共查询到19条相似文献,搜索用时 93 毫秒
1.
以吉林省汪清林业局为研究区,通过猫群位置寻优的过程对阔叶林、针叶林和混交林进行聚类分析。结果表明:森林类型区分精度达到83.5%,Kappa系数0.793,与传统高光谱聚类方法相比,能较好的识别森林类型。 相似文献
2.
蚁群优化算法(ACO)在求解TSP(traveling salesman problem)问题时,其算法的时间复杂度为O(m·n2·t)(其中t表示循环次数,n为城市数,m为蚂蚁数),搜索时间比较长。利用K-means聚类的方法得到多个类,每一个类都看作是一个小的TSP问题,然后在每个类内部和类之间利用改进的蚁群算法寻找最优路径,通过实验仿真,验证了此方法不但能提高解的精度,而且还加快了运行速度。 相似文献
3.
基于蚁群-粒子群混合算法的水资源优化配置研究 总被引:1,自引:0,他引:1
【目的】对区域水资源的合理优化配置进行研究,为区域经济的发展、水资源的合理开发利用和节水型社会的建立提供参考。【方法】建立以经济、社会、生态环境效益为目标函数,各目标加权和为最优解的水资源优化配置模型,采用蚁群-粒子群混合算法对模型进行求解,并对渭北工业区进行水资源优化配置的实例分析,通过原供水量与优化配置水量的比较验证所建立模型的合理性。【结果】经计算,75%保证率下渭北工业区水资源的配置结果为:2015年地表水、地下水、外调水、中水供水量分别为1 747.30,13 244.84,12 905.95和1 060.23万m3;2020年各水源供水量分别为2 019.19,12 214.42,23 530.42和1 798.60万m3;与原始供水量相比,2015年和2020年总供水量分别减少312.73和421.11万m3,表现在农业供水量减少,生活、工业、生态用水均达到供需平衡。【结论】基于蚁群-粒子群混合算法的水资源优化配置结果合理,可作为研究区水资源合理开发利用决策的参考;蚁群-粒子群混合算法收敛速度快,寻优性能优越,可用于水资源优化配置的分析。 相似文献
4.
粒子群算法及其应用研究 总被引:1,自引:0,他引:1
粒子群优化算法(PSO)源于对鸟群捕食系统的模拟,是近年来被广为关注和研究的一种智能优化算法。PSO算法属于进化算法的一种,比遗传算法(GA)更简单易实现,且没有交叉和变异操作,需要设定的参数也不多,收敛速度快。目前已广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法等领域。目前PSO的研究主要集中在算法本身和算法的应用研究两个方面。 相似文献
5.
【目的】将改进粒子群算法用于重力坝断面的优化计算,为重力坝的优化设计提供支持。【方法】针对传统粒子群算法(PSO)中线性递减的惯性权重极易导致算法陷入局部极值的不足,提出一种改进的粒子群算法(Improved PSO),该算法利用三角函数的相关性质改进惯性权重(w)随时间的动态变化模式,以使惯性权重值在算法的初期保持较大取值,然后逐渐递减而在算法的末期保持较小取值,从而提高粒子群算法的全局搜索能力,增强算法的收敛性能。编制基于改进粒子群算法的重力坝断面优化设计计算程序,对某水利枢纽工程的非溢流重力坝断面进行优化计算分析,并与遗传算法和标准粒子群算法的计算结果进行比较。【结果】采用改进粒子群算法得到的非溢流重力坝的最优断面面积为5 147.3 m~2,而采用标准粒子群算法(SPSO)得到的非溢流重力坝的最优断面面积为5 416.5m~2,前者较后者减小9.45%,极大地提高了经济性;采用改进的粒子群算法得到最优解需要计算15步,而采用标准粒子群算法得到最优解需要计算22步,粒子群算法收敛速度提高了31.8%。通过2种算法计算结果的对比,表明改进的粒子群算法不仅能得到更好的优化结果,而且保持了较快的收敛速度。【结论】改进粒子群算法可以用于大型水利工程结构的优化计算与设计。 相似文献
6.
针对量子粒子群算法存在的问题,设计基于公共历史的两种群并行搜索的量子粒子群算法.在利用群体历史优质解及最优粒子变异的基础上,对粒子群进行筛选,加快粒子群的收敛速度,并采用两种群并行搜索,防止同时陷入局部极值.通过多个函数的测试,该算法在收敛速度及寻找全局最优方面,都表现出较好的效果. 相似文献
7.
为了研究多台电梯的群控调度问题,并根据现有电梯调度策略的不足,建立以服务间和运行能耗为优化目标函数的调度模型,提出将电梯群控调度问题转化为离散组合优化问题,并利用蚁群优化算法求解.算法在接受众多乘客的随机请求下,能根据各电梯的运行现状,将不同层的乘客请求组合分配到相应电梯进行服务的最优调度方案,优化了群控电梯的运行模式,仿真实验证明算法能大幅度减少乘客的平均侯梯时间及缩短运行路径,证明了算法的有效性. 相似文献
8.
针对烧结配料系统中的非线性、复杂性和相关性,基于BP神经网络建立烧结配料的预测模型,并采用粒子群算法对预测模型参数进行优化。为了克服粒子群算法的局部收敛性,在迭代过程中,根据迭代次数对惯性权重进行动态非线性调整,从而提高算法的搜索能力。仿真结果表明,所提出的改进粒子群算法与传统的粒子群算法比较,收敛速度快、迭代次数少、具有较强的全局寻优能力。 相似文献
9.
