共查询到20条相似文献,搜索用时 15 毫秒
1.
Winter as well as summer floods result in soil loss and sedimentation. Up to now the winter events cannot be adequately predicted. This paper focuses on the infiltration processes under frozen winter conditions in order to model soil erosion processes in winter by adapting the computer model EROSION 3D [Schmidt, J., Werner, M. v., 2000. Modeling Sediment and Heavy Metal Yields of Drinking Water Reservoirs in the Osterzgebirge Region of Saxony (Germany). In: Soil Erosion - Application of Physically Based Models, Schmidt, J.(Editor). Berlin, Heidelberg, New York., pp. 93-108.].A new snow accumulation and snow melt module has been implemented in order to estimate erosion rates during snowmelt events. Tests show that infiltration still occurs in frozen soils, however, infiltration rates are reduced compared to unfrozen soils [Weigert, A., Wenk, G., Ollesch, G., Fritz, H., 2003. Simulation of snowmelt erosion using the EROSION 3D model. Journal of Plant Nutrition and Soil Sciences, 1/2003.]. In order to improve the EROSION 3D model regarding partly frozen soils a physical based infiltration model extension has been developed and experimentally verified.Processes of infiltration into partly frozen soils are successfully quantified by a newly designed experimental set-up using a soil column (height 50 cm, diameter 21.5 cm). At the bottom of this column a negative pressure can be applied in order to establish unsaturated hydraulic conditions. The volume rate of the percolating water is constantly measured by an online balance. In addition the column is equipped with three TDR and temperature probes.The behaviour of two soil samples (sandy vs. loamy soil) are investigated under saturated, unsaturated and frozen conditions. The improved physical infiltration model based on the combination of Darcy's Law, Hagen-Poiseuille's Law, the capillary-rise equation and the van Genuchten θ( h) function determines with considerable accuracy both the unsaturated hydraulic conductivity and the effective saturated hydraulic conductivity of a partly frozen soil for rigid soil matrix conditions. This approach is compared with the Mualem concept for predicting unsaturated hydraulic conductivities. Fractures were observed due to freezing cracks in case of loamy material. For fractured soils the calibration with a skinfactor is found to be absolutely necessary to give reliable results. 相似文献
2.
The proportion of straw and grain as well as of nitrogen (N) in the barley (Hordeum vulgare L.) plant was greatly changed by the distribution of rain in the pre‐ and post‐anthesis periods and by the existence of air temperatures above 30°C during grain filling along with N fertilizer rate. The response of barley to N rates of 0, 40, 80, 120, and 160 kg N/ha was studied over a three‐year period. Adequate rainfall in the pre‐anthesis period, little rain in the post‐anthesis period, and air temperatures above 30°C during the hard dough stage of the grain development, produced high N translocation to the grain as well as a positive response on grain yield and N content in the grain up to a fertilizer rate of 118 N kg/ha. Above this rate, grain yield decreased, while the N content in grain continued to increase. Optimum moisture conditions during the pre‐ and post‐anthesis periods, and mild temperatures during the grain filling period, produced a good grain yield response to N fertilizer rate, increases up to 131 kg N/ha without varying the N content in grain. The N translocation efficiency was somewhat lower than low rainfall in the post‐anthesis period. Low rainfall in the pre‐anthesis period and air temperatures above 30°C in the early milk stage of the grain made grain filling difficult, even when the rainfall was sufficient in the post‐anthesis period. Hence under these conditions, N fertilizer rate did not increase the grain yield, but the N content and the N‐translocation efficiency decreased with increasing N fertilizer rates. 相似文献
3.
