首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
试验设置了不同氮肥用量(正常施氮量、减氮10%、减氮15%和不施氮)田间试验,研究适度减氮对拔节期小麦氮、磷、钾营养及主要生物学特性的影响,为小麦适度减氮及中后期合理追肥提供参考。结果表明,与正常施氮处理相比,减氮10%条件下,小麦展1叶和展2叶的叶片中叶绿素含量、植株干物质积累量略有增减(+1.15%、-0.40%、-8.59%)但无显著差异,无缺氮性状出现,且群体茎蘖数提高(+4.88%),减氮10%处理小麦植株全氮含量略有减少但差异不显著,全磷、全钾含量亦无显著差异,全氮、磷、钾积累量有所下降但差异不显著;减氮15%以上会影响叶绿素合成,展2叶SPAD值显著下降,干物质积累量和群体茎蘖数下降,植株全氮、磷、钾含量及积累量显著下降,需要拔节期适度增加追肥量来满足植株生长需求。  相似文献   

2.
以硝态氮(NO_3~-)为氮源,采取正常供氮(全氮)和缺氮(三分之一正常供氮)处理,以2个基因型油菜品种(6号和27号)作为研究材料,通过测定地上部和地下部的硝态氮和铵态氮含量,研究了不同氮水平下油菜体内硝态氮、铵态氮的分布及转化差异。结果表明:6号铵态氮地上部比地下部低12.7%,硝态氮低44.3%;27号对应的铵态氮地上部比地下部高6.0%,硝态氮低36.2%;总的硝态氮比铵态氮含量高273.6%。不同施氮水平下缺氮处理对应的铵态氮、硝态氮地上部比地下部分别低15.7%和42.1%;全氮处理对应的铵态氮地上部比地下部高9.3%,硝态氮低39.2%。在没有铵态氮作为氮源的前提下,作物本身可以利用吸收到的硝态氮(仅有NO_3~-)在体内转化为铵态氮,在由硝态氮转变为铵态氮的过程中,植株体内可利用的氮素含量决定了硝态氮与铵态氮的分布与含量差异,以及对应的转化量。  相似文献   

3.
为通过控制施氮量来实现高肥力条件下小麦的高产、高效、安全生产提供依据,以冬小麦品种‘藁8901’为材料,研究了高肥力条件下不同施氮水平对小麦氮素吸收利用、籽粒产量和土壤中硝态氮含量的影响。试验结果表明:在高肥力条件下,随着施氮量的增加,冬小麦的籽粒产量和植株吸氮量均是先增加后降低,籽粒产量和植株吸氮量均以N150最高,氮素生产力则以N0最高。在冬小麦的拔节期和成熟期,土壤NO3-N含量均随着施氮量的增加而增加,减少氮肥施入量能降低冬小麦拔节期和成熟期土壤0-100 cm土层中的硝态氮含量。施用氮肥能提高小麦拔节期和成熟期植株全氮积累量和土壤NO3-N积累量,但两者并非同步增加,土壤NO3-N积累量增加的幅度远远大于植株全氮积累量的增长幅度。在施氮量0-180 kg/hm2范围内时,植株全氮积累量有所增加,且土壤中硝态氮的积累量增加较为缓和;而在施氮量180 kg/hm2的基础上继续提高氮素用量,植株全氮积累量下降,而土壤硝态氮积累量却开始大幅度增加。据此综合考虑,冬小麦‘藁8901’的适宜施氮量应控制在150 kg/hm2左右。  相似文献   

4.
施氮量对马铃薯氮素积累及功能叶片生理特性的影响   总被引:1,自引:0,他引:1  
为探讨不同季节马铃薯氮素高效利用的相关机理,指导不同季节马铃薯的氮肥运筹,提高氮肥施用效率。通过春、秋季盆栽试验,比较6个施氮水平下春、秋马铃薯氮素积累及功能叶片生理特性的差异。结果表明:(1)随施氮量的增加,春马铃薯硝态氮含量增加,秋马铃薯则先增后减;春、秋马铃薯硝酸还原酶活性均随施氮量增加呈现先增后减。同等肥力下,块茎形成期与块茎成熟期春马铃薯的硝酸还原酶活性峰值比秋马铃薯分别高出35.3%、74.0%。(2)春、秋马铃薯植株氮含量、氮素积累量随施氮量的增加而增加;同一生育时期同等肥力下,春马铃薯植株氮含量、氮素积累量均高于秋马铃薯。(3)生理指标中叶片硝态氮与植株氮含量相关系数较高。  相似文献   

