首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Desipramine and several other tricyclic antidepressant drugs reverse chloroquine resistance in Plasmodium falciparum in vitro at concentrations observed in the plasma of human patients treated for depression. Reversal of resistance is associated with increased chloroquine accumulation in the parasite, probably because of inhibition of a putative chloroquine efflux pump. When owl monkeys (Aotus lemurinus lemurinus) infected with chloroquine-resistant Plasmodium falciparum were treated with chloroquine plus desipramine, their parasitemias were rapidly suppressed. Desipramine was found to be one of the most effective compounds yet described for the reversal of chloroquine resistance both in vitro and in vivo.  相似文献   

2.
Chloroquine-resistant Plasmodium falciparum accumulate significantly less chloroquine than susceptible parasites, and this is thought to be the basis of their resistance. However, the reason for the lower accumulation of chloroquine was unknown. The resistant parasite has now been found to release chloroquine 40 to 50 times more rapidly than the susceptible parasite, although their initial rates of chloroquine accumulation are the same. Verapamil and two other calcium channel blockers, as well as vinblastine and daunomycin, each slowed the release and increased the accumulation of chloroquine by resistant (but not susceptible) Plasmodium falciparum. These results suggest that a higher rate of chloroquine release explains the lower chloroquine accumulation, and thus the resistance observed in resistant Plasmodium falciparum.  相似文献   

3.
Reversal of chloroquine resistance in Plasmodium falciparum by verapamil   总被引:30,自引:0,他引:30  
The parasite Plasmodium falciparum, like neoplastic cells, develops resistance to multiple structurally unrelated drugs. If the mechanisms by which P. falciparum and neoplastic cells become resistant are similar, then it may be possible to reverse the resistance in the two types of cells by the same pharmacological agents. Verapamil, a calcium channel blocker, completely reversed chloroquine resistance in two chloroquine-resistant P. falciparum clones from Southeast Asia and Brazil. Verapamil reversed chloroquine resistance at the same concentration (1 X 10(-6)M) as that at which it reversed resistance in multidrug-resistant cultured neoplastic cells. This same concentration of verapamil had no effect on chloroquine-sensitive parasites. Hence, chloroquine resistance in P. falciparum may fit the criteria for the multidrug-resistant phenotype.  相似文献   

4.
Successful propagation of the malaria parasite Plasmodium falciparum within a susceptible mosquito vector is a prerequisite for the transmission of malaria. A field-based genetic analysis of the major human malaria vector, Anopheles gambiae, has revealed natural factors that reduce the transmission of P. falciparum. Differences in P. falciparum oocyst numbers between mosquito isofemale families fed on the same infected blood indicated a large genetic component affecting resistance to the parasite, and genome-wide scanning in pedigrees of wild mosquitoes detected segregating resistance alleles. The apparently high natural frequency of resistance alleles suggests that malaria parasites (or a similar pathogen) exert a significant selective pressure on vector populations.  相似文献   

5.
The first human vaccines against the malaria parasite have been designed to elicit antibodies to the circumsporozoite protein of Plasmodium falciparum. However, it is not known whether any level of naturally acquired antibodies to the circumsporozoite protein can predict resistance to Plasmodium falciparum malaria. In this study, 83 adults in a malaria-endemic region of Kenya were tested for circumsporozoite antibodies and then treated for malaria. They were monitored for the development of new malaria infections for 98 days. Antibody levels, as determined by four assays in vitro, were indistinguishable between the 60 individuals who did and the 23 who did not develop parasitemia during follow-up, and there was no apparent relation between day of onset of parasitemia and level of antibodies to circumsporozoite protein. Unless immunization with sporozoite vaccines induces antibodies that are quantitatively or qualitatively superior to the circumsporozoite antibodies in these adults, it is unlikely that such antibodies will prevent infection in areas with as intense malaria transmission as western Kenya.  相似文献   

6.
Genetic and biochemical research is providing new information on the mechanism of chloroquine resistance. Drug discovery initiatives are finding new leads that have favorable pharmaceutical properties and efficacy against chloroquine-resistant malaria.  相似文献   

7.
Erythrocyte mosaicism occurs in females heterozygous for glucose-6-phosphate dehydrogenase deficiency. In blood from female children with acute Plasmodium falciparum malaria the parasite rate was 2 to 80 times higher in normal than in deficient erythrocytes. This may be the mechanism whereby the gene for glucose-6-phosphate dehydrogenase deficiency confers selective advantage against malaria to heterozygous females, and thus may have attained the polymorphic frequency occurring in populations living in areas with endemic malaria.  相似文献   

8.
Porotic hyperostosis, formerly called osteoporosis symmetrica, is an overgrowth of the spongy marrow space of the skull. In children, other bones may also be affected. The disease is a consequence of one of the thalassemias or sicklemia. These anemias are balanced polymorphisms which are apparently maintained by falciparum malaria. Falciparum malaria spread over the anopheline belts of the Old World in coincidence with porotic hyperostosis, but did not penetrate the New World. Here some other parasitism or deficiency anemia must have been the cause of porotic hyperostosis in ancient times. In Anatolia, Greece, and Cyprus from the seventh to second millennia B.C., porotic hyperostosis occurred frequently in early farmers who lived in marshy areas, but rarely in inhabitants of dry or rocky areas or in latest Paleolithic hunters. As shown by skeletal samples from Greece, the frequency of the disease decreased as farming methods improved. However, from Hellenistic to Romantic times it again increased together with increases in the incidence of malaria and in poorer farming. There are correlations between porotic hyperostosis and adult stature and fertility. The mutations producing falciparum malaria therefore must antedate seventh millenium B.C. and I think may have an Eastern Mediterranean origin.  相似文献   

