首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Excess phosphorus (P) from agricultural soils contributes to eutrophication in water bodies. Samples (n=60) were taken from sites where rice paddies have been converted to vegetable fields for 0, < 10, 10-20, and > 20 years and analyzed for five inorganic P (Pi) fractions, three organic P (Po) fractions, and several soil parameters to investigate how land use conversion affects Pi and Po fractions in a peri-urban area of China with soils characteristic of many agricultural areas of Asia. Significant increases of 33, 281, 293, and 438 mg kg-1 were found for soluble and loosely bound Pi (SL-Pi), aluminum-bound Pi (Al-Pi), calcium-bound Pi (Ca-Pi), and iron-bound Pi (Fe-Pi), respectively, after conversion from rice paddies to vegetable fields. Most of the increase in Pi was in the form of Fe-Pi, which increased from 8% of total P (TP) on paddy soil to 31% on the soil with > 20-year vegetable cultivation, followed by Al-Pi, which increased from 2% to 19% of TP. For Po fractions, there was no significant change in P concentrations. The conversion of land use from paddy fields to high intensity vegetable fields was causing significant changes in soil P fractions. Management practices were causing a buildup of soil P, primarily in the Fe-Pi fraction, followed by Ca-Pi and Al-Pi fractions. If current trends continue, a 30%-70% increase in TP could be expected in the next 20 years. Farmers in the area should reduce P application and use to maximize P uptake.  相似文献   

2.
The soil phosphorus (P) test in Portugal is based on extraction with ammonium lactate (AL) at acidic pH. Because this test is rarely used in other countries, it is desirable to see whether the AL-P values correlate with the more commonly used P tests. In this work, we compared AL-P with bicarbonate-extractable P (Olsen's method) for a group of 48 samples from Portuguese acidic soils differing widely in P status. Despite their contrasting composition, both reagents extracted phosphate from the same sources, albeit in different proportions. Both Olsen P and AL-P were strongly correlated with resin-extractable and dilute electrolyte-desorbable P, which are respectively related to the soil contents in phytoavailable P and P that can be released to runoff or drainage water. Olsen P and AL-P were strongly correlated (R2 = 0.870), the correlation became stronger when three overfertilized soils were excluded (Olsen P = 2.35 + 0.45 AL-P; R2 = 0.908; P ≤ 0.001, n = 45). No correlation was observed for a group of soils recently fertilized with Gafsa phosphate probably because the acidic AL reagent dissolved residual calcium phosphate, thus overestimating the soil content in desorbable P. On the basis of the present results and the AL-P-based fertility classes used for fertilizer recommendation purposes, Olsen P–based fertility classes were tentatively proposed for Portuguese acidic soils.  相似文献   

3.
Abstract

Investigating the relation between concentration or release of phosphorus (P) into soil solution (CaCl2‐P, determined by 0.01 M CaCl2 extraction of soils) and soil test phosphorus (Olsen P, or 0.5 N NaHCO3‐extractable soil phosphorus) for 10 widely ranging and variously managed soils from central Italy, a change point was evident where the slopes of two linear relationships meet. In other words, it was possible to distinguish two sections of the plots of CaCl2‐P against Olsen P, for which increases of CaCl2‐P per unit of soil test P increase were significantly (p<0.05) greater above than below these change points. Values of change point ranged from 14.8 to 253.1 mg kg?1 Olsen P and were very closely correlated (p<0.001) to phosphorus sorption capacity of soils. Similar change points were also previously observed when Olsen P (and also Mehlich 3 P) of surface soils was related to the P concentration of surface runoff and subsurface drainage. Because insufficient data are available relating P in surface soils and amount of P loss by overland, subsurface, or drainage flow, using the CaCl2 extraction of soil can be convenient to determine a change point in soil test P, which may be used in support of agricultural and environmental P management.  相似文献   

