首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of forest fire on soil enzyme activity of spruce (Picea balfouriana) forest in the eastern Qinghai-Tibetan Plateau was assessed. Six specific enzymes were chosen for investigation: invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase. It was found that the activities of invertase and proteinase were reduced by burning, but the activities of acid phosphatase, polyphenoloxidase and peroxidase increased. Meanwhile, burning significantly (P < 0.05) resulted in the decrease of concentrations of available N and K of 0–20 cm depth layer soil, and significantly (P < 0.05) decreased concentrations of organic matter content, total N and P, as well as available N, P and K in soil at both 20–40 and 40–60 cm depths except for available P at 20–40 cm soil depth. These results illustrated that burning could influence the enzyme activities and chemical properties of soil not only of upper but also lower soil layers. Correlation analysis indicated that invertase activities in 0–20 cm depth layer soil were significantly positively correlated with organic matter, total N and P, as well as available N and P. Furthermore, all six enzymes studied were sensitive to fire disturbance, and thus could be used as indicators of soil quality. Our study also showed that soil enzyme activities were associated with soil depth, decreasing from top to bottom in both burned and unburned spruce forests. The distribution pattern of soil enzyme activities suggested that the rate of organic matter decomposition and nutrient cycling depended on soil depth, which had important structural and functional characteristics in nutrient cycling dynamics and implications in plantation nutrient management. The finding that burning effects on enzyme activities and soil properties between different soil layers were homogenized was attributed to the 8-years’ regeneration of forest after burning.  相似文献   

2.
Activities of selected soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase) were determined under different spruce forests with restoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in the eastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems health were analyzed. Plots 10 × 10 m with 4 replications were established to investigate three hypotheses: soil enzyme activities a) would increase with the restoration process; b) would be greater in surface soils than at lower depths; and c) would be correlated to selected physicochemical properties. Results showed that as the forests developed after restoration, invertase and peroxidase activities usually increased up to the 23 year point. Also soil enzyme activities were associated with surface soils and decreased with depths, suggesting that in earlier restoration stages surface addition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20 cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzyme activities and some selected chemical properties. Therefore, temporal changes in enzyme activities should be included as an indicator when evaluating sustainable forest management practices.  相似文献   

3.
Due to high nitrogen deposition in central Europe, the C : N ratio of litter and the forest floor has narrowed in the past. This may cause changes in the chemical composition of the soil organic matter. Here we investigate the composition of organic matter in Oh and A horizons of 15 Norway spruce soils with a wide range of C : N ratios. Samples are analyzed with solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy, along with chemolytic analyses of lignin, polysaccharides, and amino acid‐N. The data are investigated for functional relationships between C, N contents and C : N ratios by structural analysis. With increasing N content, the concentration of lignin decreases in the Oh horizons, but increases in the A horizons. A negative effect of N on lignin degradation is observed in the mineral soil, but not in the humus layer. In the A horizons non‐phenolic aromatic C compounds accumulate, especially at low N values. At high N levels, N is preferentially incorporated into the amino acid fraction and only to a smaller extent into the non‐hydrolyzable N fraction. High total N concentrations are associated with a higher relative contribution of organic matter of microbial origin.  相似文献   

4.
Selective cutting is one of many harvesting methods alternative to clear-cutting. Both the influence on different ecological systems and the effect on forest productivity of this harvesting method are important. In this study, the productivity in 16 long-term experimental plots in selectively cut Norway spruce (Picea abies) forest is analysed.  相似文献   

5.
Studies of biogeochemical cycling and soil acidification have been carried out in even aged stands of Norway spruce, sitka spruce, Douglas fir, beech and oak under the frame of “The Element Cycling Project”. Deposition of excess nitrogen to forests is important as a potential acidifying input. In Denmark, reduced vitality in Norway spruce has promoted extensive planting of sitka spruce. However, several spruce aphid infestations have caused defoliation in many sitka spruce stands. The objectives of this study were to evaluate the effects of deposition and increased litterfall due to spruce aphid infestations on nitrogen transformations in the forest floor in sitka spruce stands on different soil types. The deposition of throughfall nitrogen range from 19 to 35 kg/ha/year. Fluxes of nitrogen in litterfall ranged from 21 to 77 kg/ha/year, whereas nitrogen leaching range from 1 to 57 kg/ha/year. Leaching was lowest at the infertile sites, but increased with magnitude of deposition and aphid infestations. Proton production according to the nitrogen transformations was largest at the fertile site most often affected by infestations. Huge amounts of bird droppings, honey dew and input of easily available nutrients by canopy leaching probably induced litter decomposition and formation of NO 3 ? in the soil water.  相似文献   

