首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kafirins are stored proteins that negatively affect the nutritional quality of sorghum grain. Kafirin concentration and other chemical characteristics were determined in 12 sorghum hybrids and varied significantly, from 58% (HB1) to 42% (HB12) as percent total protein. Kafirin concentration correlated negatively with crude protein (CP) (−0.49), with acid detergent fiber (−0.40), apparent metabolizable energy (−0.61), and true metabolizable energy corrected for N (−0.63). HB12 was the hybrid with the lowest content of kafirins, amylose and tannins, and the highest content of apparent metabolizable energy. No differences were observed in the concentration of starch, but differences were found in apparent metabolizable energy (3325–2944 kcal kg−1) probably due to a greater availability of starch, related to differences in kafirin concentration.  相似文献   

2.
Agricultural intensification through the application of mineral fertilizers, the recycling of crop residues and animal manures and through plant breeding are the only means to increase food supply in the poverty ridden West African Sahel, where pearl millet (Pennisetum glaucum (L.) R. Br.) is the dominant staple. Research on the effects of soil amendments on the quality of millet straw and grain is scarce, comparative studies of possible quality differences in traditional landraces versus improved varieties and hybrids are lacking. This paper reports results from 22 landrace populations, 22 improved varieties, six inbred×variety hybrids (IVHs, fertile inbred×open-pollinated varieties) and four topcross hybrids (TCHs, male-sterile line×open-pollinated varieties), whose grains were analyzed for protein concentration and amino acid composition, macro- and micronutrients (total and phytate P, K, Ca, Mg, Zn, Cu), metabolizable energy (ME), fat and β-carotene. At similar yield levels, landraces showed a 2.9 and 3.5% higher protein concentration compared with improved varieties and hybrids without a detrimental effect on protein quality as determined by the relative amount of lysine and threonine. Landrace populations also had the highest fat concentrations and the largest micronutrient densities. However, in-vitro digestibility and ME were (79.8% and 12.2 MJ kg−1 respectively) larger for both groups of hybrids. The concentration of β-carotene was (0.13 μmol kg−1) highest in the improved varieties, but appeared overall too low to significantly contribute to vitamin A nutrition in local diets. While the results of this genotype screening need to be verified in replicated multi-location trial studies, they underline the potential of including landraces in breeding programs to concurrently improve grain yield and grain quality in this area of the world.  相似文献   

3.
《Field Crops Research》1999,61(3):193-199
The prominent effects of a soil surface crust on crop production, impedance to seedling emergence and reduced infiltration rate, were examined using a quantitative land evaluation model under the Sahelian environmental and soil conditions of north-central Burkina Faso. The model integrated data from climate, soil and crop for quantifying potential grain yield of sorghum (Sorghum bicolor), grown on a sandy loam soil for 14 production years (1977–1990). Crust development was induced using `simulated rainfall' with an intensity of 75 mm h−1 from a 2 m height. Results revealed that seeding sorghum in small holes without sufficiently breaking the surface crust depressed grain yield. Observed and potential yield correlated closely over a 7-year period (r = 0.79, p < = 0.05). Substantial yield gap was found between estimated potential yield (crust broken scenario set to 75% of the predicted yield) and observed, indicating however, the possibility of significantly improving yield by using appropriate tillage to break the crust before seeding.  相似文献   

