首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
Most studies on dissimilatory nitrate reduction to ammonium (DNRA) in paddy soils were conducted in the laboratory and in situ studies are in need for better understanding of the DNRA process.In this study,in situ incubations of soil DNRA using 15 N tracer were carried out in paddy fields under conventional water (CW) and low water (LW) managements to explore the potential of soil DNRA after liquid cattle waste (LCW) application and to investigate the impacts of soil redox potential (Eh) and labile carbon on DNRA.DNRA rates ranged from 3.06 to 10.40 mg N kg 1 dry soil d 1,which accounted for 8.55%-12.36% and 3.88%-25.44% of consumption of added NO 3-15 N when Eh at 5 cm soil depth ranged from 230 to 414 mV and 225 to 65 mV,respectively.DNRA rates showed no significant difference in paddy soils under two water managements although soil Eh and/or dissolved organic carbon (DOC) were more favorable for DNRA in the paddy soil under CW management 1 d before,or 5 and 7 d after LCW application.Soil DNRA rates were negatively correlated with soil Eh (P < 0.05,n=5) but positively correlated with soil DOC (P < 0.05,n=5) in the paddy soil under LW management,while no significant correlations were shown in the paddy soil under CW management.The potential of DNRA measured in situ was consistent with previous laboratory studies;and the controlling factors of DNRA in paddy soils might be different under different water managements,probably due to the presence of different microfloras of DNRA.  相似文献   

2.
X. Y. WANG  Y. ZHAO  R. HORN 《土壤圈》2010,20(1):43-54
Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettability was evaluated by contact angle with the Wilhelmy plate method. Water repellency was likely to be present under permanently vegetated land, but less common on tilled agricultural land. It was mostly prevalent in the topsoil, especially in coarse-textured soils, and decreased in the subsoil. However, the depth dependency of wettability could not be derived from the investigated wide range of soils. The correlation and multiple regression analysis revealed that the wettability in repellent soils was affected more by soil organic carbon (SOC) than by soil texture and pH, whereas in wettable soils, soil texture and pH were more effective than SOC. Furthermore, the quality of SOC seemed to be more important in determining wettability than its quantity, as proofed by stronger hydrophobicity under coniferous than under deciduous forestland. Soil management had a minor effect on wettability if conventional and conservation tillage or different grazing intensities were considered.  相似文献   

3.
The clay minerals of more than 200 soil samples collected from various sites of Fujian Province were studied by the X-ray diffraction method and transmission electron microscopy to study their distribution and evolution.Montmorillonite was found in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit,and some lateritic red soil,red soil and yellow soil with a low weathering degree.Chlorite existed mainly in coastal solonchak and paddy soil developed from marine deposit.1.4nm intergradient mineral appeared frequently in yellow soil,red soil and lateritic red soil.The content of 1.4nm intergradient mineral increased with the decrease of weathering degree from lateritic red soil to red soil to yellow soil.Hydrous micas were more in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit.and puple soil from purple shale than in other soils.Kaolinte was the most important clay mineral in the soils iun this province.The higher the soil weathering degree,the more the kaolinite existed.From yellow soil to red soil to lateritic red soil,kaolinite increased gradually,Kaolinite was the predominant clay mineral accompanied by few other minerals in typical lateritic red soil. Tubular halloysite was a widespread clay mineral in soils of Fujian Province with varying quantities.The soil derived from the paent rocks rich in feldspar contained more tubular halloysite.Spheroidal halloysite was found in a red soil and a paddy soil developed from olivine basalt gibbsite in the soils in this district was largely“primary gibbsite” which formed in the early weathering stage.Gibbsite decreased with the increase of weathering degree from yellow soil to red soil to lateritic red soil.Goethite also decreased in the same sequence while hematite increased.  相似文献   

4.
Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution.  相似文献   

5.
上海地区水稻土氮素矿化模拟   总被引:1,自引:0,他引:1  
Three types of paddy soils, derived from granite, Quaternary red clay and basalt, respectively, were selected to study the effects of Fe and Mn in paddy soils on methane production and emission through pot and incubation experiments. The results indicated that the difference of Fe and Mn in paddy soils was one of the important factors causing obvious differences in methane emission from different soil types. Soil Fe and Mn affecting methane emission from the paddy soils was likely through affecting soil Eh and forming Fe and Mn plaques on rice roots. Different rates and valences of added Fe and Mn significantly affected methane production from paddy soils. Therefore, this study enhanced understanding of processes controlling methane emission from paddy soils and may help to improve modeling and estimating regional and global methane emission from paddy soils.  相似文献   