Abstract Although winter survival of winter wheat most often is recorded qualitatively by rating dead or living plants, the surviving plants may differ extensively in vigour and degree of carbohydrate reserves left at the end of winter. This factor is yet not accounted for in existing models of winter wheat yield and crop performance. A quantitative measure of plant vigour at spring arrival, as influenced by the prevailing winter weather and the plants’ concentration of water soluble carbohydrates, would hence make a useful supplement to such models. Two cultivars of winter wheat were grown in boxes over 2 years at three sites in Norway with contrasting winter climates. Plants were sampled monthly for measurements of growth potential and analyses of reserve carbohydrates. Fructan constituted the main part of water soluble carbohydrates (WSC). The concentration of fructan fell throughout winter, but increased rapidly after snow thaw in spring when a positive carbon balance was restored. Daily global radiation at plant level and soil temperature (2 cm) were the only two climatic factors found to have significant effects on periodic changes in fructan concentration in a stepwise regression analysis. Still, number of days with snow cover had a causal effect through its impact on soil temperature and radiation at plant level. In neither of the 2 years was there any significant correlation between plant carbohydrate concentration and growth potential at the different sites. The results implied that plant vigour at the end of winter was strongly related to plant condition in late autumn and duration of snow cover in winter. Plants that had been covered with snow for a long time period showed significantly lower growth at the samplings in March and April than plants from the location with a shorter duration of snow cover. 相似文献
4.
以过筛土壤为培养基础,以圆形桶为容器,设置了3个水分梯度(W0、W1、W2,分别为田间持水量的50%、65%、80%)、4个氮素梯度(N0、N1、N2、N3,施氮量分别为每桶0 g·kg?1、0.10 g·kg?1、0.20 g·kg?1、0.29 g·kg?1),探究冬小麦新品系‘小偃60’干物质积累与分配、水分利用效率、光合参数的变化规律,为其推广及高产高效栽培提供依据。结果表明,水、氮均对冬小麦生物量及产量、叶片叶绿素含量、叶水势、叶片净光合速率等有显著影响,且水对籽粒产量的主效应大于氮肥。水分和氮肥适宜处理(W2N2)比水分和氮肥轻度亏缺处理(W1N1)增产66.03%,W1N1比水分和氮肥严重亏缺(W0N0)增产153.30%。在相同水分处理下,冬小麦叶绿素SPAD值随着施氮量的升高而升高,而在相同施氮量条件下,水分严重亏缺处理(W0)和水分适宜处理(W2)的冬小麦叶绿素SPAD值均低于水分轻度亏缺处理(W1)。水分对叶片水势为正效应,表现为随着土壤含水量的增加显著升高到不明显升高趋势。光合速率(Pn)、蒸腾速率(Tr)、瞬时水分利用效率(WUEi)均随着施氮量的增加而升高,Pn、Tr随土壤水分提高而上升,WUEi却随土壤水分提高而下降。在低氮(N1)或者不施氮肥(N0)条件下,产量水分利用效率(WUEy)随水分的增加表现先升高而后变化不明显的变化趋势;在适宜氮肥(N2)和高氮(N3)条件下,WUEy随着水分的增加而升高。通过对试验结果的分析得出如下结论:1合理的水氮管理使‘小偃60’的籽粒产量及水分利用效率(WUE)维持在较高水平,过多水肥均引起产量及WUE下降;2不同水氮下籽粒产量、水分利用效率均与叶片净光合速率显著正相关;3‘小偃60’在河北环渤海地区更适合在低水中肥条件下种植。 相似文献
5.
The dynamics of water flow in soils influences the transport behaviour of solutes. Transport of bromide and herbicides through undisturbed soil columns was investigated under conditions of unsaturated steady-state and transient water flow. Effective transport parameters were obtained from fitting the convection–dispersion equation to curves of concentration against cumulative drainage, and these enabled us to interpret the observed behaviour. Under both steady-state and transient flow bromide and herbicides were transported through similar parts of the pore volume of a homogeneous single grain soil (Bv horizon). However, in aggregated Ah and Ap horizons preferential transport occurred during transient flow but not during steady-state flow. For preferential flow the mean transport volume seemed to depend on the prevailing pore system and the fraction of preferentially flowing water. Solute leaching was more efficient under steady-state than under transient flow for bromide in all soils and for herbicides in the Bv horizon. However, when transient flow caused preferential transport, herbicide loss was greater under transient flow than during steady-state flow. Under preferential flow conditions a three-step herbicide concentration development recurred in successive drainage events. This behaviour was not observed for the non-reactive tracer. It seemed to be caused by sorption. A steady-state model with cumulative drainage as independent variable instead of time can predict the transport of non-reactive and adsorbed solutes in homogeneous soils without features of preferential flow. Otherwise constant effective input parameters cannot be assessed a priori. 相似文献
6.