4.
《Field Crops Research》2007,100(1):10-23
Timely sowing is critical for achieving high grain yields in winter cereals. However, inadequate seed-zone moisture for germination commonly delays sowing to reduce biomass and subsequent yield in semi-arid environments. Sowing deep to reach soil moisture is often avoided by growers of Rht-B1b and Rht-D1b semi-dwarf wheat as these wheat show poor emergence when sown deep. Their reduced cell elongation associated with insensitivity to endogenous gibberellins, results in shorter coleoptiles and smaller early leaf area. Alternative dwarfing genes responsive to endogenous gibberellins (e.g. Rht8) are available for use in wheat breeding. These reduce plant height without affecting coleoptile length and offer potential to select longer coleoptile wheat for deep sowing. Nine semidwarf (Rht8, Rht-B1b, and Rht-D1b) and seven tall (rht) wheat genotypes were sown at depths of 50, 80 and 110 mm at three locations in 2 or 3 years. Coleoptile lengths measured in a growth cabinet at four temperatures (11, 15, 19 and 23 °C) were strongly correlated with coleoptile length (rp = 0.77–0.79**) and plant number (rp = 0.49*–0.79**) in deep-sown plots in the field. Furthermore, differences in coleoptile length were genetically correlated with greater numbers of emerged seedlings (rg = 0.97**), shallower crown depth (−0.58**), greater seedling leaf area (0.59**) and seedling biomass (0.44*). Wheat containing the Rht-B1b or Rht-D1b dwarfing genes produced significantly (P < 0.01) shorter coleoptiles (97 mm) than both Rht8 (118 mm) and tall (117 mm) wheat. In turn, compared with emergence from 50 mm depth, the Rht-B1b and Rht-D1b wheat produced significantly fewer seedlings at 110 mm sowing depth (−62%) than either Rht8 (−41%) or tall (−37%) wheat. Effects of deep sowing early in the season were maintained with reductions in spike number and biomass at both anthesis and maturity. Kernel number was also reduced with deep sowing leading to reductions in grain yield. Over all entries, genotypic increases in plant number were associated with increases in fertile spike (rg = 0.61**) and kernel number (0.21*), total biomass (0.26*) and grain yield (0.28*). Reduction in spike number and grain yield with deep sowing was smallest for the Rht8 (−18 and −10%) and rht (−15 and −7%) wheat, and largest for the Rht-B1b/D1b (−39 and −16%) wheat. Plant height and coleoptile length were independent among Rht8 and tall wheat genotypes. This study demonstrates the importance of good seedling emergence in achieving high wheat yields, and the potential use of alternative dwarfing genes such as Rht8 in development of long coleoptile, reduced height wheat suitable for deep sowing.  相似文献   

5.
6.
Soybean oil is a highly valuable agricultural commodity for the United States. To further add value to soybean oil, chemical and physical modifications, as well as additives, have been extensively used to change the oil characteristics and properties, broadening the potential industrial applications. Heat treatments such as heat-bodying have been implemented to change soybean oil properties, but no research has studied the effects of microwave-irradiation on soybean oil structure and properties.Soybean oil (SBO) was heat-bodied (HB) or microwave-irradiated (MI). HB and MI (200–250 °C for 20–60 min) oil had similar Gardner bubble viscosity (B–C range). SBO that was HB or MI had increased viscosity compared with untreated SBO. 1H NMR analysis showed no oxidation occurred for all treatments. However, HB and MI oil formed a cyclic ring structure with polymerization that most likely contributed to the increased viscosity. Pour point decreased from −9 °C for the untreated SBO, −15 °C for the HB, and −18 °C for the MI despite viscosity increases. Pour point anomaly is likely due to triacylglyceride cyclic ring formation. Pressurized DSC analysis showed higher oxidative stability for HB oil with even higher stability for MI oil. Compared with untreated SBO, HB and MI oil increased friction coefficient and decreased film percentage, whereas MI oil tended to leave larger wear scratches on the ball and disk during friction measurements. MI oil improved SBO cold-flow behavior, but reduced its potential as a lubricant.  相似文献   

7.
In addition to being consumed as food, starch is considered for replacement of petroleum-based plastics, but imparts negative effect like water absorption and solubilization in water. In this study, the effects of sodium hydroxide and sodium trimetaphosphate concentrations on the water absorption and solubility indices of starch cross-linked by sodium hydroxide and sodium were evaluated. Starch was granulated, and 0.3 kg granulated starch was mixed with 65 ml sodium hydroxide at three concentrations (0.2, 0.6, and 1.0 M), sodium trimetaphosphate at two levels (0.015 and 0.045 kg sodium trimetaphosphate corresponding to 5 and 15% of starch), and water to adjust moisture content to 40% (dry basis). The samples were extruded in a single-screw extruder at a barrel temperature of 130 °C and screw speed of 140 rpm. Phosphorus content and pasting viscosity of starch extrudates showed that starch was cross-linked with phosphorus that was incorporated into starch during extrusion. The extrusion and cross-linking of starch with 5% sodium trimetaphosphate reduced water absorption index, and increasing sodium trimetaphosphate percentage reduced water absorption index further at high levels of sodium hydroxide. On the other hand, the reduction in water solubility of starch extrudates required the extrusion of starch with more than 5% sodium trimetaphosphate, but increasing the sodium hydroxide level increased the water solubility index of extrudates.  相似文献   