6.
Long-term field experiment was established in 1978 on a coastal paddy soil to determine the effect of application of pig manure, rice straw and chemical N fertilizer on the physical property and humus characteristics of soil. Results showed that the porosity, the microstructural coefficient, the reactivities of organic C and N, the OlogK value, the degree of oxidation stability, the contents of o-alkyl C and alkyl C, and the ratio of aliphatic C to aromatic C of humic acid from soils received organic manure increased; whereas, the ratio of<10μm to >10μm of microaggregates, the humification degree of humus, the degree of organo-mineral complexation, the number-average molecular weight, the C/H ratio, the contents of carboxyl and aromatic C of HAs in them decreased. These results indicated that the application of organic manure not only improved the physical property of the paddy soil but also made the HA more aliphatic in structure and younger in origin.  相似文献   

7.
中国水稻土磷储量及其空间分异   总被引:2,自引:1,他引:1  
Due to the growing concern about the agricultural phosphorus (P) losses pollution, an in-depth understanding of P in paddy soils of China would be helpful in providing a national perspective of the environmental impact of P cycling and fertility on China’s farms. In this study, we evaluated the P storage and the P density of paddy soils in China, characterized the spatial variations of P among the subgroups of paddy soils and soil regions in China, and evaluated the P data using GIS-based analysis, which included a newly compiled 1:1 M digital soil map of China, and using 1 490 soil profiles. The available and total P densities of paddy soils were 6.7 and 698.5 g m-3, respectively. Overall in China, the total P storage within 1 m of paddy soils was estimated to be 330.1 Tg. The P density of paddy soils varied substantially with subgroups due to the different soil water regimes such as groundwater table and soil drainage. The P availability in paddy soils, especially in surface layer, was higher in high temperature and precipitation areas. Further research is needed to examine more anthropogenic impact factors, such as increasing use of chemical fertilizer.  相似文献   

8.
Soil inorganic carbon (SIC) is an important reservoir of carbon (C) in arid, semi-arid, and semi-humid regions. However, knowledge is incomplete on the dynamics of SIC and its relationship with soil organic C (SOC) under different land use types in the semi-humid region, particularly in coastal zones impacted by soil salinization. We collected 170 soil samples from 34 profiles across various land use types (maize-wheat, cotton, paddy, and reed) in the middle-lower Yellow River Delta (YRD), China. We measured soil pH, electrical conductivity (EC), water-soluble salts, and SOC and SIC contents. Our results showed significant differences in both SOC and SIC among land use types. The dry cropland (maize-wheat and cotton) soils had significantly higher SOC and SIC densities (4.71 and 15.46 kg C m-2, respectively) than the paddy soils (3.28 and 14.09 kg C m-2, respectively) in the 0–100 cm layer. Compared with paddy soils, reed soils contained significantly higher SOC (4.68 kg C m-2) and similar SIC (15.02 kg C m-2) densities. There was a significant positive correlation between SOC and SIC densities over a 0–100 cm soil depth in dry cropland soils, but a negative relationship in the paddy soils. On average, SOC and SIC densities under maize-wheat cropping were 15% and 4% lower, respectively, in the salt-affected soils in the middle-lower YRD than the upper YRD. This study indicated that land use types had great influences on both SOC and SIC and their relationship, and salinization had adverse effect on soil C storage in the YRD.  相似文献   