5.
施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响   总被引:23,自引:1,他引:23  
【目的】在黄淮冬麦区,研究施氮量对旱地小麦氮素利用规律的影响,为该区旱地小麦合理的氮肥运筹提供理论依据。【方法】于2009-2010和2010-2011两个小麦生长季,在大田条件下设置6个施氮量处理(0、90、120、150、180和210 kg•hm-2),研究施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响。【结果】在150 kg•hm-2及以下的处理增加施氮量,小麦各生育时期植株氮素积累量、成熟期籽粒氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量显著增加;在150 kg•hm-2基础上增加施氮量,小麦各生育时期植株氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量与150 kg•hm-2处理无显著差异,成熟期籽粒氮素积累量及分配比例降低,营养器官氮素积累量及分配比例升高。施氮量为180 kg•hm-2和210 kg•hm-2,成熟期0-140 cm土层土壤硝态氮含量显著高于150 kg•hm-2处理,深层土壤硝态氮含量增加。施氮150 kg•hm-2处理小麦籽粒产量最高,氮素利用效率和氮肥生产效率较高。【结论】本试验条件下,施氮量为150 kg•hm-2,是兼顾产量和氮肥利用效率的适宜施氮量。  相似文献   

6.
不同桑树品种各器官氮磷含量及其累积量研究   总被引:3,自引:0,他引:3  
在不同供氮水平条件下 ,不同桑树品种根、枝、叶中全氮、全磷含量及其累积量存在着极显著差异。施氮处理比无氮处理根、枝、叶中全氮含量及其累积量极显著增加 ,全磷含量极显著降低 ,磷素累积量除叶片无显著差异外 ,根和枝条中均极显著增加。整个植株全氮含量 :叶片 >根 >枝条 ;全磷含量 :根≈叶片 >枝条。整个植株根、枝、叶的氮素累积及无氮处理的磷素累积 :叶片 >根 >枝条 ;施氮处理 ,根、枝条、叶片中磷素累积量相差不大  相似文献   

7.
CO2浓度对冬小麦氮代谢的影响   总被引:7,自引:1,他引:7  
 采用全硝态氮霍格兰营养液为培养基质,在自然光与遮光条件下分别对冬小麦植株进行增加CO2浓度处理,分期测定其体内NO3--N、NH4+-N、全氮量、吸氮量及硝酸还原酶活性(NRA),研究CO2对小麦氮代谢的影响。结果表明,无论遮光与否,增加CO2浓度均增强了植株对NO3--N的吸收、同化能力。但对地上部与根部的影响不同,施加CO2,地上部硝态氮、铵态氮浓度及NRA均有所降低,而植株由溶液中吸收的硝态氮及吸氮总量增加;与地上部相比,CO2对根部硝态氮、铵态氮浓度影响较小,趋势相似;培养期间,施CO2极显著的提高根部NRA,增强根部对硝态氮的同化能力。  相似文献   

8.
采用15N示踪技术,在袋控缓释条件下,研究不同形态氮素对当年生毛桃尿素态氮吸收分配的影响。结果表明:单独尿素处理、尿素与硝态氮混施、尿素与铵态氮混施,尿素与硝态氮、铵态氮按1∶1∶1混施4个处理15N利用率分别为13.81%、10.92%1、5.53%和15.78%,尿素与铵态氮混施、尿素与硝态氮、铵态氮1∶1∶1混施显著高于其它处理,均能提高植株对尿素态氮的吸收利用;而尿素与硝态氮混施,15N利用率显著低于其它处理,降低了植株对尿素态氮的吸收利用。从15N在植株不同器官的分配来看,各处理植株叶片的15N分配率最高,均占植株总吸收量的60%以上,其它依次为根主干枝梢。植株总吸氮量以尿素与铵态氮混施处理最高,但该处理表观生长量低于尿素与硝态氮混施处理。  相似文献   