为明确超高产栽培条件下(9000 kg/hm2)冬小麦的磷素营养规律,为合理施肥提供研究依据,于20042006年冬小麦生长期间,通过田间取样,分器官测定磷素含量,研究了超高产冬小麦对磷的吸收、积累和分配特点。结果表明:在产量水平为9000 kg/hm2左右的条件下,不同品种各器官中的含磷量及全生育期中磷的总积累量存在一定差异,但一般不显著,显示出不同品种磷素营养特点的共性特征。地上部不同器官的含磷量(P2O5,下同)为0.25%~2.32%(干重)。不同生育时期含磷量最高的器官随生育进程逐渐更替,生育早期为叶鞘,中期为茎秆和穗,后期为籽粒。不同品种小麦各器官对磷的积累量,生育前期一般以叶片中最高,生育后期以籽粒中最高。小麦吸收的磷在孕穗期前主要分配在叶片中,多数品种在50%以上。成熟期磷在籽粒中的分配率最高,各品种均达到60%以上。在本研究的超高产栽培条件和产量水平下,冬小麦全生育期地上部器官中磷的最高积累量为110.8~151.4 kg/hm2,每生产100 kg籽粒吸收磷素1.25~1.66 kg。各品种对磷吸收量最高的阶段,一般都在起身到开花期之间,其次是在冬前的苗期。这表明,冬前和起身到开花期是冬小麦吸收磷的关键时期。根据上述磷的吸收积累特点,在确定施肥方案时,磷肥应以底肥为主,以促进小麦生长和对磷的吸收。 相似文献
7.
为比较不同灌溉方式下作物光合作用日变化的差异,该试验选择晴朗天气,采用LI-6400便携式光合作用仪观测了喷灌和地面灌溉条件下冬小麦灌浆期光合作用参数的日变化。试验结果表明:与地面灌溉条件下相比,喷灌条件下冬小麦旗叶的净光合速率增加,细胞间隙CO 2浓度减小,蒸腾速率和气孔导度除在光合“午休”期间 (12∶00~14∶00) 较大外,在其它时段均低于地面灌溉条件下;喷灌和地面灌溉条件下冬小麦的光合“午休”均是“气孔限制”与“非气孔限制”共同作用的结果,但在喷灌条件下,光合“午休”主要由气孔限制引起的,而在地面灌溉条件下,光合“午休”主要由叶肉细胞光合活性下降导致的非气孔限制引起的。试验结果表明喷灌可以改善叶肉细胞的光合能力,使光合“午休”期间阻碍光合速率进一步提高的主要因素由非气孔限制逐渐转变为气孔限制。 相似文献
8.
PurposeSeasonal freezing-thawing cycles (FTCs) are common phenomena in middle- and high-latitude regions that may have a strong effect on soil nitrogen (N) mineralization. As yet, little information is available about N mineralization of cultivated soils affected by FTCs, especially during non-growing seasons. It is proposed that N transformation of boreal farmland soil should be well responsive to FTCs because their microbial community and physiochemical characteristics are easily influenced by human agricultural activities. To examine this hypothesis, laboratory simulation experiments were carried out to investigate the effects of different amplitudes, frequencies, and moisture regimes of FCTs on soil N mineralization dynamics, to provide a better understanding of the mechanisms influencing the effect of FTCs on soil N availability during the non-growing season. Materials and methodsIn a laboratory simulation study, cultivated black soil (BL) and brown soil (BR) (Haplic Phaeozems and Haplic Luvisols, respectively; World Reference Base for Soil Resources 1988) were collected from two provincial experimental stations to assess the dynamics of N mineralization under four FTC factors (five levels for freezing temperature, two levels for thawing temperature, five levels for freezing-thawing frequency, and three levels for soil moisture regime). Results and discussionThere were marked variations in inorganic N pools, microbial biomass N (MBN), and net N mineralization rate (NNMR) for both soils during the FTCs. In both soils, ammonium N (NH4-N) and nitrate N (NO3-N) concentrations, as well as NNMR, significantly increased with the decrease in freezing temperature, but the opposite was observed for MBN. However, fluctuating thawing temperature had no significant influence on the available N forms measured. As FTCs’ frequency increased, the NH4-N, NO3-N concentrations, and NNMR substantially decreased in both soils, while the MBN concentration initially increased and then declined, reaching the peak at the sixth FTC. The available N fractions in both soils had different response patterns as soil water content rose, showing a considerable increase of NH4-N, a distinct decrease of NO3-N, a steady increase for NNMR, and an initial increase followed by a decreasing trend for MBN. ConclusionsThis study has demonstrated that FTCs during the non-growing season in temperate regions can accelerate N mineralization via increases in freezing-thawing amplitude and freezing-thawing duration. Therefore, there is a potential risk of N losses over the early spring thawing period. 相似文献
9.