9.
Tillage practices can potentially afect soil organic carbon (SOC) accumulation in agricultural soils. A 4-year experiment was conducted to identify the influence of tillage practices on SOC sequestration in a double-cropped rice (Oryza sativa L.) field in Hunan Province of China. Three tillage treatments, no-till (NT), conventional plow tillage(PT), and rotary tillage(RT), were laid in a randomized complete block design. Concentrations of SOC and bulk density(BD) of the 0-80 cm soil layer were measured, and SOC stocks of the 0-20 and 0-80 cm soil layers were calculated on an equivalent soil mass(ESM) basis and fixed depth (FD) basis.Soil carbon budget(SCB) under diferent tillage systems were assessed on the basis of emissions of methane(CH4) and CO2 and the amount of carbon (C) removed by the rice harvest. After four years of experiment, the NT treatment sequestrated more SOC than the other treatments. The SOC stocks in the 0-80 cm layer under NT (on an ESM basis) was as high as 129.32 Mg C ha 1,significantly higher than those under PT and RT (P < 0.05). The order of SOC stocks in the 0-80 cm soil layer was NT > PT > RT,and the same order was observed for SCB; however, in the 0-20 cm soil layer, the RT treatment had a higher SOC stock than the PT treatment. Therefore, when comparing SOC stocks, only considering the top 20 cm of soil would lead to an incomplete evaluation for the tillage-induced efects on SOC stocks and SOC sequestrated in the subsoil layers should also be taken into consideration. The estimation of SOC stocks using the ESM instead of FD method would better reflect the actual changes in SOC stocks in the paddy filed, as the FD method amplified the tillage efects on SOC stocks. This study also indicated that NT plus straw retention on the soil surface was a viable option to increase SOC stocks in paddy soils.  相似文献   

10.
A long term simulation test on salt-water dynamics in unsaturated soils with different groundwater depths and soil texture profiles under stable evaporation condition was conducted.Salinity sensors and tensiometers were used to monitor salt and water variation in soils.The experiment revealed that in the process of fresh groundwater moving upwards by capillary rise in the column,the salts in subsoil were brought upwards and accumulated in the surface soil,and consequently the salinization of surface soil took place.The rate of salt accumulation is determined mainly by the volume of capillary water flow and the conditions of salts contained in the soil profile.Water flux in soils decreased obviously when groundwater depths fell below 1.5m.When there was an interbedded clay layer 30cm in thickness in the silty loam soil profile or a clay layer 100cm in thickness at the top layer,the water flux was 3-5 times less than in the soil profile of homogeneous silty loam soil.Therefore,the rate of salt accumulation was decreased and the effect of variation of groundwater depth on the water flux in soils was weakened comparatively.If there was precipitation or irrigation supplying water to the soil,the groundwater could rarely take a direct part in the process of salt accumulation in surface soil,especially,in soil profiles with an interbedded stratum or a clayey surface soil layer.  相似文献   

11.
旱改水对水稻幼苗生长的影响及秸秆的改良作用   总被引:3,自引:0,他引:3  
本研究以江汉平原旱改水为研究背景,采用土壤盆栽试验和室内淹水培养相结合的方法,以多年水稻土为对照,研究了多年棉田土旱改水及添加秸秆(9 g·kg-1)对水稻幼苗生长和矿质元素吸收的影响以及土壤氧化还原电位和有效态铁、锰、铜、锌含量变化,为旱改水水稻的种植提供参考。结果表明,棉田土旱改水后,水稻幼苗生长缓慢并出现失绿黄化症状,其地上部干重和叶绿素含量仅分别约为水稻土处理的30%和20%。旱改水处理水稻植株Fe含量显著低于、而Cu和Zn含量则显著高于水稻土处理。棉田土旱改水土壤氧化还原电位(Eh)显著高于水稻土;淹水处理10 d,土壤DTPA-Fe含量仅为水稻土的7%左右,而DTPA-Cu和DTPA-Zn含量则分别是水稻土的1.4~2.5倍和1.6~1.8倍。随着淹水时间的延长,棉田土旱改水土壤有效态铁含量逐渐增加,有效态锰、铜和锌含量呈先升高后降低趋势;到淹水处理的第28 d,棉田土旱改水土壤有效态铁、锰、铜和锌含量与水稻土之间的差异逐渐缩小。Fe不足及Cu过量可能是导致旱改水水稻幼苗生长缓慢、失绿黄化的主要原因。旱改水条件下添加秸秆可以降低土壤的Eh值,提高土壤DTPA-Fe含量及降低土壤DTPA-Cu和DTPA-Zn含量,显著提高旱改水初期水稻幼苗叶绿素含量,但对水稻生物量无显著影响。添加秸秆并不能完全消除旱改水对水稻幼苗生长的抑制作用。  相似文献   

