首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
林业科研试验示范基地(以下简称基地)是开展林木种质资源收集、保存与利用,林木育种和新品种培育,生态保护与恢复,森林培育与经营,森林资源利用等林业科学研究、技术开发、成果示范以及为产业化提供服务的重要平台。长期以来,基地在实现林业科学研究成果长期保存、技术深化和提升,更好的服务生态林业和民生林业建设中发挥重要作用,为河南林业科技发展提供了较大的支撑保障。改革开放以后,随着林业科研体制改革和土地权属变化,基地发展面临一系列新的问题,制约了林业科技创新发展。为解决新形势下困扰基地发展的根本问题,对河南省林业科研院(所)的基地建设情况进行了深入广泛调研,提出了问题及建议。  相似文献   

2.
在分析河北省林木良种基地建设特点和必要性的基拙上,根据林业经济建设与区域林业生态建设的需要,对河北省林木良种基地建设规划布局与对策措施进行了探讨,以期为河北省林木良种基地建设和林业生态建设提供借鉴和依据。  相似文献   

3.
正林以种为本,种以质为先。林木新品种、良种是现代林业可持续发展的重要战略资源,对保障国家生态安全、乡村振兴、建设美丽中国意义重大。加强林木育种创新,解决生态建设中的重大理论和关键技术,离不开林业长期科研基地的建设和支撑。  相似文献   

4.
指出了林业基地的建设提供大量的木材,为我国经济的飞速发展提供了能源。为了促进林业基地建设,真正实现按自然规律和经济规律办事,并且充分发挥国家投资与群众投劳效益,就必须认真搞好检查验收工作。回顾了1997年的林业检查工作,根据林业工作的现状分析检查验收对林业基地建设的作用,并且提出了林业基地建设的主要措施。  相似文献   

5.
湖北数字林业体系建设途径探讨   总被引:6,自引:0,他引:6  
本文主要论述了数字林业建设在林业管理现代化中的地位 ,通过全面分析湖北数字林业建设现状 ,提出了湖北数字林业建设目标体系。就湖北数字林业体系的基本构架进行了研究、规划 ,并指出了湖北数字林业建设的可行途径  相似文献   

6.
兴化市地处里下河水网地区 ,为了进一步推动全市绿化进程 ,努力提高兴化市林业生产的整体效应 ,在摸清家底的情况下 ,对全市基地林、经济林、城乡一体化观光林业和村庄绿化等林业建设发展规划及实施措施进行了深入的阐述  相似文献   

7.
根据湖北荆门市的实际情况,采用"问题—原因—对策"的分析方法,分别对荆门市现代林业建设体系中的林业生态体系、林业产业体系、生态文化体系和支撑保障体系建设中存在的问题和原因进行系统分析,并提出了相应的对策措施.  相似文献   

8.
1987年2月20日蔡大干同志及科教处赵天生同志专程来林科所召开了部分科技人员参加的座谈会。在听取了李蓬所长1987年科研工作的安排汇报后,蔡大干同志就省林科所如何面向生产、面向湖北林业经济建设及当前林业科研中存在的问题等方面,作了一席语重心长的讲话。他的讲话,抓住了近年来林业科研上的要害,指导思想明确、针对性强、不仅对省林科所、对全省林业科研工作均具有现实指导意义。他的讲话有四个方面的内容。现整理如下。  相似文献   

9.
湖北林业信息化标准体系建设研究   总被引:1,自引:0,他引:1  
本文对现有信息化标准、标准性技术文件等进行分析梳理,结合湖北林业信息化建设与管理需要,提出湖北林业信息化标准体系总体框架,对框架各组成部分进行细化,建立了湖北林业信息化标准明细表,列出了湖北林业信息化所需的各类标准以及每一类标准的主要内容,以确保按照"统一标准"的原则进行设计、施工,为湖北林业的发展提供信息支持与服务。  相似文献   

10.
林业是经济和社会可持续发展的重要基础,是生态建设最根本最长期的措施。江西在中部地区崛赶,应赋予林业以重要地位。在江西的产业结构调整中,确立了建设“三个基地,一个后花团”的发展战略,林业应为此提供强大支撑。在研究我国中部地区及东部邻省林业发展经验及优势产业比较的基础上,按照我国林业历史性转变的指导思想,提出了“确立以生态建设为主的林业可持续发展的定位和作为”。  相似文献   

