首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have created polaritons in a harmonic potential trap analogous to atoms in optical traps. The trap can be loaded by creating polaritons 50 micrometers from its center that are allowed to drift into the trap. When the density of polaritons exceeds a critical threshold, we observe a number of signatures of Bose-Einstein condensation: spectral and spatial narrowing, a peak at zero momentum in the momentum distribution, first-order coherence, and spontaneous linear polarization of the light emission. The polaritons, which are eigenstates of the light-matter system in a microcavity, remain in the strong coupling regime while going through this dynamical phase transition.  相似文献   

2.
Multiple exciton generation (MEG) refers to the creation of two or more electron-hole pairs from the absorption of one photon. Although MEG holds great promise, it has proven challenging to implement, and questions remain about the underlying photo-physical dynamics in nanocrystalline as well as molecular media. Using the model system of pentacene/fullerene bilayers and femtosecond nonlinear spectroscopies, we directly observed the multiexciton (ME) state ensuing from singlet fission (a molecular manifestation of MEG) in pentacene. The data suggest that the state exists in coherent superposition with the singlet populated by optical excitation. We also found that multiple electron transfer from the ME state to the fullerene occurs on a subpicosecond time scale, which is one order of magnitude faster than that from the triplet exciton state.  相似文献   

3.
Charged particles traveling through matter at speeds larger than the phase velocity of light in the medium emit Cherenkov radiation. Calculations reveal that a given angle of the radiation conical wavefront is associated with two velocities, one above and one below a certain speed threshold. Emission at subluminal but not superluminal speeds is predicted and verified experimentally for relativistic dipoles generated with an optical method based on subpicosecond pulses moving in a nonlinear medium. The dipolar Cherenkov field, in the range of infrared-active phonons, is identical to that of phonon polaritons produced by impulsive laser excitation.  相似文献   

4.
Tunneling of electrons through a potential barrier is fundamental to chemical reactions, electronic transport in semiconductors and superconductors, magnetism, and devices such as terahertz oscillators. Whereas tunneling is typically controlled by electric fields, a completely different approach is to bind electrons into bosonic quasiparticles with a photonic component. Quasiparticles made of such light-matter microcavity polaritons have recently been demonstrated to Bose-condense into superfluids, whereas spatially separated Coulomb-bound electrons and holes possess strong dipole interactions. We use tunneling polaritons to connect these two realms, producing bosonic quasiparticles with static dipole moments. Our resulting three-state system yields dark polaritons analogous to those in atomic systems or optical waveguides, thereby offering new possibilities for electromagnetically induced transparency, room-temperature condensation, and adiabatic photon-to-electron transfer.  相似文献   

5.
We report on electrically driven amplified spontaneous emission and lasing in tetracene single crystals using field-effect electrodes for efficient electron and hole injection. For laser action, feedback is provided by reflections at the cleaved edges of the crystal resulting in a Fabry-Perot resonator. Increasing the injected current density above a certain threshold value results in the decreasing of the spectral width of the emission from 120 millielectron volts to less than 1 millielectron volt because of gain narrowing and eventually laser action. High electron and hole mobilities as well as balanced charge carrier injection lead to improved exciton generation in these gate-controlled devices. Moreover, the effect of charge-induced absorption is substantially reduced in high-quality single crystals compared with amorphous organic materials.  相似文献   

6.
Degenerate exciton systems have been produced in quasi-two-dimensional confined areas in semiconductor coupled quantum well structures. We observed contractions of clouds containing tens of thousands of excitons within areas as small as (10 micron)2 near 10 kelvin. The spatial and energy distributions of optically active excitons were determined by measuring photoluminescence as a function of temperature and laser excitation and were used as thermodynamic quantities to construct the phase diagram of the exciton system, which demonstrates the existence of distinct phases. Understanding the formation mechanisms of these degenerate exciton systems can open new opportunities for the realization of Bose-Einstein condensation in the solid state.  相似文献   