12.
通过对湘北典型红壤丘岗254个稻田耕层样(01~8.cm)进行分析,比较了微地形对稻田土壤有机碳、氮、磷和微生物生物量的影响。结果表明,丘岗底部稻田土壤有机碳、全氮、微生物生物量碳、微生物生物量氮、可溶性氮含量分别比丘岗中下部稻田高14.6%1、3.6%、24.6%、20.4%和95.8%,丘岗中下部稻田土壤Olsen-P含量比丘岗底部稻田高33.3%,差异均达极显著水平(P0.01)。不同部位稻田土壤全磷、微生物生物量磷含量和有效磷库(微生物生物量磷与Olsen-P之和)含量差异不显著。此外,丘岗底部稻田土壤碳磷比、微生物生物量碳磷比和微生物商比丘岗中下部稻田高12.7%,28.5%,8.2%,其差异达显著(P0.05)或极显著(P0.01)水平。但微生物生物量氮/全氮、微生物生物量磷/全磷、土壤碳氮比和微生物生物量碳氮比差异不显著。  相似文献   

13.
姚贤良  于德芬 《土壤学报》1985,22(3):241-250
对稻草、紫云英有机物料不同用量和混施、单施或沤制后施用等不同施用方式对土壤结构的影响进行了四年模拟试验。四年培育期中的水分条件和其他物理条件均控制一致。测定表明,有机物料能明显改善土壤的结构性和孔隙性,降低原状土核的破裂系数。有机质、重组有机质、无定形氧化铁、氧化铁的活度与团聚体的稳定性呈正相关;而与原状土的破裂系数呈负相关。看来,无定形氧化铁的含量可以作为高产水稻土具有良好结构性的一个间接指标。施加有机物料的土壤,当脱水时其中大孔隙显著增多,这对粘质水稻土回旱种旱作十分有利。稻草直接施入土中的改土效果优于沤制后施入土中,且不亚于高用量稻草和紫云英混施的效果。可见,如绿肥施用量减少时,只要保持一定量的稻草回田,亦能改善土壤的结构。  相似文献   

14.
The iron oxides of soils of two river terrace sequences in Spain which show an increasing degree of redness with age were studied. Clay fractions contained only small amounts of oxalate-extractable Fe. Goethite and hematite, the only crystalline Fe-oxides identified, were determined quantitatively by X-ray diffraction (XRD) after concentrating the Fe-oxides by boiling in 5N NaOH and subtracting the step-counted diffractogram of the deferrated clay from that of the non-deferrated clay, obtaining thus a “pure” Fe-oxide diffractogram. EDTA extracted hematite preferentially to goethite as is seen by loss of red colour and by XRD. A good correlation was found between the content of hematite in the fine earth and a redness rating based on Munsell notations.In the Guadalquivir River sequence, Fed and Fed/Fet increased with age. The amount of both goethite and hematite formed from silicate-Fe increased with soil age but hematite increased more than goethite, possibly due to the xeric soil environment. Also, goethite increased in crystallinity as indicated by a decrease in XRD line broadening and Feo/Fed ratios. No such trends were found in the Esla River sequence, possibly because the initial alluvium was already highly weathered as shown by high Fed/Fet values (0.8) irrespective of terrace level.Al substitution in goethite calculated from XRD increased with soil age, reflecting the increasing acidity of the soils. Al substitution in hematite was markedly lower.  相似文献   

15.
Flocculation and dispersion of colloidal particles of nine inorganic paddy soils were studied mainly based on turbidity measurements of the suspensions of soils which were previously incubated at 28°C under in vitro waterlogged conditions. After 1-week of incubation, the turbidity of the soils except for 1) two soils containing larger amounts of sodium salts and 2) one soil containing larger amounts of Fe and Al oxides, significantly decreased, and colloidal particles flocculated with 1) a decrease in soil Eh and 2) an increase in electric conductivity (EC). During the 3- to 4-week period of waterlogging, the turbidity of the three soils significantly increased with the 1) decrease in EC and 2) increase in pH of the soils although the Eh remained low. Infrared (IR) absorption analysis showed that the suspended colloidal particles consisted of layer silicates from respective soil clays. Oxidation of suspensions of waterlogged soils by air-bubbling led to an increase in turbidity with the 1) increase in Eh, and 2) decrease in pH, EC, and water-soluble Fe2+ concentration. It was suggested that the stability of the soil colloidal suspensions was affected by soil reduction with alterations in ionic species and their concentrations at clay surfaces and in soil solutions.  相似文献   

16.

Purpose

Chemical protection facilitates soil organic carbon (SOC) sequestration and stabilisation due to a strong chemical binding with mineral surfaces and metal ions (e.g. iron [Fe], aluminium [Al] and calcium [Ca]). However, there is not much information regarding the role of chemical protection in SOC stabilisation in paddy soils, particularly in terms of the specific forms of organo-mineral complexes such as Fe-, Al- and Ca-bonded OC.