20042~006年冬小麦生长期间,通过田间取样研究了超高产(≥9000 kg/hm2)栽培条件下冬小麦对锰的吸收、积累和分配特点。结果表明,地上部不同器官的含锰量为11.51~37.7 mg/kg(干重)。叶片的含锰量在生育期间始终最高,开花后穗部和子粒的含锰量也较高。小麦各器官对锰的积累量,生育前期以叶片中最高,生育后期以子粒最高。各品种全株的锰积累量均随生育进程而增加,在开花后10 d到成熟期达到最大值865.51~350.0 g/hm2。冬前、开花期和成熟期对锰的累进吸收百分率分别约为12%、80%和100%。小麦吸收的锰在孕穗期前主要分配在叶片中,达50%以上;成熟期锰在整个穗部(颖壳和子粒)的分配达50%以上。全生育期小麦对锰的阶段吸收量和日吸收量均为双峰曲线,第一个峰在冬前,第二个峰在起身到开花期。说明冬前和生育中期是超高产冬小麦吸收锰的关键阶段,应通过播种前浸、拌种与生育中期叶面喷施相结合,保证关键吸收阶段充足的锰供应。 相似文献
10.
对冬小麦极端气象年份的气候特征与小麦地上部生长发育状况进行了分析比较.在2003年寒冬冷春、日照偏少、春雨偏多的气候条件下,与2002年相比,冬小麦主要生育期分别推迟4~18 d,单位面积茎数(峰值)减少29.1%;生物量及叶面积系数大幅下降;穗粒数、千粒重虽分别提高6.37粒和3.21 g,但有效穗数降幅较大(320.84万穗/hm2),仍导致减产612.29 kg/hm2.分析结果认为,在气候异常年份,改进播种制度,调整播种量,间接调控单位面积穗数,可有效提高产量. 相似文献
11.
对冬小麦极端气象年份的气候特征与小麦地上部生长发育状况进行了分析比较。在2003年寒冬冷春、日照偏少、春雨偏多的气候条件下,与2002年相比,冬小麦主要生育期分别推迟4~18 d,单位面积茎数(峰值)减少29.1%;生物量及叶面积系数大幅下降;穗粒数、千粒重虽分别提高6.37粒和3.21 g,但有效穗数降幅较大(320.84万穗/hm 2),仍导致减产612.29 kg/hm 2。分析结果认为,在气候异常年份,改进播种制度,调整播种量,间接调控单位面积穗数,可有效提高产量。 相似文献
12.
An experiment was conducted to determine the effects of three tillage systems on crop yield in a winter wheat-vetch ( Vicia sativa L.) rotation during 3-year growing seasons on a clay-loam soil in the northwest region of Turkey. The three tillage treatments were: (1) conventional tillage (CT); (2) shallow tillage (ST); (3) double disk tillage (DD).The wheat grain yield was significantly affected by tillage when averaged across years. The highest wheat grain yield was obtained with shallow tillage treatment. The year affected wheat grain yield significantly, mainly due to the distribution of rainfall through the growing season and probably due to the wheat-vetch rotation. Heads density and head length increased significantly with shallow tillage when compared with conventional tillage. Tillage practices had no significant influence on thousand kernel weight. Results from this study indicated that for a dryland wheat-vetch rotation cropping system, shallow tillage had higher wheat grain yields than that obtained from conventional tillage. Furthermore, mouldboard ploughing tillage in this crop rotation could be replaced by shallow tillage that would increase yield and would be likely to improve soil properties in the long-term. On the other hand, double disk tillage proved to be a promising soil management practice to improve vetch grain yield when compared with conventional tillage. 相似文献
13.