8.
An efficient and economical oil expression system that can operate on solar power in rural areas of underdeveloped and developing countries is needed. Recent improvements in both oil extraction and solar energy technologies have indicated the possibilities for fabricating oil extraction equipment. Thus, the objective of our study was to develop a simple oil expression unit capable of producing high quality oil based on solar energy in remote rural areas. A photovoltaic (PV), batch operated, low-pressure oil press, using a 190 W, 12 V dc motor, was designed, fabricated, and tested using coconut and groundnut as the raw material. Samples used in the study were ground to particle size between 500 μm and 2 mm and were pressed at 12 ± 1% moisture content. The press was evaluated based on the oil extraction efficiency (OEE), power consumption, and oil quality. The press had an average OEE of 73% for coconuts and 70% for groundnuts after 12 min of pressing. The oil expression efficiency was characterized by three main stages namely delayed, rapid, and retarded. The power consumption was affected greatly by the pressing time, with power consumption increasing with an increase in the pressing time. The specific energy consumption was found to increase significantly after 8 min of pressing and correlated with the compaction of the cake, which resulted in more power being required to express the entrapped oil. The expressed oil was fresh, free from foots, and of high quality with an average moisture content of 0.015% for coconut oil and 0.019% for groundnut. Analyses showed that the viscosities were 42.1 MPa s (coconut oil) and 59.1 MPa s (groundnut oil), at 25 °C. Overall, the press performed well and was comparable in performance to other types of presses.  相似文献   

9.
《Field Crops Research》2006,95(1):75-88
Long-term trends of crop yields have been used as a means to evaluate the sustainability of intensive agriculture. Previous studies have measured yield trends from long-term rice–rice and rice–wheat experiments in different sites from the slopes of individual site regressions of yield over time. The statistical significance of each site regression was determined but not that of the aggregate trend, which could give an indication of the magnitude and significance of global yield change.The random regression coefficient analysis (RRCA) and meta-analysis were used in this study to analyze the aggregate yield trend from several long-term experiments (LTE) across the Indo-Gangetic Plains (IGP) and outside the IGP. Both methods show that there has been a significant (p < 0.05) declining trend in rice yield in rice–wheat LTEs in South Asia including China with the recommended rates of nutrients, but that there has been no significant change in wheat and system (rice + wheat) yields. There was no significant year × region (IGP versus non-IGP) interaction in rice and wheat yields. However, RRCA showed that the average yield trend was significantly negative (−41.0 kg ha−1 yr−1) only in the IGP. In the rice–rice LTEs, there was a significant year × site (IRRI versus non-IRRI sites) interaction during the dry season but not the wet season. Rice yields declined throughout Asia in the wet season. The average system (dry + wet season rice) yield trends were significantly negative in both IRRI and non-IRRI sites (−170.1 and −52.8 kg ha−1 yr−1, respectively) but the magnitude of yield decline was significantly greater in the IRRI sites than in the non-IRRI sites.Rice in the rice–wheat LTEs showed a significantly positive yield trend with the addition of farmyard manure (FYM) but the initial yield was generally lower with FYM than without FYM. After 15 years, yield increase due to FYM was not evident in most of the LTE.  相似文献   