9.
2006-2007年,在大田条件下,研究了施用不同形态氮肥对土壤供氮能力和强筋小麦植株含氮量的影响。结果表明,在施用纯氮量相等的条件下,硝态氮肥处理的土壤全氮和碱解氮含量较高,土壤供氮能力较强。而小麦叶片硝酸还原酶活性和成熟期之前植株各器官的含氮量均以酰胺态氮肥处理最高。酰胺态氮肥处理小麦籽粒蛋白质含量和植株氮素利用效率显著高于硝态氮和铵态氮肥处理。因此,对强筋小麦以施用酰胺态氮肥为宜。  相似文献   

10.
通过田间小区试验研究了不同施肥对酸性菜园土壤莴笋产量、叶片硝态氮、氨基态氮、全氮、蛋白氮和非蛋白氮含量及其相互关系的影响.结果表明,莴笋产量以微酸性土(S3)>酸性土(S2)>强酸性土(S1),且产量间比值YS3/YS1>YS2/YS1>YS3/Y相似文献   

11.
【目的】分析我国北方麦区不同土壤硝态氮残留梯度下减施氮肥后小麦籽粒产量、蛋白质含量变化,为保证合理减施氮肥,有效降低麦田土壤硝态氮残留提供理论依据。【方法】于2018—2019年在我国北方麦区43个地点进行田间试验,研究不同硝态氮残留情况下氮肥减施对小麦产量、蛋白质含量、产量构成及氮素吸收利用的影响。【结果】与农户施肥相比,监控施肥的氮肥用量减少55 kg·hm-2(26%),产量为5 885 kg·hm-2,比农户施肥增产3.1%,籽粒蛋白质含量为132.4 g·kg-1,与农户施肥相比无显著差异。当1 m土层硝态氮残留量<55 kg·hm-2时,小麦产量最低,为4 252 kg·hm-2,硝态氮残留在55—100 kg·hm-2时,产量达到最高,为7 186 kg·hm-2,硝态氮残留量过高并不能持续提高小麦产量;当土壤硝态氮残留量<100 kg·hm-2时,不施氮肥小麦产量会显著降低,但采用监控施肥技术合理减施氮肥,无论土壤硝态氮残留多少,均不会减产。土壤硝态氮残留>300 kg·hm-2时,小麦籽粒的蛋白质含量达到最高,平均为146.93 g·kg-1;当土壤硝态氮残留量<200 kg·hm-2时,不施氮肥会显著降低籽粒蛋白质含量,但通过监控土壤硝态氮合理减施氮肥,无论硝态氮残留高低,均不会降低籽粒蛋白质含量;硝态氮残留介于55—100 kg·hm-2时,农户与监控施肥处理的小麦籽粒蛋白质含量分别为124.5和123.1 g·kg-1。采用监控施肥技术,小麦氮肥吸收效率(地上部吸氮量/施氮量)与氮肥偏生产力分别为1.36 和45.7 kg·kg-1,较农户施肥显著提高61.5%和57.1%。【结论】综合考虑维持北方麦区小麦较高的产量和蛋白质含量,收获期1 m土层硝态氮残留量应介于55—100 kg·hm-2。基于小麦目标产量、籽粒蛋白质含量和土壤硝态氮监控,确定合理的氮肥用量,对实现小麦氮肥减施、绿色生产有重要意义。  相似文献   