6.
To investigate soil changes from forest conversion and regeneration, soil net N mineralization, potential nitrification, microbial biomass N, L‐asparaginase, L‐glutaminase, and other chemical and biological properties were examined in three adjacent stands: mature pure and dense Norway spruce (Picea abies (L.) Karst) (110 yr) (stand I), mature Norway spruce mixed with young beech (Fagus sylvatica) (5 yr) (stand II), and young Norway spruce (16 yr) (stand III). The latter two stands were converted or regenerated from the mature Norway spruce stand as former. The studied soils were characterized as having a very low pH value (2.9 – 3.5 in 0.01 M CaCl2), a high total N content (1.06 – 1.94 %), a high metabolic quotient (qCO2) (6.7 – 16.9 g CO2 kg–1 h–1), a low microbial biomass N (1.1 – 3.3 % of total N, except LOf1 at stand III), and a relatively high net N mineralization (175 – 1213 mg N kg–1 in LOf1 and Of2, 4 weeks incubation). In the converted forest (stand II), C : N ratio and qCO2 values in the LOf1 layer decreased significantly, and base saturation and exchangeable Ca showed a somewhat increment in mineral soil. In the regenerated forest (stand III), the total N storage in the surface layers decreased by 30 %. The surface organic layers (LOf1, Of2) possessed a very high net N mineralization (1.5 – 3 times higher than those in other two stands), high microbial biomass (C, N), and high basal respiration and qCO2 values. Meanwhile, in the Oh layer, the base saturation and the exchangeable Ca decreased. All studied substrates showed little net nitrification after the first period of incubation (2 weeks). In the later period of incubation (7 – 11 weeks), a considerable amount of NO3‐N accumulated (20 – 100 % of total cumulative mineral N) in the soils from the two pure spruce stands (I, III). In contrast, there was almost no net NO3‐N accumulation in the soils from the converted mixed stand (II) indicating that there was a difference in microorganisms in the two types of forest ecosystems. Soil microbial biomass N, mineral N, net N mineralization, L‐asparaginase, and L‐glutaminase were correlated and associated with forest management.  相似文献   

7.
《Pedobiologia》2014,57(3):181-189
Management of forest sites has the potential to modulate soil organic matter decomposition by changing the catalytic properties of soil microorganisms within a soil profile. In this study we examined the impact of forest management intensity and soil physico-chemical properties on the variation of enzyme activities (β-glucosidase, β-xylosidase, α-glucosidase, phenol oxidase, N-acetyl-glucosaminidase, l-leucine aminopeptidase, phosphatase) in the topsoil and two subsoil horizons in three German regions (Schorfheide-Chorin, Hainich-Dün, Schwäbische Alb). The sandy soils in the Schorfheide-Chorin (SCH) showed lower ratios of the activity of carbon (C) acquiring enzymes (β-glucosidase) relative to nitrogen (N) acquiring enzymes (N-acetyl-glucosaminidase + l-leucine aminopeptidase), and activity of C acquiring enzymes relative to phosphorous (P) acquiring enzymes (phosphatase) than the finer textured soils in the Hainich-Dün (HAI) and Schwäbische Alb (ALB), indicating a shift in investment to N and P acquisition in the SCH. All enzyme activities, except phenol oxidase activity, decreased in deeper soil horizons as concentrations of organic C and total N did, while the decrease was much stronger from the topsoil to the first subsoil horizon than from the first subsoil to the second subsoil horizon. In contrast, phenol oxidase activity showed no significant decrease towards deeper soil horizons. Additionally, enzyme activities responsible for the degradation of more recalcitrant C relative to labile C compounds increased in the two subsoil horizons. Subsoil horizons in all regions also indicate a shift to higher N acquisition, while the strength of the shift depended on the soil type. Further, our results clearly showed that soil properties explained most of the total variance of enzyme activities in all soil horizons followed by study region, while forest management intensity had no significant impact on enzyme activities. Among all included soil properties, the clay content was the variable that explained the highest proportion of variance in enzyme activities with higher enzyme activities in clay rich soils. Our results highlight the need for large scale studies including different regions and their environmental conditions in order to derive general conclusions on which factors (anthropogenic or environmental) are most influential on enzyme activities in the whole soil profile in the long term at the regional scale.  相似文献   