针对粒子群优化算法易于陷入局部最优解并存在早熟收敛的问题,提出了一种基于双子群的改进粒子群优化算法(TS IPSO),通过2组搜索方向相反的主、辅子群之间的相互协同,扩大搜索范围,借鉴遗传算法的杂交机制,并采用惯性权值的非线性递减策略,加快算法的收敛速度和提高粒子的搜索能力,降低了算法陷入局部极值的风险.实验结果表明该算法较标准PSO算法提高了全局搜索能力和收敛速度,改善了优化性能. 相似文献
10.
采用基于距离量度和自适应惩罚相结合的约束处理技术的改进粒子群优化算法(PSO)应用于再入飞行器轨迹优化,避免适应值函数中复杂的罚函数及罚因子的设计,提高优化算法的通用性。以高超声速飞行器最小控制量再入轨迹优化为例,并对飞行器运动模型进行简化及控制量参数化。对两种不同的高超声速飞行器模型进行优化,仿真结果验证算法的有效性及通用性。 相似文献
11.
针对农产品在运输过程中运输时间长易变质等问题,合理规划果蔬运输车辆的配送路径。在基本蚁群算法的基础上,提出适合求解路径规划的改进型算法,同时提出了自适应调整的方案,提高跳出局部优解的能力以及算法的全局收敛性。仿真试验结果验证了改进型算法的可行性和高效性,从而达到运输车辆路径优化的目的,为提高农产品的运输效率、降低成本、提高收益提供了理论依据。 相似文献
12.
图像边缘携带了图像的大部分主要信息。通过对图像进行边缘检测不仅能有效地提取图像信息降低计算的复杂度而且是图像测量、图像分割、图像压缩、模式识别等图像处理的基础。本文尝试将蚁群优化算法(Ant Colony Optimization, ACO)用于图像边缘检测,通过选取经典house图像和SAR机场图像设置阈值进行自适应边缘提取,实现了边缘的精确检测。实验结果显示,该算法能够有效地提取图像目标的轮廓信息,很好保持图像纹理,具有理想的抗干扰性能,保证了检测结果的准确性。 相似文献
13.
针对蚁群算法在连续寻优过程初期信息素匮乏、搜索时间长、收敛慢的弱点,对蚁群算法进行改进,并结合爬山算法提出了一种新的蚁群爬山算法.将新的蚁群爬山算法用于求解连续全局优化问题,数值实验证明该算法是可行的、有效的,并且精度和效率优于蚁群算法. 相似文献
14.
在服务计算过程中,服务组合问题是其中关键的技术之一。在原子候选服务数目巨大的情况下,经典的算法一般都是寻找问题的最优解,存在运算量大,运行时间长的缺点,蚁群算法并不是寻找服务组合问题的最优解,而是得到用户能够认同的可行解。为了能够更有效的为用户提供各种服务,在静态的服务组合建立过程中,以服务发现的候选原子服务集合中的服务质量为权重,将服务组合问题分解成一个有向无环图,在组合代价为最小的原则下,采用改进的蚁群算法为搜索方法,迭代一定的次数或者达到用户设定的服务质量为算法的终止条件,找到能够组合为用户需要的原子候选服务集合,进而快速、准确的得到用户期望的服务。 相似文献
15.
通过对基于标准蚁群算法和MMAS蚁群算法的网格资源分配算法的比较和分析,提出了另一种自适应的蚁群算法。通过计算机仿真实验证明,自适应改进型蚁群算法相比于基于标准蚁群算法和MMAS蚁群算法的网格资源分配算法具有更强的搜索全局最优解的能力,同时还具有更好的稳定性和收敛性。 相似文献
16.
[目的]研究基于ACO-SVM的粮虫特征提取,探讨粮虫特征提取的可行性。[方法]通过分析储粮害虫图像识别系统中的1个关键环节——特征提取,提出把支持向量机(Support vector machine,简称SVM)算法中交叉验证训练模型的识别率作为储粮害虫特征提取评价准则的1个重要因子,将蚁群优化算法(Ant Colony Optimization,简称ACO)应用于粮虫特征的自动提取。[结果]该算法从粮虫的17维形态学特征中自动提取出面积、周长等7个特征的最优特征子空间,采用参数优化之后的SVM分类器对90个粮虫样本进行分类,识别率达到95%以上。[结论]该研究表明蚁群优化算法在粮虫特征提取中的应用是可行的。 相似文献
17.
[目的]研究基于ACO-SVM的粮虫特征提取,探讨粮虫特征提取的可行性。[方法]通过分析储粮害虫图像识别系统中的1个关键环节——特征提取,提出把支持向量机(Support vector machine,简称SVM)算法中交叉验证训练模型的识别率作为储粮害虫特征提取评价准则的1个重要因子,将蚁群优化算法(Ant Colony Optimization,简称ACO)应用于粮虫特征的自动提取。[结果]该算法从粮虫的17维形态学特征中自动提取出面积、周长等7个特征的最优特征子空间,采用参数优化之后的SVM分类器对90个粮虫样本进行分类,识别率达到95%以上。[结论]该研究表明蚁群优化算法在粮虫特征提取中的应用是可行的。 相似文献
18.
针对我国大多数地区渠系配水通用性较低的问题,将农田水利作为农村基础设施建设的重点任务,以吉林省大安灌区渠系为例,基于地理信息及遥感测控技术,通过改进的蚁群算法对灌区渠系进行优化配水,最终达到节水灌溉增产的效果。在北方实际灌溉过程中,优化配水在农业节水灌溉领域中具有重要的意义,其算法简单,收敛性好。采用改进的蚁群算法可以使渠系配水模式在满足一定约束条件下将水量损失降到最低,使有限的水资源发挥最大的作用。结果更贴近实际,值得全国范围推广应用。 相似文献