11.
A dramatic decline in forest cover in eastern Africa along with a growing population means that timber and poles for building and fuelwood are in short supply. To overcome this shortage, the region is increasingly turning to eucalyptus. But eucalyptus raises environmental concerns of its own. Fears that it will deplete water supply, affect wildlife and reduce associated crop yields have caused many countries in the region to discourage farmers from planting this exotic. This paper is part of a series of investigations on the growth and water use efficiency of faster growing eucalyptus hybrids, which was introduced from South Africa to Kenya. The hypothesis is that the new hybrids are more efficient in using water and more suitable for the semi-arid tropics than existing eucalyptus and two popular agroforestry species. Gas exchange characteristics of juvenile Eucalyptus grandis (W. Hill ex Maiden), two eucalyptus hybrids (E. grandis × Eucalyptus camaldulensis Dehnh.), Grevillea robusta (A. Cunn) and Cordia africana (Lam) was studied under field and pot conditions using an infrared gas analyzer was used to measure photosynthetic active radiation (PAR), net photosynthetic rate (A), stomatal conductance (g s) and transpiration rate (E) at CO2 concentrations of 360 μmol mol−1 and ambient humidity and temperature. A, E and g s varied between species, being highest in eucalyptus hybrid GC 15 (24.6 μmol m−2 s−1) compared to eucalyptus hybrid GC 584 (21.0 μmol m−2 s−1), E. grandis (19.2 μmol m−2 s−1), C. africana (17.7 μmol m−2 s−1) and G. robusta (11.1 μmol m−2 s−1). C. africana exhibited high E values (7.0 mmol m−2 s−1) at optimal soil moisture contents than G. robusta (3.9 mmol m−2 s−1) and eucalyptus (5.3 mmol m−2 s−1) in field experiment and G. robusta (3.2 mmol m−2 s−1) and eucalyptus (4.2 mmol m−2 s−1) in pot-grown trees. At very low soil moisture content, extremely small g s values were recorded in GC 15 and E. grandis (8 mmol m−2 s−1) and G. robusta (14 mmol m−2 s−1) compared to GC 584 (46.9 mmol m−2 s−1) and C. africana (90.0 mmol m−2 s−1) indicating strong stomatal control by the species. Instantaneous water use efficiency ranged between 3 and 5 μmol mmol−1 and generally decreased with decline in soil moisture in pot-grown trees but increased with declining soil moisture in field-grown trees.  相似文献   

12.
重庆酸雨区缙云山典型林分冠层酸雨淋洗特征   总被引:2,自引:1,他引:2       下载免费PDF全文
选取重庆缙云山的针阔混交林、常绿阔叶林、毛竹林、灌木林4种典型林分,观测酸性降水过程中林外雨、穿透雨及干流等林内水分转换分量中的主要离子含量变化,分析林分冠层对雨水化学组成的影响,结果表明:(1)降雨中的离子当量浓度大小依次是SO42->Ca2+> NH4+>Mg2+>K+>Na+>NO3-;(2)降雨经过林冠层后pH值降低,干流的酸化程度增加最大;(3)降雨经林冠层后离子浓度明显增加(除灌木林),穿透雨中通量增加最大的阴离子和阳离子分别为SO42-(2.19×103~6.47×103 eq·hm-2)和Ca2+(1.41×103~3.39×103 eq-hm-2),离子来源主要为大气沉降和植物分泌物或淋出;(4)同一离子在不同林分的干流和穿透雨中的通量变化不同,反映出不同林分冠层的离子交换性差异.在针阔混交林中,林下降雨净淋溶量大小顺序为SO42->Ca2+> NO3->K+>NH4+>Mg2+> Na+;常绿阔叶林为SO42-> Ca2+> K+>NO3-> NH4+> Mg2+ >Na+;毛竹林为Ca2+> SO42-> K+>NO3-> NH4+>Na+>Mg2+;灌木林为Ca2+> NO3-> K+> Na+>Mg2+> NH4+> SO42-.  相似文献   