10.
Aqueous dispersions of starch–soybean oil (SBO) and starch–jojoba oil (JO) composites, prepared by excess steam jet cooking, form effective dry film lubricants when applied as thick coatings to metal surfaces by a doctor blade. This application method necessitates long drying times, is wasteful, requires the addition of sucrose to promote composite adhesion to the metal surface, and restricts the substrate geometry to planar surfaces. These issues represent important barriers to the commercialization of this aqueous biobased dry film lubricant technology. We now report an air-assisted spray method that uses readily available spray equipment to apply aqueous starch–oil composite dispersions as thin coatings (0.15–2.0 mg/cm2) to metal surfaces quickly and efficiently. Aqueous dispersions of waxy maize starch–oil composites containing either SBO, JO or hexadecane (HD), having 0.020–31.7 wt% oil relative to starch, were applied by air-assisted spraying and could be dried to the touch in approximately 30 s. Additionally, sucrose was found unnecessary for adhesion of the sprayed coatings. Tribological ball-on-flat testing of metal specimens spray coated with starch–SBO, –JO, and –HD composites showed the thin films of starch–SBO and –JO performed better at reducing the coefficient of friction (COF) than the starch–hexadecane composites. A low COF ranging between 0.027 and 0.044 was obtained for the starch–SBO and –JO composites containing 4–5 wt% oil relative to starch. Above 4–5 wt% oil loadings, no further COF reductions were realized. Further results revealed that micrometer-sized oil droplets embedded within the dried starch matrix of the composite film are delivered “on demand”. It appears that when pressure is applied to the dry film lubricant, the starch matrix ruptures and releases the entrained oil to the friction surface.  相似文献   

11.
《Field Crops Research》2006,95(2-3):234-249
The use of Al-tolerant and P-efficient maize cultivars is an important component of a successful production system on tropical acid soils with limited lime and P inputs. Grain yield and secondary plant traits, including root and aboveground biomass, nutrient content and leaf development, were evaluated from 1996 to 2002 in field experiments on an Oxisol in order to identify maize characteristics useful in genetic improvement. Here we present the results of the 2002 trial and compare them with previous results. The aim of this experiment was to assess the effect of assimilate and nutrient partitioning on the growth and grain yield of two tropical cultivars having different Al tolerance (CMS36, tolerant, Spectral, moderately tolerant). The soil had an Al saturation of 36% in topsoil (pH 4.5) and >45% below 0.3 m depth (pH 4.2). Measurements made from emergence to grain filling included: root, stem and leaf biomass, P and N content, leaf area index (LAI), radiation use efficiency (RUE), soil available N and root profiles at anthesis. The experiments consisted of two P treatments, zero applied or 45 kg P ha−1 (−P and +P). All the treatments received N and K fertilizers. In −P, root biomass and LAI at anthesis were twice as great in CMS36 as in Spectral. In +P the differences between cultivars were negligible. Roots were deeper in CMS36 due to its higher Al tolerance. Total biomass and grain yield were not strongly related to root biomass and LAI. Other factors such as the leaf biomass and the amount of nutrients per unit leaf area were highly correlated with RUE and biomass. In −P, Spectral had the same total biomass but a higher grain yield than CMS36 (2.1 Mg ha−1 versus 1.5 Mg ha−1). This was due to a higher leaf P content (+40%), a greater RUE (+74%), and a lower number of sterile plants. In +P, CMS36 had higher total biomass and grain yield (4.1 Mg ha−1 versus 3.1 Mg ha−1). This was due to its higher leaf P (+25%) and leaf N (+43%) contents, and an increased RUE (+130%) that were associated with higher P and N uptake. Our results indicated that although root tolerance to Al toxicity is necessary for good crop performance on acid soils, assimilate and nutrient partitioning in the aboveground organs play a major role in plant adaptation and may partially compensate for a lower root tolerance.  相似文献   

12.
Improvement of the nutritive value of dual-purpose sorghum (Sorghum bicolor (L.) Moench) stover is an important objective for the semi-arid tropics where sorghum crop residue is extensively used for livestock feed. To identify the relative importance of genetic and environmental sources of variation for nutritive value, leaves and stems of six diverse dual-purpose sorghum cultivars were evaluated for in vitro gas production (Gas48hr), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, nitrogen, and ash contents under two fertility and two plant-density regimes during 2 years in India. Substantial genotypic differences were observed for stem Gas48hr (25.7 to 33.0 ml in 200 g−1 dry matter (DM)) and NDF (564–687) content. Gas48hr and NDF content of stems exhibited more promise as selection criteria than those of leaves, as stems showed larger portion of variation attributed to genotypes, relatively less genotype by environment (GE) interactions, and were closely related to whole-plant values. Year, nitrogen fertilization and plant density showed very little influence on Gas48hr, NDF or ADF of leaves and stems. Gas48hr exhibited substantial GE interactions with all environmental factors, indicating the need for multi-environment testing to achieve progress.  相似文献   