9.
The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.  相似文献   

10.
Erythrocytes infected with chloroquine-sensitive Plasmodium falciparum bind chloroquine with an apparent intrinsic association constant of 1.5 x 10(7) liters per mole. Such high-affinity binding of chloroquine is absent or deficient in uninfected erythrocytes and in erythrocytes infected with chloroquine-resistant Plasmodium falciparum.  相似文献   

11.
Malaria remains a devastating disease largely because of widespread drug resistance. New drugs and a better understanding of the mechanisms of drug action and resistance are essential for fulfilling the promise of eradicating malaria. Using high-throughput chemical screening and genome-wide association analysis, we identified 32 highly active compounds and genetic loci associated with differential chemical phenotypes (DCPs), defined as greater than or equal to fivefold differences in half-maximum inhibitor concentration (IC(50)) between parasite lines. Chromosomal loci associated with 49 DCPs were confirmed by linkage analysis and tests of genetically modified parasites, including three genes that were linked to 96% of the DCPs. Drugs whose responses mapped to wild-type or mutant pfcrt alleles were tested in combination in vitro and in vivo, which yielded promising new leads for antimalarial treatments.  相似文献   

12.
We surveyed an Anopheles gambiae population in a West African malaria transmission zone for naturally occurring genetic loci that control mosquito infection with the human malaria parasite, Plasmodium falciparum. The strongest Plasmodium resistance loci cluster in a small region of chromosome 2L and each locus explains at least 89% of parasite-free mosquitoes in independent pedigrees. Together, the clustered loci form a genomic Plasmodium-resistance island that explains most of the genetic variation for malaria parasite infection of mosquitoes in nature. Among the candidate genes in this chromosome region, RNA interference knockdown assays confirm a role in Plasmodium resistance for Anopheles Plasmodium-responsive leucine-rich repeat 1 (APL1), encoding a leucine-rich repeat protein that is similar to molecules involved in natural pathogen resistance mechanisms in plants and mammals.  相似文献   

13.
A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS beta-lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.  相似文献   

14.
The gene encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium vivax has been cloned. The deduced sequence of the protein consists of 373 amino acids with a central region of 19 tandem repeats of the nonapeptide Asp-Arg-Ala-Asp/Ala-Gly-Gln-Pro-Ala-Gly. A synthetic 18-amino acid peptide containing two tandem repeats binds to a monoclonal antibody directed to the CS protein of Plasmodium vivax and inhibits the interaction of this antibody with the native protein in sporozoite extracts. The portions of the CS gene that do not contain repeats are closely related to the corresponding regions of the CS genes of two simian malarias, Plasmodium cynomolgi and Plasmodium knowlesi. In contrast, the homology between the CS genes of Plasmodium vivax and Plasmodium falciparum, another malaria parasite of humans, is very limited.  相似文献   

15.
The global spread of malaria in a future, warmer world   总被引:1,自引:0,他引:1  
The frequent warnings that global climate change will allow falciparum malaria to spread into northern latitudes, including Europe and large parts of the United States, are based on biological transmission models driven principally by temperature. These models were assessed for their value in predicting present, and therefore future, malaria distribution. In an alternative statistical approach, the recorded present-day global distribution of falciparum malaria was used to establish the current multivariate climatic constraints. These results were applied to future climate scenarios to predict future distributions, which showed remarkably few changes, even under the most extreme scenarios.  相似文献   

16.
Reduction in severe disease and death from falciparum malaria in Africa requires new, more effective and inexpensive public health measures. The completed genomes of Plasmodium falciparum and its vector Anopheles gambiae represent a big step toward the discovery of these needed tools.  相似文献   

17.
Many candidate antigens of malaria vaccines have limited immunological recognition. One exception is Pfs25, a cysteine-rich, 25-kilodalton sexual stage surface protein of Plasmodium falciparum. Pfs25 is a target of monoclonal antibodies that block transmission of malaria from vertebrate host to mosquito vector. The surface of mammalian cells infected with a recombinant vaccinia virus that expressed Pfs25 specifically bound transmission-blocking monoclonal antibodies. Furthermore, major histocompatibility complex-disparate congenic mouse strains immunized with recombinant Pfs25 elicited transmission-blocking antibodies, demonstrating that the capacity to develop transmission-blocking antibodies is not genetically restricted in mice. Live recombinant viruses may provide an inexpensive, easily administered alternative to subunit vaccines prepared from purified recombinant proteins to block transmission of malaria in developing countries.  相似文献   

18.
The malaria parasite, Plasmodium falciparum, exploits multiple ligand-receptor interactions, called invasion pathways, to invade the host erythrocyte. Strains of P. falciparum vary in their dependency on sialated red cell receptors for invasion. We show that switching from sialic acid-dependent to -independent invasion is reversible and depends on parasite ligand use. Expression of P. falciparum reticulocyte-binding like homolog 4 (PfRh4) correlates with sialic acid-independent invasion, and PfRh4 is essential for switching invasion pathways. Differential activation of PfRh4 represents a previously unknown mechanism to switch invasion pathways and provides P. falciparum with exquisite adaptability in the face of erythrocyte receptor polymorphisms and host immune responses.  相似文献   

19.
20.
During asexual development within erythrocytes, malaria parasites synthesize considerable amounts of membrane. This activity provides an attractive target for chemotherapy because it is absent from mature erythrocytes. We found that compounds that inhibit phosphatidylcholine biosynthesis de novo from choline were potent antimalarial drugs. The lead compound, G25, potently inhibited in vitro growth of the human malaria parasites Plasmodium falciparum and P. vivax and was 1000-fold less toxic to mammalian cell lines. A radioactive derivative specifically accumulated in infected erythrocytes to levels several hundredfold higher than in the surrounding medium, and very low dose G25 therapy completely cured monkeys infected with P. falciparum and P. cynomolgi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号