4.
Accumulation of phosphorus (P) in agricultural topsoils can contribute to leaching of P which may cause eutrophication of surface waters. An understanding of P mobilization processes in the plough layer is needed to improve agricultural management strategies. We compare leaching of total dissolved and particulate P through the plough layer of a typical Danish sandy loam soil subjected to three different P fertilizer regimes in a long‐term field experiment established in 1975. The leaching experiment used intact soil columns (20 cm diameter, 20 cm high) during unsaturated conditions. The three soils had small to moderate labile P contents, expressed by water‐extractable P (3.6–10.7 mg/kg), Olsen P (11–28 mg/kg) and degree of P saturation (DPS) (25–34%). Mobilization of total dissolved P (TDP) increased significantly (P < 0.05) from the intact soil columns with increasing labile P, whereas the increase in particulate P (PP) with increasing labile P content was modest and statistically insignificant. We found concentrations up to 1.5 mg TP/L for the plough layer of this typical Danish sandy loam soil. This highlights that even a moderate labile P content can be a potential source of TDP from the plough layer, and that a lower concentration margin of optimum agronomic P levels should be considered.  相似文献   

5.
Fertilizer phosphorus (P) is generally added to agricultural soils to meet the needs of crop production. In this study, the crop yield and soil Olsen P were measured every year (5–18 years) at 16 winter wheat (Triticum aestivum L.) –maize (Zea mays L.) crop rotation sites in cinnamon soil (Luvisols in FAO system). The mean agronomic critical value of Olsen P for maize was 14.2 mg kg?1 and for winter wheat was 14.4 mg kg?1 when using the Liner-plateau and Mitscherlich models. The change in soil Olsen P was positively linearly correlated with the P budget (P < 0.01), and an increase of 4.70 mg kg?1 in soil Olsen P for each 100 kg ha?1 of P budget in the 0–20 cm soil layer. A model of P fertilizer recommendation rate that integrated values of the change in soil Olsen P in response to P budget and the agronomic critical value of Olsen P was used, in order to adjust current levels of soil Olsen P to the agronomic critical value at the experimental sites over the next 5 years, P fertilizer application rate should be in the range of 0–87.5 kg P ha?1.  相似文献   

6.
In this study, we re‐examined the common practice of intensive P fertilization in altered wetland soils even when soil test (Olsen‐P) indicates sufficient P levels (>10 mg/kg). We tested the effects of P fertilization on crop performance and P leaching in 36 lysimeters (1.5 m3) filled with peat, marl or alluvial materials and compared a new bone‐char‐based fertilizer to the common superphosphate. The lysimeter experiment consisted of the two fertilizer types, two application rates and a typical crop rotation of setaria (Setaria italica), pea (Pisum sativum) and tomatoes (Lycopersicon esculentum). By the end of each crop rotation, the yield was evaluated relative to P‐fertilization rates and soil‐test P. P fertilization resulted in increased Olsen‐P, soil‐solution P and P loss through leachates and a slight quality yield advantage in pea and tomato with no increase in yield of any crop. P budget calculations showed that plant uptake was not affected by the amount or type of applied P. We concluded that P fertilizer application should be significantly reduced because of limited crop response and increased P concentrations in leachates that may increase P loss to waterways especially in the marl soils. The ABC Protector exhibited slow P release, but its environmental implications should be further studied.  相似文献   

7.
朱静  黄标  孙维侠  杨荣清  邹忠  丁峰  苏健平  黄耀  金洋  毕葵森 《土壤》2006,38(2):158-165
农田土壤有机质是评价土壤肥力和土壤质量的重要指标,同时也是全球C库的重要组成部分,其时空变化动态对土壤质量和全球气候变化有重要影响。对江苏省如皋市土壤有机质含量的分析结果表明,在空间上以东部的白蒲系(壤质水耕人为土)和南部的长青沙系(黏质潮湿雏形土)含量较高,而中西部的磨头系(砂质潮湿雏形土)、郭园系(砂质干润雏形土)和桃园系(壤砂质潮湿雏形土)含量较低,分布于东北和西北部的东陈系和搬经系(壤质潮湿雏形土)以及南部的营防系和张黄港系含量居中;近20年来(1982─2002年)该市农田土壤有机质总体上呈持续增长的趋势;1982─1997年的时空变异表现为中西部增长迅速而东部和南部增长幅度较小,但1997─2002年则以东部和南部增长较快而中西部增长幅度趋缓。本文进一步分析和讨论了影响农田土壤有机质时空变化的因子,并且提出了今后土壤管理和利用方面的建议。  相似文献   