13.
Modelling of the Acetosolv treatment of the cardoon bark (Cynara cardunculus) was accomplished using a second-order face-centred factorial design. We considered as independent (experimental) variables: cooking time (60–180 min), acetic acid concentration in the cooking liquor (60–90%) and hydrochloric acid concentration in the cooking liquor (0.20–0.80%); as well as dependent variables: pulp yield, kappa number and viscosity.Empirical models were deduced to satisfactorily fit experimental data with the values of the independent variables and allow quantifying the effects of each variable.An optimisation with constraints led to the calculation of the region of the experimental domain (time = 180 min, acetic acid concentration  71.3% and HCl concentration > 0.41%) leading to pulps with kappa numbers < 25 at a maximal pulp yield and viscosity, giving us maximum possible values for pulp yield (46.3%) and viscosity (557 mL/g).  相似文献   

14.
Whole lesquerella seeds with 6% (as is) and 12% moisture content (MC) were extruded at different residence times by varying screw speeds and feed rates. The temperature of the extrudate was recorded and its MC was determined. The extent of seed cooking was evaluated by measuring the protein solubility and thioglucosidase (TGSase) activity in the extrudate. Uncooked whole seeds (UWS), whole seeds cooked in seed cooker (CWS), and extrusion-cooked seeds (ECS) were screw pressed and the crude oils were analyzed for foots, free fatty acid (FFA), phosphorus, calcium, magnesium, and sulfur. The screw speed and feed rates employed resulted in residence times ranging from 22 to 110 s. The corresponding exit temperatures of the extrudates ranged from 88 to143 °C. Seeds with 6% initial MC dried to 4.3% at extrudate temperatures ≤125 °C regardless of residence time, while seeds with 12% initial MC came out at 7–9% MC, Extruding seeds with 6 and 12% starting MC for 34 and 41 s, respectively, provided the same degree of cooking as that of 12% MC CWS. All CWS and ECS tested negative for TGSase activity. ECS with 6% initial MC generated much higher foots (6.4–9.4%) in the oil compared with that of the 12% MC ECS (1–1.7%). The crude oils from CWS had the lowest FFA content at 1.25%. Crude oils from UWS and ECS had FFA ranging from 1.4–2.8%. The crude oil from 12% MC CWS had 374 ppm sulfur which was 3–8× higher than what were found in crude oils from 6% MC CWS and ECS. The highest P (23 ppm), Ca (14 ppm), and Mg (6 ppm) levels in the crude oil were from 12% MC CWS, which were comparable to total degummed oils. An 81% oil recovery from 6% MC ECS (22 s residence time) was obtained at 19 rpm expeller screw speed. Increasing the expeller's screw speed from 19 to 37 rpm decreased the oil recovery by 0.2%/rpm, increased the throughput by 3.3 kg/rpm from 70 to 130 kg/h, and reduced the press load from 91 to 67%.  相似文献   