7.
有机材料中单重态激子的裂变过程,由于其在有机光伏器件中的潜在应用而成为一个科学研究的热点.传统的观点采用电荷转移模型来解释激子裂变过程,即认为2个参与裂变的分子之间通过两次的电荷转移来实现分子状态的改变.而在电荷转移的物理图像中,又包括双空穴转移方式和双电子转移方式两种可能性.为了检验电荷转移模型的合理性,将能够发生激子裂变过程的红荧烯分子分别混合于其他4种有机分子中,这4种有机分子被当作间隔分子,用来分离混合膜中掺杂的红荧烯分子.对红荧烯分子与间隔分子,二者间HOMO能级的能量差构成空穴转移的隧穿势垒,而二者间LUMO能级的能量差构成电子转移的隧穿势垒.对4个样品发光衰减曲线的测量与分析表明,激子裂变的速率与电子隧穿势垒的高度具有明显的关联,这从实验角度首次印证了双电子转移模型而否定了双空穴转移模型.  相似文献   

8.
Snoke D 《Science (New York, N.Y.)》2002,298(5597):1368-1372
In the past decade, there has been an increasing number of experiments on spontaneous Bose coherence of excitons and polaritons. Four major areas of research are reviewed here: three-dimensional excitons in the bulk semiconductor Cu2O, two-dimensional excitons in coupled quantum wells, Coulomb drag experiments in coupled two-dimensional electron gases, and polaritons in semiconductor microcavities. The unifying theory of all these experiments is the effect of spontaneous symmetry breaking in the Bose-Einstein condensation phase transition.  相似文献   

9.
Efficient signal communication uses photons. Signal processing, however, uses an optically inactive medium, electrons. Therefore, an interconnection between electronic signal processing and optical communication is required at the integrated circuit level. We demonstrated control of exciton fluxes in an excitonic integrated circuit. The circuit consists of three exciton optoelectronic transistors and performs operations with exciton fluxes, such as directional switching and merging. Photons transform into excitons at the circuit input, and the excitons transform into photons at the circuit output. The exciton flux from the input to the output is controlled by a pattern of the electrode voltages. The direct coupling of photons, used in communication, to excitons, used as the device-operation medium, may lead to the development of efficient exciton-based optoelectronic devices.  相似文献   

10.
An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.  相似文献   

11.
Yu J  Hu D  Barbara PF 《Science (New York, N.Y.)》2000,289(5483):1327-1330
The photochemistry of poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV) has been found to be highly dependent on the presence of O(2), which increases singlet exciton quenching dramatically. Spectroscopy on isolated single molecules of MEH-PPV in polycarbonate films that exclude O(2) reveals two distinct polymer conformations with fluorescence maxima near 555 and 580 nanometers wavelength, respectively. Time-resolved single-molecule data demonstrate that the 580-nanometer conformation exhibits a "landscape" for intramolecular electronic energy relaxation with a "funnel" that contains a 580-nanometer singlet exciton trap at the bottom. The exciton traps can be converted to exciton quenchers by reaction with O(2). Conformationally induced, directed-energy transfer is arguably a critical dynamical process that is responsible for many of the distinctive photophysical properties of conjugated polymers.  相似文献   

12.
We characterized the entrance channel, reaction threshold, and mechanism of an excited-state H atom transfer reaction along a unidirectionally hydrogen-bonded "wire" -O-H...NH3...NH3...NH3...N. Excitation of supersonically cooled 7-hydroxyquinoline.(NH3)3 to its vibrationless S1 state produces no reaction, whereas excitation of ammonia-wire vibrations induces H atom transfer with a reaction threshold approximately 200 wave numbers. Further translocation steps along the wire produce the S1 state 7-ketoquinoline.(NH3)3 tautomer. Ab initio calculations show that proton and electron movement along the wire are closely coupled. The rate-controlling S1 state barriers arise from crossings of a pipi* with a Rydberg-type pisigma* state.  相似文献   