8.
Understanding soil test phosphorus (STP) and surface run‐off phosphorus (P) relationships for soils is necessary for P management. The objective of the study was to evaluate the efficacy of various soil test indices to predict P losses in surface run‐off. Selected sites were subjected to in situ rainfall simulations according to the protocol of the National Phosphorus Research Project ( NPRP, 2001 ). P from a composite of twenty‐four 2.0‐cm‐diameter core soil samples (0–5 cm) was extracted using the Olsen, Bray–Kurtz, Mehlich III, distilled water and 0.01 m calcium chloride procedures. All of these P extraction methods explained a significant amount of variability in surface run‐off total dissolved P [TP (<0.45)] (r2 0.67; P 0.01), where 0.45 is the filter pore diameter in microns. Multiple regression models showed extractable P to be the best soil predictor of surface run‐off TP (<0.45) among the studied soils. Despite extraction method or soil type, extractable P was the best soil predictor of surface run‐off TP (<0.45). Either agronomic (0.92 ≤ r2 0.96) or environmental (0.94 ≤ r2 0.96) soil tests were effective in estimating surface run‐off TP (<0.45) in select Mollisols.  相似文献   

9.
Abstract

A study was undertaken to evaluate the agreement among different university laboratories performing the Olsen, Bray P1, and Mehlich I tests for P on a diverse group of noncalcareous agricultural soils and to develop relationships among the Olsen, Bray P1, Mehlich I, and Mehlich III soil tests. For each test, the results from the individual laboratories were highly correlated (r2 0.90) and in almost all instances the slopes of the equations describing the relationships among laboratories approached one, The results indicate that the Olsen, Bray P1 and Mehlich I soil tests may be performed with a high degree of precision when standard soil test procedures are followed.

Of the three most commonly performed tests in the U.S. (Olsen, Bray P1, and Mehlich I), the Olsen and Mehlich I tests were the most highly correlated (r2 = 0.87) although the Mehlich I test removed approximately one and one half times more P than did the Olsen test. Bray P1 and Olsen and Mehlich I P were less highly correlated (r2 ≤ 0.72) and the relationships between these variables were influenced by the texture of the soils. The quantity of P removed by the Bray P1 test was on the order of two and three times greater than that removed by the Olsen and Mehlich I tests, respectively. The Bray P1 and Mehlich III soil tests were highly correlated (r2 = 0.97) and similar quantities of P were extracted from the soil by the two tests.  相似文献   

10.
在2004年土壤调查数据的基础上,参照1982年土壤普查的资料,分析了张家港市土壤中有效铜和有效锌的时空变化趋势,并探讨了土壤性质、农业生产管理措施及环境污染等因素对它们的影响。研究结果表明:二十几年来,该地区土壤中有效铜和有效锌含量有了显著增加。在空间上,虽然土壤有效性铜和锌在水耕人为土高于北部的潮湿雏形土的格局没有改变,但在局部地区积聚的现象较为明显。这些时空变异的特征是由于二十多年来该地区农业生产管理措施的改变,工业发展等的外在因素,通过土壤性质发生改变(pH降低、有机质含量增加)而造成的。同时,工业、农业和城市活动带来的废弃物进入土壤中,也可导致土壤有效铜和锌含量增加。土壤有效铜和锌的时空演变,导致了研究区出现了铜过量的土壤,因此今后注意土壤铜过量对作物产生的危害。而土壤有效锌虽然有所增加,但大部分土壤仍处于较低或缺乏的状态,农业生产中应注意恰当施用锌肥,以提高作物产量,改善作物品质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号