8.
The aim of this work is to evaluate black spruce (Picea mariana) as an indicator of environmental aluminum contamination. The territory studied extends to a radius of 100 km around the Alcan aluminum refinery in Jonquiere, Quebec, Canada. Samples of wood were taken from the trunks of trees at 26 sites at distances of 5, 10, 20, 30, 40, 50 and 100 km from the refinery. Five trees were sampled at each site. Each sample was cut into 25 pieces corresponding to 50 yr growth. These were analyzed for aluminum by neutron activation. Soil samples taken near the bases of the trees were also analyzed and significant variations in exchangeable aluminum were observed as a function of direction from the refinery and distance. The pH of organic and mineral horizons show no significant difference. Exchangeable aluminum increased with soil acidity. The most contaminated sites showed important correlations (r2=0.73) between exchangeable aluminum in soil and aluminum in bark. We observed greater aluminum concentrations in tree rings corresponding to the last 20 yr, especially at sites directly exposed to environmental contamination along prevailing winds. In conclusion, black spruce appears to be a better spatial than chronological indicator of aluminum contamination.  相似文献   

9.
A long-term prescribed burning experiment, incorporating replicated plots that receive burning biennially (2 yr burn) or quadrennially (4 yr burn) and unburned controls, has been maintained in a wet sclerophyll forest at Peachester, Queensland, Australia since 1972. In 2003 we extracted DNA from soil collected from the experimental plots and investigated the influence of the burning on the soil fungal community by comparing denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified partial rDNA internal transcribed spacer regions (ITS1). Canonical analysis of principal coordinates (CAP) of the DGGE profiles of the upper 10 cm of the soil profile grouped the data strongly according to treatment, indicating that both burning regimes significantly altered fungal community structure compared to the unburned controls. In contrast, no obvious trend was observed for soil from a depth of 10-20 cm of the profile. Sequencing of selected DGGE bands found no obvious patterns of presence/absence of taxonomic groups between the treatments. Analysis of soil nitrogen and carbon by mass spectrometry indicated that total soil C and N, along with both gross and net N mineralisation, were significantly lower in 2 yr plots compared to control and 4 yr plots.  相似文献   

10.
不同种植时间菜园土壤微生物生物量和酶活性变化特征   总被引:35,自引:3,他引:35  
曹慧  杨浩  孙波  赵其国 《土壤》2002,34(4):197-200
土壤生物学指标能够反映土壤质量在各种自然和人为作用下的微小变化,是敏感的土壤质量指标。本文以太湖地区高强度开发为背景,研究了不同利用年限的菜园土壤微生物生物量C和酶活性的变化特征。研究结果表明,菜园土壤随着利用年限的不断增加,土壤养分逐渐升高,土壤脲酶活性、土壤微生物生物量C与土壤有机质、全N、全P之间具有良好的线性关系,土壤纤维素酶活性随菜地利用时间增加有上升的趋势,它们能较好地区别不同利用年限的菜地土壤,可以作为敏感的土壤生物学指标。但土壤转化酶活性与土壤养分的变化没有明显的相关性。  相似文献   

11.
The use of methylcyclopentadienyl manganese tricarbonyl (MMT) in unleaded gasoline has become a source of manganese (Mn) contamination to which urban ecosystems are exposed. The potential of coniferous trees as spatial and chronological indicators of Mn pollutation was investigated. Manganese concentrations in xylem from blue spruce (Picea pungens) growing near (high-exposure site) and far (low-exposure site) from a road were measured as a function of the year of wood formation. Exchangeable Mn content, which is the soil fraction most readily available for uptake by trees, was also measured in the soils of both sectors. The results of the soil analysis show that exchangeable Mn concentrations are about 10 times higher in soils exposed to contamination (p<0.0005), in=" comparison=" with=" the=" concentrations=" found=" in=" soils=" weakly=" exposed.=" however,=" the=" mn=" concentrations=" in=" the=" trees=" near=" the=" road=" were=" not=" significantly=" different=" from=" those=" in=" the=" reference=" trees=" (p=">0.05). Therefore, it appears that blue spruce is not sensitive to soil Mn contamination arising from the use of MMT in gasoline.  相似文献   

