首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
This study aimed at evaluating and comparing the removal of arsenic from solutions by a low-cost waste-based sorbent, produced by pyrolysing sewage sludge under appropriate conditions, and by a commercially activated carbon. Batch sorption experiments were performed under isothermal conditions (20°C), in order to evaluate the effect of pH on the arsenic sorption kinetics and on the equilibrium sorption capacity of the materials under study. Kinetic data revealed that the arsenic sorption was faster onto the activated carbon than onto the pyrolysed sludge. The sorption process was well described by both the pseudo-first and pseudo-second-order kinetics equations for both materials. Changes in the initial solution pH have distinct effects on the removal of arsenic onto pyrolysed sludge and activated carbon. While for pyrolysed sludge, pH affects essentially the equilibrium time, for activated carbon it affects the sorption capacity. Equilibrium results were well described by both Freundlich and Langmuir isotherm models, although fittings corresponding to the Langmuir isotherm were slightly better. The Langmuir maximum sorption capacity determined for the pyrolysed sludge was 71???g?g?1, while for activated carbon was 229???g?g?1. Despite the relative lower capacity of the pyrolysed sludge, the considerable lower cost and the valorisation of the sludge may justify further research on its use for water decontamination.  相似文献   

2.
We examined the sorption of heavy metals and polycyclic aromatic hydrocarbons (PAHs) to surface-oxidized activated carbon (AC) and its effect on the distribution of those compounds in sediments. Created surface oxygen groups on AC enhanced the sorption of copper, which is superior in sorption competition, in the marine sediments. In case of cadmium, aqueous chemistry altered by AC addition, such as pH, has greater impact on the bioavailability according to the result of a sequential extraction combined with the pore water concentration measurements. Oxidized AC exhibited 2.3 times more adsorption of reduced bioavailable copper while 23% of bioavailable cadmium was adsorbed onto unmodified AC. No significant changes in BET surface area, pore volume, and AC/water distribution coefficient (K AC) of PAHs were observed with surface-oxidized AC. The largest difference in K AC after the oxidation was only 0.14 log unit. Consequently, freely dissolved aqueous concentrations of PAHs were reduced by more than 96% for all tested ACs in a week despite the increased Cu sorption on AC. This indicates that enhanced metal sorption by surface oxidation of AC is less significant in controlling bioavailability of PAHs in sediments than particle size or sorbent dose.  相似文献   

3.
Batch adsorption experiments were carried out with samples from an A-, Bh- and C-horizon of contaminated sandy soil of podzolic character from the Kempen region at the Dutch-Belgian border. Cadmium sorption was studied on 3 soil samples at 3 different pH-levels (3.6, 4.3 and soil buffered pH) and 3 different additions of zinc (0–40 mg l-1). Adsorption of cadmium by acid sandy soils can be fitted by a Freundlich adsorption isotherm. Although zinc competes with cadmium for the sorption sites, we observe a two to three times stronger competition effect of the proton cation, which is explained by the chemical properties of both ions. The cadmium adsorption coefficient KF decreases considerably by an increase of the proton activity used in the sorption experiments. Organic matter content explains for a large part the variation of KF of te three soil samples. Desorption data do not fit the proposed regression model for adssorption. Not all the cadmium, intitially present in the polluted soil, will fylly desorb reversibly. Thus, part of the cadmium may be irreversible bound.  相似文献   

4.
Rare earth mineral based adsorbent viz. lanthanum oxide was investigated for potential application in defluoridation of drinking water for isolated and rural communities. Results of batch experiments indicated about 90% removal in 30 min from a 4 mg L−1 synthetic fluoride solution. The effects of various parameters like contact time, pH, initial concentration, and sorbent dose on sorption efficiency were investigated. Adsorption efficiency was dependent on initial fluoride concentration and the sorption process followed BET model. Variation of pH up to 9.5 has insignificant effect on sorption and beyond a pH of 9.5, the effect was drastic. Among anions investigated, carbonates exhibited high detrimental effect on fluoride adsorption while anions like bicarbonates, chlorides, and sulfates did not seriously affect the process. Adsorbent showed negligible desorption of fluoride in distilled water. Alum was more effective regenerant than HCl and NaOH. Results of cyclic regeneration with alum indicated that the sorbent could be regenerated for ten cycles without significant loss of sorption capacity. Studies with upflow fixed-bed continuous flow columns indicated the usefulness of sorbent for fluoride removal in continuous flow process.  相似文献   