15.
The demand for diesel fuel far exceeds the current and future biodiesel production capabilities of the vegetable oil and animal fat industries. New oilseed crops that do not compete with traditional food crop are needed to meet existing energy demands. Hybrid hazelnut oil is just such an attractive raw material for production of biodiesel. Hazelnut oil was extracted from hybrid hazelnuts and the crude oil was refined. Hazelnut oil-based biodiesel was prepared via the transesterification of the refined hazelnut oil with excess methanol using an alkaline catalyst. The effects of reaction temperature, time and catalyst concentration on the yield of diesel were examined, and selected physical and chemical properties of the biodiesel were evaluated. The biodiesel yield increased with increasing temperature from 25 to 65 °C and with increasing catalyst concentration from 0.1 to 0.7 wt%. The increase in yield with reaction time was nonlinear and characterized by an initial faster rate, followed by a slow rate. Hazelnut oil-based biodiesel had an average viscosity of 8.82 cP at 25 °C, which was slightly higher than that of the commercial soy-based diesel (7.92 cP at 25 °C). An approximate 12 °C higher onset oxidative temperature and a 10 °C lower cloud point of hazelnut oil biodiesel than those of its commercial soy counterpart indicated a better oxidative stability and flowability at low temperature. The average heat of combustion of hazelnut oil biodiesel was 40.23 kJ/g, and accounted for approximately 88% of energy content of diesel fuel. The fatty acid composition of hazelnut oil-based biodiesel was the same as the nature oil.  相似文献   

16.
《Field Crops Research》2006,96(1):25-30
We applied sequential retrospective (SeqRet) pattern analysis to stratify sorghum variety testing sites according to their similarity for yield discrimination among genotypes using historical grain yield data from 147 multi-environment trials (METs). The trials were conducted at 38 sites in 10 countries of the Southern African Development Community (SADC) region during 1987/1988–1992/1993 and 1999/2000. The analysis for the 6 years 1987/1988–1992/1993, covering 34 sites, clustered these sites into 6 major groups with a model fit of R2 = 0.75. With additional data from the year 1999/2000, the SeqRet pattern analysis delivered a very similar clustering of the 34 sites, with the additional four sites in 1999/2000 properly classified with appropriate site groups (R2 = 0.74). The results suggest that future sorghum variety testing could be restricted to a few representative sites selected from within each of the six identified site-groups.  相似文献   

17.
The environmental temperature occurring during the grain filling stage is an important factoraffecting starch synthesis and accumulation in rice. We investigated starch accumulation, amylaseactivity and starch granule size distribution in two low-amylose japonica rice varieties, Nanjing 9108 andFujing 1606, grown in the field at different filling temperatures by manipulating sowing date. The two ricevarieties exhibited similar performances between two sowing dates. Total starch, amylose andamylopectin contents were lower at the early-filling stage of T1 treatment (Early-sowing) compared withthose at the same stage in T2 treatment (Late-sowing). In contrast, at the late-filling stage, when fieldtemperatures were generally decreasing, total starch and amylopectin contents in T1 were highercompared to those in T2. The ideal temperature for strong activity of ADP-glucose pyrophosphorylaseand soluble starch synthase was about 22℃. A higher temperature from the heading to maturity stagesin T1 increased the activities of starch branching enzyme and suppressed the activities of granule boundstarch synthetase and starch debranching enzyme. We found that rice produced larger-sized starchgranules under the T1 treatment. These results suggested that due to the early-sowing date, the hightemperature (30℃) occurring at the early-filling stage hindered starch synthesis and accumulation,however, the lower temperatures (22 ℃) at the late-filling stage allowed starch synthesis and accumulationto return to normal levels.  相似文献   

18.
《Field Crops Research》2006,95(2-3):316-326
Maize (Zea mays L.) kernel weight (KW) response to changes in assimilate availability per kernel during grain filling suggests that plants establish an early kernel sink potential that place them to grow close to a saturating assimilate availability condition during late grain-filling, meaning source limitations are common only early in kernel development. As maize reproductive efficiency in kernel set is not constant across different plant growth rates (PGR) around flowering, we used PGR per kernel during this period as an indicator of source availability per kernel. We tested whether PGR per kernel during flowering or during the effective grain-filling period were correlated to genotypic and environmental differences in final KW. Plant growth rate during both periods, KW, kernel growth rate during the effective grain-filling period, total duration of grain filling and kernel number per plant were measured in 12 commercial genotypes differing in KW sown at two sites under full irrigation. As expected from the curvilinear response relating kernel number per plant and PGR around flowering, increased PGRs resulted in higher PGR per kernel around this period (r2 = 0.86; p < 0.001). Differences in final KW due to genotypes or environments were significantly explained by the PGR per kernel around flowering (r2 = 0.40; p < 0.001), and not by the PGR per kernel during the effective grain-filling period. Genotypes differed in kernel growth rate (p < 0.001) and grain-filling duration (p < 0.001). The former was well explained by PGR per kernel around flowering (r2 = 0.66; p < 0.001), but showed no relationship with the PGR per kernel during the effective grain-filling period. Grain-filling duration was partially explained (r2 = 0.27; p < 0.01) by the ratio between PGR per kernel during the effective grain-filling period and kernel growth rate, but differences in duration were negligible compared to those observed in the ratio (∼41% versus ∼130%, respectively). Together, these results support the importance of source availability per kernel during early grain filling on the determination of maize potential sink capacity and final KW. Early resource availability per kernel was accurately estimated as PGR per kernel around the period of kernel number determination, which helped explain genotypic and environmental differences in maize final KW as well as in kernel growth rate.  相似文献   