13.
A typhoon event catastrophically destroyed a 45-year-old Japanese larch plantation in southern Hokkaido, northern Japan in September 2004, and about 90% of trees were blown down. Vegetation was measured to investigate its regeneration process and CO2 flux, or net ecosystem production (NEP), was measured in 2006–2008 using an automated chamber system to investigate the effects of typhoon disturbance on the ecosystem carbon balance. Annual maximum aboveground biomass (AGB) increased from 2.7 Mg ha−1 in 2006 to 4.0 Mg ha−1 in 2007, whereas no change occurred in annual maximum leaf area index (LAI), which was 3.7 m2 m−2 in 2006 and 3.9 m2 m−2 in 2007. Red raspberry (Rubus idaeus) had become dominant within 2 years after the typhoon disturbance, and came to account for about 60% and 50% of AGB and LAI, respectively. In comparison with CO2 fluxes measured by the eddy covariance technique in 2001–2003, for 4.5 months during the growing season, the sum of gross primary production (GPP) decreased on average by 739 gC m−2 (64%) after the disturbance, whereas ecosystem respiration (RE) decreased by 501 gC m−2 (51%). As a result, NEP decreased from 159 ± 57 gC m−2 to −80 ± 30 gC m−2, which shows that the ecosystem shifted from a carbon sink to a source. Seasonal variation in RE was strongly correlated to soil temperature. The interannual variation in the seasonal trend of RE was small. Light-saturated GPP (Pmax) decreased from 30–45 μmol m−2 s−1 to 8–12 μmol m−2 s−1 during the summer season through the disturbance because of large reduction in LAI.  相似文献   

14.
Dissolved inorganic nitrogen (DIN) (as ammonium nitrate) was applied monthly onto the forest floor of one old-growth forest (>400 years old, at levels of 50, 100 and 150 kg N ha−1 yr−1) and two young forests (both about 70 years old, at levels of 50 and 100 kg N ha−1 yr−1) over 3 years (2004–2006), to investigate how nitrogen (N) input influenced N leaching output, and if there were differences in N retention between the old-growth and the young forests in the subtropical monsoon region of southern China. The ambient throughfall inputs were 23–27 kg N ha−1 yr−1 in the young forests and 29–35 kg N ha−1 yr−1 in the old-growth forest. In the control plots without experimental N addition, a net N retention was observed in the young forests (on average 6–11 kg N ha−1 yr−1), but a net N loss occurred in the old-growth forest (−13 kg N ha−1 yr−1). Experimental N addition immediately increased DIN leaching in all three forests, with 25–66% of added N leached over the 3-year experiment. At the lowest level of N addition (50 kg N ha−1 yr−1), the percentage N loss was higher in the old-growth forest (66% of added N) than in the two young forests (38% and 26%). However, at higher levels of N addition (100 and 150 kg N ha−1 yr−1), the old-growth forest exhibited similar N losses (25–43%) to those in the young forests (28–43%). These results indicate that N retention is largely determined by the forest successional stages and the levels of N addition. Compared to most temperate forests studied in Europe and North America, N leaching loss in these seasonal monsoon subtropical forests occurred mainly in the rainy growing season, with measured N loss in leaching substantially higher under both ambient deposition and experimental N additions.  相似文献   

15.
The competition–density (C–D) effect for non-self-thinning Populus deltoides and Populus × euramericana plantations from 3 to 9 years was analyzed using the reciprocal equation of the C–D effect. The C–D effect was well described by the reciprocal equation, and with the progress of time the C–D curve, on logarithmic coordinates, of the P. × euramericana plantations shifted upward faster than that of the P. deltoides plantations. With increasing physical time t, the biological time τ, i.e. the integral from zero to t of the coefficient of growth λ(t) in the general logistic curve with respect to t, increased rapidly during early growth stages and the increases in τ gradually became slow during later growth stages. This trend was more evident in the P. deltoides plantations than in the P. × euramericana plantations. The coefficients A and B included in the reciprocal equation were calculated at each growth stage. With increasing τ, the coefficient A, the reciprocal of which means the asymptote of yield (=) at a given growth stage, increased abruptly to a maximum value and then tended to decrease gradually to a constant level. On the other hand, the coefficient B, the reciprocal of which means the asymptote of mean stem volume at a given growth stage, decreased exponentially and tended to be close to zero with increasing τ. The λ(t) decreased with increasing stand age, whereas the final yield Y(t) defined as W(t) ρ, where W(t) is the asymptote of w in the general logistic growth curve, increased gradually with increasing stand age. The differences in coefficients A, B, and λ(t) between the two species were reported.  相似文献   