12.
黄土高原半干旱地区施氮对土壤硝态氮分布与累积的影响   总被引:2,自引:1,他引:2  
黄土高原中部雨养农业区春小麦氮肥3 a定位试验结果表明,连续施氮3 a,第3季春小麦收获时,各处理0~200 cm土壤剖面硝态氮的平均含量较对照极显著增大(除处理N105,施氮105 mg/hm2处理),施氮对不同层次硝态氮含量的影响主要作用在50~80 cm和80~110 cm土层;对0~200 cm和0~110 cm土壤剖面硝态氮的总累积量及0~200 cm剖面肥料氮在土壤剖面中总残留量的影响均达极显著水平.连续施氮2 a后第3年不施氮与连续施氮3 a相比,0~200 cm土壤剖面硝态氮平均含量、各层次硝态氮含量0、~200 cm和0~110 cm土壤剖面硝态氮累积量及0~110 cm土壤剖面累积量占0~200 cm土壤剖面硝态氮累积总量的比例均降低.0~200 cm剖面累积率和残留率除处理N105增加外,其余均下降.硝态氮的残留、累积不仅与施氮量有关而且与氮磷的配合比例有关.  相似文献   

13.
施氮量对玉米植株硝态氮含量及产量的影响   总被引:4,自引:0,他引:4  
[目的]探讨施氮量对玉米不同时期硝态氮含量及产量的影响。[方法]通过田间小区试验研究了施氮量01、503、004、50 kg/hm2对玉米植株硝态氮(NO3--N)含量及产量的影响。[结果]随玉米生育期的延长玉米各部位中NO3--N含量总体上呈下降趋势;在苗期、拔节期和灌浆期,不施氮处理的玉米植株硝态氮含量均低于各施氮处理,且这3个时期玉米各叶位的硝态氮含量与施氮量的相关性差异较大;第3叶位和6叶位的NO3--N含量在不同生育期的表现为:苗期3位叶高于6位叶,拔节期和灌浆期6位叶高于3位叶;3个时期的植株体内硝态氮含量,叶鞘均明显高于叶肉,且均在施氮量大于300 kg/hm2时氮含量增长减缓。[结论]施用氮肥可显著提高玉米籽粒和秸秆产量,合理施氮量应控制在300 kg/hm2左右。  相似文献   

14.
以春小麦宁春4号为材料,采用随机区组设计,研究水氮互作对春小麦植株养分含量及产量的影响。结果表明:(1)在丰水和干旱条件下,小麦叶片的全N含量表现为高氮处理>中氮处理>不施氮处理;在严重干旱条件下,中氮处理的最高;在拔节期和灌浆期,高氮处理的却最低。表明施氮能提高小麦对氮素的吸收积累,改善其分配状况。(2)与不施氮相比,施氮能提高植株磷素积累量,中度干旱条件下,扬花期对照和中氮处理小麦植株含磷量显著高于高氮处理;严重干旱下,灌浆期中氮处理的小麦植株含磷量最高,但其他生育期均以高氮处理为最高;中氮条件下,拔节期和抽穗期中度干旱的小麦植株全磷含量最低,而扬花期中度干旱的最高,灌浆期随着水分胁迫的加剧而减小;高氮条件下,扬花期小麦植株全磷含量为严重干旱的最高,灌浆期中度干旱的最高。(3)在氮素一定的条件下,随着干旱胁迫的加剧,小麦植株全K含量减小;3个水分条件下,小麦叶片含钾量无明显差异。千粒质量、穗粒数和穗粒质量均以高氮处理最大;3种氮素营养水平下,小麦千粒质量和每盆穗粒质量均是中度干旱的最高。  相似文献   

15.
为了探明江苏扬州地区黑麦草草地土壤剖面氮素的运移规律,提高黑麦草植株对氮素的吸收利用效率,研究了扬州地区1年生黑麦草人工草地中不同施氮水平(0、100、200和300 kg/hm2,分别表示为N0、N100、N200和N300)下土壤中硝态氮含量和分布动态、植株氮素含量等变化情况.结果表明:第1次刈割和第2次刈割黑麦草茎、全株中氮素含量均以N200处理较高,茎中氮素含量分别为2.48%、2.8%,全株为3.68%、2.35%,叶中氮素含量均以N300处理较高,分别为4.02%和3.95%.在1年生黑麦草不同生长时期和不同深度土层中硝态氮含量差异显著,不同时期土壤中硝态氮含量大多随施氮量的增加而增高.随施氮量增加,硝态氮在60~140 cm土层内累积量增加.第1批(2008-12-03)0~140 cm土壤中硝态氮累积量为115.06~282.49 kg/hm2,以后各取样时期土壤中硝态氮累积量依次降低,第3批(2009-03-05)最少,为64.78~111.55 kg/hm2.当施氮量大于200 kg/hm2(超过黑麦草植株含氮量)时,会导致刈割时NO3--N在根层土壤剖面的显著积累,而黑麦草产量、植株氮素含量等均不增加显著.  相似文献   