5.
A carbonaceous sorbent produced from rice husk via sulphuric acid treatment was used to remove Cr(VI) from aqueous solutions varying contact time, pH, Cr(VI) concentration and sorbent status (wet and dry). Cr(VI) was removed from the aqueous solution via reduction to Cr(III) and sorption. Reduction and sorption processes were investigated in terms of kinetics and equilibrium. The rate of reduction removal of Cr(VI) at pH 2 followed a pseudo first-order model while the rate of sorption of total chromium followed pseudo second-order model. Chromium sorption was highly dependent on the initial pH value with reduction taking place in solution with pH up to 7 showing sorption maxima in the pH range 1.8–2.8 for concentration range 100–500 mg/l with an increase in the equilibrium pH. Carbon dioxide evolved from the sorption media was determined. Reduction–sorption mechanism was investigated via physicochemical tests including cation exchange capacity, base neutralization and sorbent acidity in addition to FTIR studies for sorbent samples before and after sorption reaction.  相似文献   

6.
为筛选稳定、高效、环境友好的重金属污染修复材料,利用批吸附试验研究了不同温度下褐煤、腐植酸、活性炭对镉(Cd~(2+))的吸附特征,采用非线性χ~2检验辅助决定系数判断等温线模型拟合度,用红外光谱对材料功能团进行了识别。结果表明,Temkin模型能最好拟合3种材料对Cd~(2+)的等温吸附过程,Langmuir和Freundlich模型也能较好拟合但与温度有关。吸附热力学参数表明,3种材料对Cd~(2+)的吸附为优惠发生的物理吸附,并且是自发的吸热过程,3种材料与Cd~(2+)之间均有较强的作用力。在温度294.55~313.15 K时腐植酸、褐煤和活性炭对Cd~(2+)的最大吸附量分别为36.14~44.09、29.63~38.20 mg·g~(-1)和21.04~30.34 mg·g~(-1),吸附量随温度升高而升高,吸附自由能随着温度升高而降低,说明升温吸附更容易发生。准二级动力学拟合数据最好,表明3种材料对Cd~(2+)的吸附存在着化学过程。褐煤基活性炭和褐煤基腐植酸具有丰富的孔隙结构。红外光谱图表明腐植酸和褐煤较大的吸附量与其含氧功能团种类较多以及在波数2 360 cm~(-1)和2 342 cm~(-1)附近吸收峰有关。因此,褐煤基3种材料对Cd~(2+)的吸附是自发的吸热过程,腐植酸对Cd~(2+)的最大吸附量和吸附能力最大,用Temkin等温方程和准二级动力学曲线能最适宜描述褐煤基材料对Cd~(2+)的吸附特征。  相似文献   

7.
In this study, the sorption removal of two anions (phosphates, thiocyanates) and three cations (cadmium, lead, nickel), in single batch systems, was investigated from aqueous solutions. The process involves the sorption of the ions by hydrotalcite, which is a double-layered mixed-metal hydroxide and belongs to the family of anionic clays. The sorbent used was Mg-Al-CO3 hydrotalcite in two forms: uncalcined and calcined at 500 °C. The calcined material showed the higher sorption capacity, for all the ions, than the uncalcined. The approximate sorption capacity of calcined material was: phosphates 250 mg g-1, thiocyanates 80 mg g-1, nickel/lead 100 mg g-1 and cadmium 70 mg g-1. The kinetic results of the anions were fitted satisfactory with the Lagergren equation. Since the sorption capacity is relatively high, hydrotalcite can be considered as a potential material for sorption of both anions and cations in wastewater treatment systems.  相似文献   

8.
Pesticide sorption in soils is controlled by time-dependent processes such as diffusion into soil aggregates and microscopic sorbent particles. This study examines the rate-controlling step for time-dependent sorption in clay loam aggregates. Aggregates (5 mm) were stabilized with alginate, and adsorption of azoxystrobin, chlorotoluron, and cyanazine was measured in batch systems equilibrated for periods between 1 h and 7 days. Stepwise desorption was measured at 1- or 3-day intervals following 1 or 7 days of adsorption. Time-dependent adsorption was also measured on dispersed soil. Results were interpreted using process-based modeling. Adsorption on dispersed soil was described by intraparticle sorption and diffusion. Adsorption in the aggregates was much less than in suspension, suggesting that part of the sorption capacity of the dispersed soil was not available within the aggregates (approximately 50%). Adsorption and desorption were reversible and could be described by pore diffusion into the aggregate with effective diffusion coefficients between 0.5 x 10(-10) and 1 x 10(-10) m2 s(-1), a factor 3-6 slower than estimated theoretically. Intraparticle diffusion did not seem to contribute to sorption in the aggregates at this time scale. Apparent hysteresis was explained by nonattainment of equilibrium during the adsorption and desorption steps.  相似文献   