13.
In conjugated polymers, radiative recombination of excitons (electron-hole pairs) competes with nonradiative thermal relaxation pathways. We visualized exciton quenching induced by hole polarons in single-polymer chains in a device geometry. The distance-scale for quenching was measured by means of a new subdiffraction, single-molecule technique--bias-modulated intensity centroid spectroscopy--which allowed the extraction of a mean centroid shift of 14 nanometers for highly ordered, single-polymer nanodomains. This shift requires energy transfer over distances an order of magnitude greater than previously reported for bulk conjugated polymers and far greater than predicted by the standard mechanism for exciton quenching, the unbiased diffusion of free excitons to quenching sites. Instead, multistep "energy funneling" to trapped, localized polarons is the probable mechanism for polaron-induced exciton quenching.  相似文献   

14.
We demonstrate coupling and entangling of quantum states in a pair of vertically aligned, self-assembled quantum dots by studying the emission of an interacting electron-hole pair (exciton) in a single dot molecule as a function of the separation between the dots. An interaction-induced energy splitting of the exciton is observed that exceeds 30 millielectron volts for a dot layer separation of 4 nanometers. The results are interpreted by mapping the tunneling of a particle in a double dot to the problem of a single spin. The electron-hole complex is shown to be equivalent to entangled states of two interacting spins.  相似文献   

15.
Intracellular electrical recordings in an in vitro slice preparation of the brainstem medial pontine reticular formation, a region thought to be important in mediation of desynchronized sleep phenomena, demonstrate a population of neurons that have a calcium-dependent, low threshold spike. This low threshold spike was inactivated at relatively depolarized membrane potential levels and, when this spike was deinactivated, it induced a burst of action potentials. The membrane potential dependence of the spike may underlie changes in action potential firing patterns associated with behavioral state change because the baseline membrane potential in neurons of the medial pontine reticular population depolarizes during passage from waking and slow wave sleep to desynchronized sleep, which is characterized by the absence of burst firing.  相似文献   

16.
The homogeneous linewidths in the photoluminescence excitation spectrum of a single, naturally formed gallium arsenide (GaAs) quantum dot have been measured with high spatial and spectral resolution. The energies and linewidths of the homogeneous spectrum provide a new perspective on the dephasing dynamics of the exciton in a quantum-confined, solid-state system. The origins of the linewidths are discussed in terms of the dynamics of the exciton in zero dimensions, in particular, in terms of lifetime broadening through the emission or absorption of phonons and photons.  相似文献   

17.
When irradiated with gamma rays, Arteinia eggs show the typical sigmoidal survival curve of a multicellular organism, with little change at low doses and an abrupt decrease in survival above a threshold dose. On irradiation with 160-Mev oxygen ions, the threshold disappears and viability can be destroyed by passage of a single energetic ion.  相似文献   

18.
文章用通常的统计力学方式计算了非平衡系统某类阈值在倍增噪声下的移动。  相似文献   

19.
Coupled surface plasmon polaritons (SPPs) are shown to provide effective transfer of excitation energy from donor molecules to acceptor molecules on opposite sides of metal films up to 120 nanometers thick. This variant of radiative transfer should allow directional control over the flow of excitation energy with the use of suitably designed metallic nanostructures, with SPPs mediating transfer over length scales of 10(-7) to 10(-4) meters. In the emerging field of nanophotonics, such a prospect could allow subwavelength-scale manipulation of light and provide an interface to the outside world.  相似文献   

20.
The cumulative effects of a repetitive stress induced by anticipation of pain (noxious foot shock) were studied on the threshold of a nociceptive flexion reflex of the lower limb. The threshold of the nociceptive reflex progressively increased with the repetition of the stress. This effect was reversed by naloxone, which even produced hyperalgesia, since a rapid and significant decrease in this threshold, below the initial values, was noted. Tha data provide evidence for involvement of endogenous opioids in the phenomenon of stress-induced analgesia in normal man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号