干旱是影响华北地区冬小麦产量的主要农业气象灾害之一,作物生长模型是评估干旱对作物产量影响主要方法之一,但作物生长模型对极端天气气候条件下(如干旱)作物产量模拟效果仍存在不确定性。为提高作物模型在干旱条件下对作物产量模拟的精准性,该研究利用调参验证后的农业生产系统模型(agricultural production systems simulator,APSIM),通过查阅与华北地区冬小麦相关的186篇大田试验文献获得1 876对观测数据,以作物水分亏缺指数为干旱指标,评估APSIM模型在冬小麦拔节-开花和开花-成熟阶段干旱对产量影响的模拟效果,提出APSIM在拔节-开花和开花-成熟阶段干旱对小麦产量影响的修正系数。基于历史气候条件、SSP245和SSP585未来气候情景资料,分析了冬小麦拔节-开花和开花-成熟阶段干旱时空分布特征,并采用修正系数校正后的APSIM模型评估华北地区冬小麦拔节-开花和开花-成熟阶段不同等级干旱对其产量的影响。结果表明,APSIM模型低估了拔节-开花阶段干旱对冬小麦产量影响程度,轻旱、中旱和重旱校正系数分别为0.85、0.91和0.85;APSIM模型可准确模... 相似文献
14.
Abstract Transport of surface applied chloride (Cl) in undisturbed soil columns with intact macropores was compared to disturbed, repacked columns of the same soil. The total amount of Cl that leached from 20 cm deep soil columns was 2.0 times higher for the undisturbed columns than for the disturbed columns, and the total quantity of leachate was 1.4 times higher for undisturbed columns than for the disturbed columns. Chloride recovered (mass basis) in layer #2 (6.7 to 13.4 cm) was 1.79 times higher and in layer #3 (13.4 to 20.0 cm) was 2.72 times higher for the disturbed soils than for the undisturbed. For the plant and thatch layer (0.0 to 2.0 cm) the opposite was observed, total Cl recovered from the undisturbed columns was 2.4 times higher than in the disturbed columns. 相似文献
15.
为比较喷灌和地面灌溉条件下冬小麦籽粒灌浆过程特性的差异,进而探讨喷灌对作物产量形成的影响机制,该研究以百农矮抗58为试验材料,采用大田试验的方法,应用Richards模型对喷灌和地面灌溉条件下冬小麦强势粒、弱势粒的籽粒灌浆过程进行了模拟。建立在Richards模型基础上的籽粒生长分析显示:与地面灌溉相比,喷灌处理使冬小麦强势粒、弱势粒的千粒质量均显著性提高。灌浆特征参数的比较表明,喷灌处理使冬小麦强势粒、弱势粒的起始势增强,到达最大灌浆速率的时间提前,平均灌浆速率和最大灌浆速率均增大。阶段灌浆特征参数的比较表明,在籽粒灌浆的前期,喷灌处理使冬小麦强势粒、弱势粒的灌浆持续期缩短,平均灌浆速率增加;在籽粒灌浆的中期和后期,喷灌处理使强势粒的灌浆速率均得到了提高,但对其灌浆持续期没有显著影响,使弱势粒的灌浆持续期均延长,灌浆速率均得到了提高。总体上讲,喷灌处理对弱势粒粒质量的影响程度大于强势粒,表明喷灌提高冬小麦的千粒质量主要是通过提高弱势粒的千粒质量来实现的。 相似文献
16.