9.
使用序批实验方法,研究熟污泥改性黄土对镉(Cd)的吸附解吸特征。结果表明:Cd初始添加浓度大于20 mg/L,供试改性黄土对Cd的吸附等温线发生显著变化;Freundlich型吸附等温式是描述供试改性黄土对Cd吸附过程的最佳模型。各土样对Cd的解吸量与吸附量的关系可以用幂函数很好地描述。随着土样中熟污泥含量的增加,Cd的吸附固定作用增强。有机质成分是影响供试土样Cd固定能力最大的因素。  相似文献   

10.
Jing  Feng  Yang  Zhijiang  Chen  Xiaomin  Liu  Wei  Guo  Bilin  Lin  Gaozhe  Huang  Ronghui  Liu  Wenxin 《Journal of Soils and Sediments》2019,19(7):2957-2970
Purpose

Biochar has shown to be a great product to control the bioavailability of potentially hazardous elements (PHE) in contaminated soils. Despite the advantages associated with the application of biochar in agricultural soils, relatively few studies have focused on the effects of biochar amendments on soil chemical properties, accumulation of arsenic, cadmium, zinc, and lead in rice tissues, and their availability in soil systems.

Materials and methods

The field experiment was conducted at the paddy soils in Hunan Province, China. The soil texture was sandy clay loam. Wheat-derived biochar was applied once to the experimental plots at the rates of 0, 10, 20, 30 and 40 t ha?1, and referenced as A0, A10, A20, A30, and A40, respectively. For PHE determination, soil samples and plant samples were digested with a mixed solution of HCl:HNO3 (4:1, V:V) and HCl:HClO4 (4:1, V:V), respectively, and the arsenic, cadmium, zinc, and lead in the digest solution were measured by ICP-MS (Thermo Fisher Scientific, USA). The soil available fraction of PHE (arsenic, cadmium, zinc, and lead) was extracted by diethylenetriamine pentaacetic acid (DTPA) and measured by inductively ICP-MS.

Results and discussion

Biochar amendment increased chemical properties of soil organic matter, pH, electrical conductivity, cation exchange capacity, nitrate nitrogen, and available phosphorus. Soil DTPA extractable arsenic, cadmium, zinc, and lead concentrations were significantly reduced. Arsenic, cadmium, zinc, and lead in rice shoots, and arsenic, cadmium, and zinc in roots significantly decreased after amendment. Concentrations in rice tissues positively and negatively correlated with the soil available fraction of PHE and soil chemical properties, respectively. Soil electrical conductivity negatively correlated with the soil available fraction of PHE. Concentrations of arsenic, zinc, cadmium, and lead in rice roots declined relative to increases of cation exchange capacity (arsenic, zinc), available phosphorus (cadmium), and nitric nitrogen (lead) content. Similar relationships were observed between cation exchange capacity and PHE in shoots.

Conclusions

Biochar creates avoidance of PHE through regulating chemical properties through biochar sorption capacity. Cation exchange capacity, available phosphorus, and nitric nitrogen were the principle factors affecting roots uptake of arsenic, zinc, cadmium, and lead. Biochar soluble salts could decline availability of metals/metalloids in soils through precipitation. Wheat-derived biochar application is an alternative safe product to immobilize PHE in rice paddy soils by restricting the risk of PHE.

  相似文献   

11.
The effect of amorphous silicon dioxide (SiO2) on cadmium behavior in the soil–plant system was studied in a field experiment on a flooded paddy soil slightly contaminated by cadmium. The application of amorphous SiO2 results in a 1.3- to 1.8-fold smaller cadmium accumulation in the aboveground organs of rice and a 1.8- to 2.6-fold decrease in the content of its available compounds, which can be explained by metal sorption on the surface of applied silicon dioxide and by the reaction of monosilicic acid, which forms in the SiO2 solution, with cadmium. The decrease in cadmium availability is most intensive in the first 2 weeks after SiO2 application. Amorphous silicon causes a 26.6% increase in rice productivity in the first season and 72.9% in the second. The data obtained testify to the fact that the application rates of traditional mineral fertilizers can be decreased without risk to rice productivity if silicon compounds are used. They should become an integral and important part of implementing the 4R-STRATEGY for fertilizer application and plant nutrition optimization.  相似文献   