12.
The quality of dissolved organic matter (DOM) is highly variable and little information is available on the relation of DOM quality to the structure and composition of its parent soil organic matter (SOM). The effect of increasing N inputs to forest soils on the structure and composition of both SOM and DOM also remains largely unclear. Here we studied the release of DOM, its specific UV absorption and two humification indices (HIX) derived from fluorescence spectra from Oa material of 15 North- and Central-European Norway spruce (Picea abies (L.) Karst.) stands. The Oa material was incubated aerobically at 15 °C and water holding capacity over a period of 10 months and extracted monthly with an artificial throughfall solution. Soil respiration was determined weekly. The influence of mineral N inputs on composition of DOM and on respiration rates was investigated on periodically NH4NO3-treated Oa samples of eight selected sites. Release of dissolved organic carbon (DOC) from untreated Oa material samples ranged from 0.0 to 58.6 μg C day−1 g C−1 and increased with increasing C-to-N ratio. One HIX and UV absorption of DOM were negatively correlated to the degree of oxidation of lignin-derived compounds and positively to the C-to-N ratio and – HIX only – to the aromatic C content of SOM. Mineral N addition had no distinct effect on respiration rates. In six of eight samples the N-treatment caused an increase in specific UV absorption or one HIX of DOM. However, these effects were not statistically significant. Addition of mineral N did not affect the rates of DOM release. Our results show that properties of SOM largely determine the amount and quality of DOM in forest floors. Changes of DOM quality due to mineral N additions are likely, but we cannot confirm significant changes of DOM release.  相似文献   

13.
Abstract

Yacon (Polymnia sonchifolia) plants originating from Andean highlands are known to accumulate a large amount of oligofructans in their tubers and tuberous roots (Ohyama et al. 1990; Asami et al. 1992). Asami et al. (1992) have reported that tubers and tuberous roots which were harvested in late fall contained about 57 and 66% respectively (on a dry matter basis) of oligofructans. However, the tubers, tuberous roots and shoots of the yacon contained only a small amount of starch and inulin. The tuberous roots of yacon which resemble those of sweet potato in appearance are usually eaten raw and are expected to become commercially valuable as a source of oligofructans.  相似文献   

14.
Although a great deal of information exists about the effect of land use on soil enzyme activities, much of this is contradictory and brings into question the suitability of soil enzyme activities as indicators of how land use affects soil quality. The purpose of this study was to investigate the effect of land use on different soil biochemical properties, especially hydrolytic enzyme activities, with the aim of providing knowledge about the problems related to the use of enzymes as indicators of soil quality. The data presented derive from various studies in which a large number of soils under different types of forest or agricultural management were analysed by the same methods. All of the soil samples were characterized in terms of their main physical and chemical properties, the activity of several hydrolases, microbial biomass C and soil basal respiration. The results indicate that soil use causes a large reduction in organic matter content and that the effect on enzyme activity varies depending on the type of land use or management and the type of enzyme. Furthermore, the enzyme activities per carbon unit (specific activities) in soils affected by land use are almost always higher than in maximum quality soils (climax soils under oak vegetation or oak soils), and land use also generates greater increases in the specific activity as the C content decreases. The mechanism responsible for these increases probably involves loss of the most labile organic matter. Enzyme enrichment is not always produced to the same degree, as it varies as a function of the enzyme and the type of land use under consideration. It is concluded that the complexity of the behaviour of the soil enzymes raises doubts about the use of enzyme activities as indicators of soil degradation brought about by land use.  相似文献   

15.
Summary Seasonal effects of liming, irrigation, and acid precipitation on microbial biomass N and some physicochemical properties of different topsoil horizons in a spruce forest (Picea abies L.) were measured throughout one growing season. The highest biomass N was recorded in autumn and spring in the upper soil horizons, while the lowest values were obtained in summer and in deeper horizons. The clearest differences between the different soil treatments were apparent in autumn and in the upper horizons. Liming increased the microbial biomass N from 1.7% of the total N content to 6.8% (Olf1 layer) and from 1% to 2% of the total N content in the Of2 layer. The main inorganic-N fraction in the deeper horizons was NO inf3 sup- . An increase in cation exchange capacity was observed down to the Oh layer, while soil pH was only slightly higher in the Olf1 and Of2 layers after liming. The effects of irrigation were less marked. The microbial biomass N increased from 1.7% of total N to 4.8% in the Olf1 layer and from 1% to 2% of total N in the Of2 layer. In the Olf1 layer an increase in C mineralization was observed. Acid precipitation decreased the microbial biomass N in the upper horizons from 4.8% of total N to 1.8% in the Olf1 layer and from 2% to 0.5% in the Of2 layer. No significant changes in soil pH were observed, but the decrease in cation exchange capacity may result in a decrease in the proton buffering capacity in the near future.  相似文献   