水资源是华北平原冬小麦、夏玉米种植区最重要的生产制约因素, 农业水资源高效利用具有重大的社会需要。通过设置冬小麦不同灌溉处理, 分析了各处理的水分平衡、产量和灌溉增产效率。结果显示: 1)不同灌溉处理具有不同的水分平衡过程, 雨养农田、充分灌溉处理、返青水胁迫处理、拔节抽穗水胁迫处理和灌浆水胁迫处理的蒸散量分别为251±58 mm、482±48 mm、352±44 mm、388±22 mm 和324±53 mm; 2)灌溉量对于小麦产量的增加具有明显的正效应, 拔节-抽穗水胁迫对作物产量有较大影响, 灌浆水胁迫和返青水胁迫均没有对小麦产量造成明显影响; 雨养农业的经济产量为2 950±635 kg·hm -2, 充分灌溉下的经济产量约为5 994±994 kg·hm -2; 冬小麦返青期、拔节抽穗期、灌浆期施加适度的水分胁迫, 产量分别为5 163±885kg·hm -2、5 047±1 180 kg·hm -2、5 249±975 kg·hm -2, 与充分灌溉相比, 没有明显的产量下降; 3)小麦的灌溉增产效率存在明显的年际差异, 在丰水年或特丰水年, 灌溉增产效率为1.9 kg·m -3, 在枯水年为0.4 kg·m -3, 平水年为1.6 kg·m -3。 相似文献
17.
采用通气法研究了灌溉与非灌溉条件下黄淮冬麦区农田氨挥发损失.结果表明,非灌溉条件下,麦田追肥氮的氨挥发主要发生在施肥后的5~25d内,追氮时期由起身期(SE,GS30)推迟到拔节期(JT,GS32),追肥氮的氨挥发速率峰值增大且出现时间提前;继续推迟至孕穗期(BT,GS41),氨挥发速率峰值减小.SE、JT和BT三个追氮时期的氨挥发损失量分别占追肥氮的24.84%~25.32%、25.42%~25.50%和14.77%~16.62%.灌溉(60mm)条件,不论何时追氮,麦田追肥氮氨挥发速率均变化较小,氨挥发损失量在N 0.40~0.55 kg/hm2之间,仅占追肥氮的0.36%~0.49%.非灌溉条件,氨挥发速率与0-10 cm土层土壤铵态氮浓度呈极显著的正相关关系;灌溉条件,氨挥发速率与10-20 cm土壤浓度呈极显著的正相关关系.土壤温度和降水是影响氨挥发的重要因素.此外,氨挥发还与农田土壤表面的通气状况有关,多穗型小麦品种更有利于减少麦田氨挥发的损失. 相似文献
18.
为了验证盐分胁迫条件下根系吸水与根氮质量之间的关系,同时对盐分胁迫修正因子的参数进行优化,该研究通过布置田间试验,对冬小麦平均根系吸水速率分布进行了估算,并对其与根氮质量密度之间的关系进行了分析,结果表明,田间试验条件下,冬小麦最大根系吸水速率与根氮质量密度仍呈线性正比关系。在此基础上,建立了盐分胁迫条件下基于根氮质量密度分布的根系吸水模型,并对其中盐分胁迫修正因子中的参数进行了优化,进而对咸水灌溉条件下冬小麦的根系吸水规律进行了模拟,其结果与利用反求方法估算得到平均根系吸水速率分布吻合较好,表明盐分胁迫条件下,冬小麦根系吸水与根氮质量之间的线性正比关系仍然成立,并可用于优化盐分胁迫修正因子,从而建立相关的根系吸水模型。 相似文献
19.
Wick samplers could be used for measurements of solute transport. Water collection efficiency of wick samplers, defined as the volume of water collected by a sampler divided by the water flux from the root zone, should be close to 100%. We used three wick samplers differing in wall height in Hydric Hapludands under constant rainfall intensity and examined the effects of the rainfall intensity and wall height on the water collection efficiency based on experimental data and a numerical analysis. The water collection efficiency of wick samplers increased with the rainfall intensity and wall height because the increase in both rainfall intensity and wall height resulted in a distribution of the total potential inside the wick sampler close to that outside the wick sampler. Furthermore, the ratio of the cross-sectional area of the drain hole to that of the cylinder must be taken into account in the design of a wick sampler. 相似文献
20.
Sunflower seeds (Helianthus annuus L., cv. Dwarf) were grown with distilled water only or increasingly saline solutions (NaCl) to determine the influence of salinity on seedling growth and on the distribution of mineral nutrients obtained exclusively from cotyledons. Seedling growth was decreased by moderate (50mM) and high (100mM) concentrations of NaCl in the growth solution. Salinity generally decreased mineral transport (especially Fe, Mn, Mg, and Ca) from seed to seedling, except for K. Transport of Fe, Mg, and Ca to the aerial part was also markedly reduced. 相似文献
|