12.
Abstract

The release of solid‐phase soil aluminum (Al) from two soils was studied under acidic conditions and also in the presence of monosilicic acid. The soils support mixed‐conifer forests in the mid‐elevation Western Sierra Nevada in northern California, but differ in their state of development and mineralogy as shown by Al, iron (Fe), and silicon (Si) concentrations. The pyrophosphate‐extractable Al (Alp) pool, which was a main source of released Al, decreased after a two‐month leaching with nitric (HNO3) or oxalic (HO2C‐CO2H) acids. Addition of monosilicic acid (SiO2.XH2O) to the acid extractants resulted in a further decrease of Al. Solution monosilicic acid was removed from solution by sorption on Fe oxides/hydroxides in the soil with the higher dithionite‐extractable Fe pool. In the less developed soil with lower pedogenic Fe, the formation of short‐range‐ordered aluminosilicates, even in the presence of a strong Al chelator, was responsible for the removal of a portion of the monosilicic acid from solution. Pedogenic Fe inhibited the formation of short‐range‐ordered aluminosilicates more than the presence of a strong Al chelator. Both the solution phase and surface reactions are important in the pedogenic formation of alumino‐silicate minerals.  相似文献   

13.
采用静态吸附法,进行磷酸活化法不同剂料质量比(0.5~3.0)及活化温度(400~700℃)条件下制备的互花米草厌氧发酵渣活性炭对镉的吸附性能研究,考察不同初始浓度条件下活性炭对镉的平衡吸附量,旨在以吸附法治理含镉废水,探索吸附机理、影响因素、除镉吸附剂的最佳制备条件以及活性炭物化性质对镉吸附性能的影响。结果表明,镉的吸附性能与活性炭的制备条件有关,随着活化温度的升高,镉的吸附量逐渐增大,主要是因为高温条件下活性炭表面PO34-充当活性位点,促进镉的吸附。当剂料质量比为1.0,活化温度为700℃时,制备出的活性炭对镉的吸附性能最好,其最大吸附量可达38.91mg·g^-1,远远高于商业活性炭。镉的吸附量随着溶液初始浓度的增加而增大,吸附等温线符合Langmuir方程。溶液pH和活性炭表面化学性质是决定镉吸附量大小的决定性因素,当溶液pH在2~4时,各活性炭对镉的吸附能力随pH的增加而增加。本文为含镉废水的处理提供了一种低价高效的方法。  相似文献   

14.
改性高岭土对废水中磷的吸附性能及机理研究   总被引:5,自引:1,他引:4  
翟由涛  杭小帅  干方群 《土壤》2012,44(1):55-61
采用盐酸和煅烧2种方法对苏州高岭土进行了改性,分析其对模拟含磷废水中磷的吸附效果,并初步探讨了其作用机制,继而进行了等温吸附和吸附动力学试验研究。结果显示,酸、热改性均不同程度地提高了高岭土对模拟废水中磷的吸附净化能力,尤以9%酸改性和500℃煅烧效果最为明显。在处理25 ml浓度为20 mg/L的模拟含磷废水中,高岭土投加量为2%(重量比)时,经9%酸改性高岭土对磷去除率达81.8%,较天然高岭土提高了44.6%。在处理50 ml浓度为20 mg/L的模拟含磷废水时,经500℃煅烧改性高岭土对磷的去除率高达99.5%,残留溶液中磷浓度仅为0.10 mg/L,达到我国相应排放标准。酸改性可通过改变高岭土的吸附活性点位来提高其对磷的吸附净化性能,而煅烧通过活化高岭石中的铝而提高其对磷的吸附净化性能。天然、9%酸改性及500℃煅烧高岭土磷吸附等温线均符合Freundilch和Langmuir方程,皆达极显著水平(P<0.01)。天然、9%酸改性及500℃煅烧高岭土对磷的动力学吸附特征一致,皆与准二级方程拟合最佳,达极显著水平(P<0.01)。500℃煅烧高岭土对磷的饱和吸附量最大,在净化含磷废水中具有良好的应用前景。  相似文献   