16.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

17.
Jiang XH  Yang JQ  Li N  Wang H  Zhou QX 《Fitoterapia》2011,82(6):878-882
A simple HPLC method was developed to quantify rabbit plasma tetrandrine (Tet) with propranolol (Pro) as internal standard. Based on the established method Tet and Pro were eluted at 7.1 and 12.0 min, respectively. It was shown that the concentration-time data of Tet fit the classical two-compartment model, no matter the drug was administered intravenously or orally to rabbits. The values of AUC0 → ∞, clearance (Cl0 → ∞), volume of distribution (Vd), and elimination half-life (t1/2β) of Tet were 59861.149 ± 26962.196 μg/L ? min, 0.503 ± 0.173 L/min/kg, 179 ± 76.185 L/kg, and 283.808 ± 162.937 min for intravenous injection of 5 mg/kg, or 18986.217 ± 7462.308 μg/L ? min, 0.805 ± 0.267 L/min/kg, 110.284 ± 94.176 L/kg, and 732.919 ± 847.32 min for gavage administration of 10 mg/kg , respectively. The results indicate that Tet displays a limited absorption in intestinal tract, even though it has a favorable pharmacokinetic profile after oral or intravenous administration.  相似文献   

18.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   

19.
Thidiazuron (TDZ) induced somatic embryogenesis from immature zygotic embryos in Cinnamomum pauciflorum Nees while 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BA) or picloram only induced callus and/or adventitious buds. The highest induction frequency for somatic embryogenesis was achieved with MS medium (Murashige and Skoog in Physiol Plant 15:473–497 1962) supplemented with 2.5 μM TDZ using torpedo-shaped embryos (3–5 mm in length) as explants. In addition, induction medium was supplemented with 0.8 g l−1 casein, 0.4 g l−1 glutamine, and 10 g l−1 sucrose. Somatic embryos (SEs) initiated from root tips or hypocotyls without callus formation. SEs were maintained and multiplied via secondary somatic embryogenesis. Embryo maintenance medium was similar to induction medium except that TDZ was reduced to 0.5 μM. Secondary embryogenesis was enhanced by supplementation of 5 g l−1 activated charcoal in the culture. The best medium for embryo maturation was MS medium containing 30 g l−1 sucrose and 5 g l−1 Phytagel without plant growth regulators. A typical mature SE consisted of two large cotyledons and a short embryo proper. Approximately 82% of selected mature SEs were able to germinate and 63% could convert into plantlets on germination medium that was composed of half strength MS medium salts, 10 g l−1 sucrose, 3 g l−1 Phytagel, and 5 g l−1 activated charcoal.  相似文献   

20.
After a wildfire, the management of burnt wood may determine microclimatic conditions and microbiological activity with the potential to affect soil respiration. To experimentally analyze the effect on soil respiration, we manipulated a recently burned pine forest in a Mediterranean mountain (Sierra Nevada National and Natural Park, SE Spain). Three representative treatments of post-fire burnt wood management were established at two elevations: (1) “salvage logging” (SL), where all trees were cut, trunks removed, and branches chipped; (2) “non-intervention” (NI), leaving all burnt trees standing; and (3) “cut plus lopping” (CL), a treatment where burnt trees were felled, with the main branches lopped off, but left in situ partially covering the ground surface. Seasonal measurements were carried out over the course of two years. In addition, we performed continuous diurnal campaigns and an irrigation experiment to ascertain the roles of soil temperature and moisture in determining CO2 fluxes across treatments. Soil CO2 fluxes were highest in CL (average of 3.34 ± 0.19 μmol m−2 s−1) and the lowest in SL (2.21 ± 0.11 μmol m−2 s−1). Across seasons, basal values were registered during summer (average of 1.46 ± 0.04 μmol m−2 s−1), but increased during the humid seasons (up to 10.07 ± 1.08 μmol m−2 s−1 in spring in CL). Seasonal and treatment patterns were consistent at the two elevations (1477 and 2317 m a.s.l.), although respiration was half as high at the higher altitude.Respiration was mainly controlled by soil moisture. Watering during the summer drought boosted CO2 effluxes (up to 37 ± 6 μmol m−2 s−1 just after water addition), which then decreased to basal values as the soil dried. About 64% of CO2 emissions during the first 24 h could be attributed to the degasification of soil pores, with the rest likely related to biological processes. The patterns of CO2 effluxes under experimental watering were similar to the seasonal tendencies, with the highest pulse in CL. Temperature, however, had a weak effect on soil respiration, with Q10 values of ca. 1 across seasons and soil moisture conditions. These results represent a first step towards illustrating the effects of post-fire burnt wood management on soil respiration, and eventually carbon sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号