Materials and methods

We sampled paddy soils at the 0–20 cm soil layer from a long-term field experiment (initiated in 1981) conducted under humid subtropical conditions in China, which has five fertilisation treatments (i.e. control treatment without fertiliser [CK], chemical fertiliser only [CF], green manure [GM], Straw and Manure) with equivalent nutrient inputs (i.e. N, P2O5 and K2O at the rates of 135–67.5–135 kg ha?1, respectively, for both early and late rice) except CK. We determined the chemical binding forms of SOC and the associated soil properties in the particulate fraction (PF, >53 μm) and the mineral-associated fraction (MAF, <53 μm), which were obtained using a low-energy ultrasonic dispersion procedure, of a paddy soil in the long-term fertilisation experiment.

Results and discussion

Iron- and Al-bonded OC (Fe/Al-OC) was the dominant fraction and made up 55–70% of the total SOC in the paddy soil, while Ca-bonded OC (Ca-OC) was only a minor fraction (<4%). The Fe/Al-OC was mainly allocated in the MAF (52–67%), indicating that the chemical protection of SOC occurred mostly in the finer particle fractions. Long-term application of organic amendments increased the contents of bulk SOC by 27–34% (P < 0.05), of Fe/Al-OC by 9–16% and of Ca-OC by 35–83% (P < 0.05), whereas the sole application of chemical fertiliser had no significant effects on SOC contents of the paddy soil compared with the treatment without fertiliser inputs. Both amorphous Fe and Al extracted by ammonium oxalate (Feox and Alox) showed significant correlations with Fe/Al-OC (r = 0.52 and 0.78, respectively), but Alox appeared to have a greater influence on C stabilisation in the paddy soil.

Conclusions

These results demonstrated that the dominant chemical binding forms of SOC in the paddy soils were Fe/Al-OC and amorphous Fe/Al oxyhydrates, especially amorphous Al, contributed mostly to the chemical stabilisation of SOC.
  相似文献   

17.
ABSTRACT

The vertical dynamics of paddy soil organic carbon (SOC) play an important role in soil quality and carbon cycling. In this study, we used an exponential decay function to estimate the vertical dynamics of SOC content and determined its influencing factors in a typical paddy soil area of the Chengdu Plain from the 1980s to the 2010s. Our results show an overall increase in SOC stocks at 0–100 cm from 11.8 Tg in the 1980s to 13.7 Tg in the 2010s. SOC content increased at depths of 0–40 cm and declined at depths of 40–100 cm over the past three decades. The exponential decay function parameters C0 and k significantly increased by 31.4% and 18.2% respectively, which suggests the vertical pattern of SOC distribution changed. The increase in nugget effects of C0 and k and the decrease in the relative contributions of the parent material, subgroup and distance-to-river indicate that extrinsic factors played increasing roles in the vertical variation of SOC content. Our study concludes that rice planting has led to vertical variations of SOC content and decreased the effects of intrinsic factors on the vertical variation of SOC content of Chengdu Plain paddy soils over the past three decades.  相似文献   

18.
Because of the important role of soil organic carbon (SOC) in nutrient cycling and global climate changes, there has been an interest in understanding how different fertilizer practices affect the SOC preservation and promotion. The results from this study showed that long‐term application of manure (21 years) could increase significantly the content of SOC, total nitrogen (N) and soil pH in the red soil of southern China. The chemical structure of SOC was characterized by using solid‐state cross‐polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy, and the aromatic C, ratio of alkyl C : O‐alkyl C, aromaticity and hydrophobicity of mineral fertilizers N, P and K plus organic manure (NPKM) and organic manure (M) treatments were less than those of mineral fertilizer nitrogen (N) and mineral fertilizers N, P and K (NPK) treatments. Both poorly crystalline (Feo) and organically complexed (Fep) iron contents were influenced significantly (P < 0.05) by different fertilizers, and it was observed that NPKM and M treatments increased the non‐crystalline Fe (Feo‐Fep) content. There was a significant (P < 0.01) positive correlation between soil organic C and non‐crystalline Fe in both the surface (0–20 cm) and subsurface (20–40 cm) soils. The results suggested that non‐crystalline Fe played an important role in the increase of SOC by long‐term application of organic manure (NPKM and M) in the red soil of southern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号