16.
利用微区试验,研究了不同施肥和灌溉条件下冬小麦土壤硝态氮的含量与分布。结果表明:返青期0~40cm土层中土壤硝态氮含量差异显著,0~60cm各处理硝态氮含量随施氮量增加而增加,表层W0、W1和W23个处理呈直线相关(R2=0.9394、0.8106和0.9811);孕穗期0~80cm土壤硝态氮含量差异显著,0~120cm各处理硝态氮含量随施氮量增加而增加,表层呈直线相关(R2=0.8291、0.9834和0.9896)。比较返青期和孕穗期结果发现,高氮大水是造成硝态氮淋溶的主要原因。  相似文献   

17.
以蛭石为基质,甘氨酸部分替代营养液中硝态氮,对不结球白菜和生菜生长及硝酸盐含量的影响进行了研究。结果表明,适当比例的甘氨酸可以明显降低两种蔬菜体内的硝酸盐含量。以替代硝态氮15%-20%为宜,两种蔬菜分别可比对照减少10.41%-13.51%和15.17%-22.22%;而叶片全氮含量显著增加。生菜对甘氨酸反应敏感,利用效率高于不结球白菜,地上部鲜重明显增加,干重各处理间无显著差异;而不结球白菜地上部鲜重变化不大,干重减少。  相似文献   

18.
秸秆还田和氮肥用量对冬小麦产量和氮素利用的影响   总被引:3,自引:0,他引:3  
【目的】在陕西关中小麦-玉米轮作区通过连续7年田间定位试验,探索秸秆还田配施化学氮肥对冬小麦产量、籽粒蛋白质含量、地上部吸氮量、收获期土壤硝态氮残留量及土壤氮素平衡的影响,为小麦增产及氮素高效利用提供科学依据。【方法】试验采用裂区设计,主处理为玉米秸秆还田和不还田,副处理设置5个施氮水平,分别为0(N0,不施用氮肥)、84 kg·hm-2(N84,当地推荐氮肥用量的一半)、168 kg·hm-2(N168,当地推荐氮肥用量)、252 kg·hm-2(N252,高氮肥用量)、336 kg·hm-2(N336,超高氮肥用量)。【结果】与秸秆不还田处理相比秸秆还田未提高冬小麦籽粒产量,施用氮肥较不施氮肥小麦增产18%—29%,而超高氮肥用量较推荐氮肥用量有减产风险。秸秆还田和氮肥用量对小麦产量有交互效应。与秸秆不还田处理相比,秸秆还田在氮肥用量为252和336 kg·hm-2时,公顷小麦穗数增加5%—7%,产量平均增加5%—6%。秸秆还田对小麦籽粒蛋白质含量无显著影响,施用氮肥的籽粒蛋白质含量较不施用氮肥增加16%—33%。秸秆还田对小麦地上部吸氮量无显著影响,施用氮肥的地上部吸氮量较不施用氮肥增加36%—72%。秸秆还田和氮肥用量对小麦地上部吸氮量有交互效应。与秸秆不还田处理相比,秸秆还田在氮肥用量为252和336 kg·hm-2时地上部吸氮量平均增加5%—8%。与秸秆不还田相比,秸秆还田使土壤硝态氮残留量平均增加18%,增加的硝态氮含量主要分布在70—170 cm土层。N168处理在秸秆不还田条件下土壤氮处于亏损状态,秸秆还田后有效地弥补了氮亏缺,进一步增加氮肥用量,将大幅增加土壤氮盈余量。相对于秸秆还田,氮肥用量对土壤氮盈余量的影响更大。【结论】秸秆还田配施高氮肥用量能增加小麦产量和地上部吸氮量,但同时增加了土壤硝态氮残留量和氮盈余量。综合考虑小麦籽粒产量、土壤硝态氮残留和土壤表观氮平衡等,秸秆还田配施168 kg·hm-2氮肥更利于维持小麦产量和保护生态环境。  相似文献   