19.
Reduced plant biomass and increased plant-to-plant variability are expected responses to crowding in monocultures, but the underlying processes that control the onset of interplant interference and the establishment of hierarchies among plants within a stand are poorly understood. We tested the hypothesis that early determined plant types (i.e. dominant and dominated individuals) are the cause of the large variability in final kernel number per plant (KNP) usually observed at low values of plant growth rate (PGR) around silking in maize (Zea mays L.). Two hybrids (DK696 and Exp980) of contrasting response to crowding were cropped at different stand densities (6, 9 and 12 plants m−2), row spacings (0.35 and 0.70 m), and water regimes (rainfed and irrigated) during 1999/2000 and 2001/2002 in Argentina. The onset of interplant competition started very early during the cycle, and significant differences (P<0.05) in estimated plant biomass between stand densities were detected as soon as V4–6 (DK696) and V6–7 (Exp980). Plant population and row spacing treatments did not modify the onset of the hierarchical growth among plants, but did affect (P<0.02–0.08) the dynamic of the process. For both hybrids, the rate of change in relative growth between plant types was larger at 9 and 12 plants m−2 (ca. 0.12 g/g per 100 °C day) than at 6 plants m−2 (ca. 0.07 g/g per 100 °C day). For all treatments, the largest difference in estimated shoot biomass between plant types took place between 350 (V7) and 750 °C day (V13) from sowing, and remained constant from V13 onwards. Dominant plants always had more kernels per plant (P<0.05) than the dominated ones, but differences between plant types in PGR around silking were significant (P<0.05) only at 12 plants m−2. Our research confirmed the significant (P<0.01) curvilinear response of KNP to PGR around silking, but also determined a differential response between plant types: the mean of residual values were significantly (P<0.01) larger for dominant than for dominated individuals. Estimated ear biomass at the onset of active kernel growth (R3) reflected the variation in KNP (r2≥0.62), and was significantly (P<0.01) related to estimated plant biomass at the start of active ear growth (ca. V13). This response suggested that the physiological state of each plant at the beginning of the critical period had conditioned its reproductive fate. This early effect of plant type on final KNP seemed to be exerted through current assimilate partitioning during the critical period.  相似文献   

20.
In this work, the forward extraction of defatted wheat germ protein (DWGP) by reverse micelles was studied. The reverse micellar systems were formed by sulphosuccinic acid bis (2-ethylhexyl) ester sodium salt (AOT), isooctane and KCl solution. The effects of AOT concentration, pH, KCl concentration, extraction time, the amounts of defatted wheat germ flour (DWGF), W0 (the molar ratio of water to surfactant, i.e. W0 = [H2O]/[AOT]) and temperature on the forward extraction efficiency of DWGP were tested. On the basis of single-factor experiments, the optimum extraction was achieved by response surface methodology (RSM). The experimental results lead to the conclusion that the highest forward extraction efficiency of DWGP was reached at the AOT concentration 0.06 g/mL, pH 8, KCl concentration 0.1 mol/L, time 30 min, the amounts of DWGF 0.500 g, W0 25 and temperature 36 °C. Under these conditions, the forward extraction efficiency of DWGP achieved 37%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号