets were formulated to contain 150 g kg?1 raw cornstarch, precooked cornstarch and glucose. Another three isonitrogeneus (300 g kg?1) diets were formulated to contain 300 g kg?1 raw cornstarch, precooked cornstarch and glucose. A control diet was formulated with no carbohydrate containing 500 g kg?1 protein. Each experimental diet was fed to four tanks of 10 fish (28.3 ± 0.5 g) for 8 weeks at 27.5 °C. Specific growth rate (SGR) of 300 g kg?1 glucose diet was significantly lower than those of other diets (P < 0.05). Feeding rates (FR) of 300 g kg?1 glucose and control diets were significantly lower than those of the other diets (P < 0.05). Feed efficiency (FE) was significantly decreased with increased dietary carbohydrate level (P < 0.05). Feed efficiency of the 300 g kg?1 glucose diet was significantly lower than those of the 300 g kg?1 raw and precooked cornstarch diets (P < 0.05). The protein efficiency ratio (PER) was significantly increased with dietary carbohydrate level except that of the 300 g kg?1 glucose diet, which was lowest among all diets (P < 0.05). The results suggested that both dietary starch and glucose were utilized for energy in southern catfish and had a protein‐sparing effect. At 150 g kg?1 inclusion level, the utilization of raw and precooked cornstarch and glucose did not vary significantly, but a higher dietary glucose level (300 g kg?1) had a markedly detrimental effect on growth in southern catfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号