19.
为明确新建大棚草莓适宜的施氮量,以试验地周边多年大棚种植草莓的常规施氮量为对照,研究草莓越冬期追肥减氮对草莓产量、品质、经济效益及土壤速效养分的影响。结果表明:与越冬期常规施氮处理(210.0 kg/hm2)相比,追肥减氮27.76%时草莓产量无显著差异,约为42 883.62 kg/hm2;减氮17.27%时经济效益最佳,约为57.29万元/hm2;减氮20%、10%时果实硝酸盐、可溶性蛋白质量比显著下降,减氮20%、10%、20%时果实VC、花青素质量比及糖酸比显著增加;随着减氮比例的增加草莓灰霉病发病率逐渐下降;减氮使土壤硝态氮质量比有所下降,当减氮30%时硝态氮质量比显著下降,减氮对土壤碱解氮、铵态氮、有效磷和速效钾质量比的影响不显著。综合草莓产量、品质、经济效益和土壤硝态氮质量比等指标,在本试验条件下新建大棚草莓在常规施氮量的基础上,越冬期追肥减氮20%~30%可实现草莓生产提质增效以及减少土壤硝态氮的积累。  相似文献   

20.
利用15N分别标记有机肥和化肥,通过小麦盆栽试验,研究了外源氮素在典型潮土中向土壤有机氮和无机氮(铵态氮、硝态氮)各形态的转化与分配。结果表明:(1)土壤全氮受有机肥影响显著。有机肥处理土壤全氮显著提高24.8%(P<0.05),其中铵态氮和硝态氮分别增加了59.0%和120倍;有机无机肥配施处理土壤全氮提高13.7%,其中硝态氮增加了84.5倍,均达到显著水平(P<0.05);化肥处理对土壤全氮包括土壤硝态氮和铵态氮含量有一定提高,但差异性检验不显著。(2)外源氮对土壤有机氮影响明显。与对照相比,不同施氮处理均提高了土壤各形态有机氮的含量,有机肥处理土壤酸解性有机氮和酸解性铵态氮显著增加(P<0.05),分别提高了25.3%和39.3%;不同施氮处理各形态有机氮占全氮的比例变化较小,处于动态平衡中。(3)来自不同肥料的外源氮对土壤有机氮含量变化的贡献不同。外源化肥氮直接影响土壤酸解性铵态氮和非酸解性有机氮含量的变化,残留化肥氮分别占这两种形态有机氮含量的7.8%和5.2%;外源有机氮对土壤非酸解性有机氮和酸解未知氮含量的变化起主导作用,残留有机肥氮分别占这两种形态有机氮含量的5.0%和4.5%;有机无机肥料配施情况下,在土壤酸解未知氮含量的变化中有机肥氮起主要作用,残留有机肥氮占酸解未知氮含量的18.0%。(4)土壤铵态氮和硝态氮的变化均主要由外源氮转化而来。在化肥处理中分别有27%的土壤铵态氮和硝态氮来自外源化肥氮的转化,有机肥处理中分别有8%的土壤铵态氮和硝态氮来自外源有机肥氮的转化,有机无机肥配施处理中分别有5%的土壤铵态氮和硝态氮来自外源有机肥氮的转化。(5)有机无机肥配施可提高土壤有机肥氮素的残留并促进其向土壤酸解性铵态氮和酸解未知氮、铵态氮和硝态氮等有效形态转化,从而提高有机肥的有效性,减少环境风险,表明有机无机肥配施是土壤培肥的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号