16.
17.
18.
Extracellular lignocellulose-degrading enzymes are responsible for the transformation of organic matter in hardwood forest soils. The spatial variability on a 12 × 12 m plot and vertical distribution (0–8 cm) of the ligninolytic enzymes laccase and Mn-peroxidase, the polysaccharide-specific hydrolytic enzymes endoglucanase, endoxylanase, cellobiohydrolase, 1,4-β-glucosidase, 1,4-β-xylosidase and 1,4-β-N-acetylglucosaminidase and the phosphorus-mineralizing acid phosphatase were studied in a Quercus petraea forest soil profile. Activities of all tested enzymes exhibited high spatial variability in the L and H horizons. Acid phosphatase and 1,4-β-N-acetylglucosaminidase exhibited low variability in both horizons, while the variability of Mn-peroxidase activity in the L horizon, and endoxylanase and cellobiohydrolase activities in the H horizon were very high. The L horizon contained 4× more microbial biomass (based on PLFA) and 7× fungal biomass (based on ergosterol content) than the H horizon. The L horizon also contained relatively more fungi-specific and less actinomycete-specific PLFA. There were no significant correlations between enzyme activities and total microbial biomass. In the L horizon cellulose and hemicellulose-degrading enzymes correlated with each other and also with 1,4-β-N-acetylglucosaminidase and acid phosphatase activities. Laccase, Mn-peroxidase and acid phosphatase activities correlated in the H horizon. The soil profile showed a gradient of pH, organic carbon and humic compound content, microbial biomass and enzyme activities, all decreasing with soil depth. Ligninolytic enzymes showed preferential localization in the upper part of the H horizon. Differences in enzyme activities were accompanied by differences in the microbial community composition where the relative amount of fungal biomass decreased and actinomycete biomass increased with soil depth. The results also showed that the vertical gradients occur at a small scale: the upper and lower parts of the H horizon only 1 cm apart were significantly different with respect to seven out of nine activities, microbial biomass content and community composition.  相似文献   

19.
Journal of Soils and Sediments - Soil microbial communities play critical function during nutrient cycling. However, with the increasing nutrient input into terrestrial ecosystems from human...  相似文献   

20.
Summary Diptera larvae were extracted by the wash and flotation method according to Healey and Russell-Smith (1970) as modified by Altmüller (1979). The larvae had been kept in alcohol for at least 2 months. After this time their specific gravity changed, and an additional flotation with MgSO4-water solution of SG = 1.26 g/cm3 was very effective. This new method is described. The working procedure can be reduced to about 50%–70% of the time Altmüller (1979) and Hövemeyer (1984) needed. Many tests have shown that some small sciarid larvae settle out with the needle and humus particles in solution of SG = 1.26 and cannot be found, so that it is necessary to apply a correction factor. Samples taken each August from 1979 to 1984 were extracted and floated off by the methods described. Larvae from seven families of Diptera nematocera and from six families of Diptera brachycera were found. Numbers of sciarid larvae varied between 2500 (1979) and 100/m2 (1981), of the cecidomyid larvae between 6700 (1983) and 400/m2 (1980) and of the brachyceran larvae between 650 (1979) and 50/m2 (1984). The correlation coefficient (= r) of larval population size with temperature and precipitation, respectively, was calculated and hence the coefficient of determination as a percentage (r 2 x 100), which represents the proportion of the fluctuations in population size that is accounted for by weather factors. All families were influenced negatively by the temperature and positively by the precipitation in August, i.e., the higher the precipitation and the lower the temperature in August the higher the larval abundance in August. The development of the larvae begins in the previous year, and the influence of monthly climatic factors during the whole period of development was tested. It was shown that: Precipitation is correlated with the abundance of (1) sciarid larvae in June and August of the previous year (positively); (2) brachyceran larvae in June (August) of the previous year and in (February), March, April and August of the same year (positively); and (3) cecidomyid larvae in July of the same year (negatively). Temperature is correlated with the abundance of (1) sciarid larvae in August of the previous year (negatively); (2) brachyceran larvae in August of the previous year (negatively); and (3) cecidomyid larvae in September of the previous year, in January and July of the same year (positively). Monthly data for precipitation and temperature, taken together, showed maximum positive correlations with abundance as follows: (1) for sciarid larvae, with data for August of the previous year; (2) for brachyceran larvae, with data for August of the previous year; (3) for cecidomyid larvae, with data for July of the same year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号