15.
镉在胡敏酸上的吸附动力学和热力学研究   总被引:15,自引:3,他引:15       下载免费PDF全文
采用镉离子选择电极研究了镉在胡敏酸上的吸附特征。实验结果表明 ,胡敏酸对镉的等温吸附规律与介质pH有关。当pH为 3 0 0和 3 50时符合Freundlich方程 ,当pH在 4 0 0~ 6 50之间更好地符合Langmuir方程 ;在pH为 3 0 0~ 6 50之间 ,吸附量与pH成显著正相关。温度升高吸附量降低 ,吸附热与反应介质的pH有关 ,pH升高 ,吸附反应放热增加 ;胡敏酸对镉的吸附作用力随介质pH改变发生较大变化 ,当pH为6 50时主要为配位基交换作用。胡敏酸对镉的吸附含有部分不释放氢的静电吸附 ,其吸附反应动力学用Elovich方程拟合效果较好  相似文献   

16.
采用盆栽与吸附试验,研究了镉污染赤红壤上,施用相同摩尔浓度的钙、钾与锌对小油菜生物量、镉吸收量及土壤镉吸附的影响。结果表明,低和高镉污染赤红壤上,施用锌明显增加小油菜地上部生物量,较对照分别增产21.1%和7.82%。不同阳离子(钠、钙、钾和锌离子)共存改变土壤吸附镉能力的程度不同,与钠体系相比,钙、钾和锌体系中土壤镉吸附量分别降低65.6%、72.0%和96.9%,共存离子降低土壤镉吸附量的次序为锌离子〉钾离子和钙离子,锌离子的影响最为明显。高镉污染赤红壤上,钙和钾使小油菜吸镉量分别增加5.5%和14.4%,低于低镉污染赤红壤上钙和钾使小油菜吸镉的增加量(分别为16.6%和19.6%);锌明显降低小油菜吸镉量,高和低镉污染赤红壤上,较对照分别减少45.8%和35.0%。3种阳离子与镉共存时,对土壤镉生物有效性的影响差异取决于竞争吸附与竞争吸收的大小,其机制有待进一步探讨。  相似文献   

17.
米渣蛋白对镉的吸附效果及其对土壤中镉的钝化作用研究   总被引:1,自引:1,他引:0  
为探究米渣蛋白对水溶液中镉的吸附效果及米渣对土壤中镉活性的钝化效果,该研究首先用米渣蛋白在水溶液中对镉进行吸附、用盐酸解吸,并用Langmuir、Freundlich等温吸附方程来拟合米渣蛋白在水溶液中对镉的吸附过程,用动力学方程研究米渣蛋白与镉结合的机理,并根据线性关系从准一级、准二级吸附动力学方程中筛选更接近吸附动力的拟合方程。其次,通过周期取样,用Tessier分步连续提取法测定并探究米渣对土壤中镉的钝化能力。研究结果表明:在不同初始质量分数的镉溶液中米渣对镉的最大吸附量13.28mg/g,用盐酸解吸各初始质量分数下结合的镉,解吸率均达到90%以上。同时,Langmuir和Freundlich等温方程均能拟合米渣蛋白在水溶液中对镉的吸附过程,且R2达到0.99以上;准一级动力学、准二级动力学方程拟合结果是,拟合出的准二级动力学方程线性更好,米渣蛋白对镉的吸附动力更符合准二级动力学方程。土壤中镉钝化试验表明:加入米渣后,28d内土壤中镉的钝化效果较好,可能是由于米渣中的蛋白改变了土壤中镉的存在状态并降低镉的活性所致。该研究结果为米渣的应用提供新的思路,可为其在废水除镉、镉污染土壤的修复等方面应用提供理论依据。  相似文献   

18.
随着工农业的发展,稻田土壤正面临严重的重金属污染问题,水稻作为南亚和东南亚的主要粮食作物,稻米安全问题显得尤为突出。镉和砷两者在生物地球化学循环上有明显差异,因此镉和砷复合污染水稻土的修复一直是一个棘手的问题。综述了镉砷复合污染水稻土原位钝化技术的研究现状,将钝化技术梳理为氧化还原型、微生物转化累积型、材料型和耦合钝化技术四类。氧化还原型钝化技术重点指出稻田水分调控驱动的氧化还原电位Eh和pH变化、不同元素的生物地球化学循环、有机质等对镉和砷的迁移转化机制;微生物转化累积型钝化技术重点阐明功能微生物对砷和镉的吸收、转化、区室化、菌表吸附等作用机制;材料型钝化技术重点分析现有钝化材料的分类及其与镉和砷的固定化机制;耦合型钝化技术重点总结上述三种技术综合体系下,镉和砷的协同钝化应用。同时对未来镉砷复合污染水稻土的原位钝化修复提出展望,进一步探讨了镉砷在稻田土壤生物地球化学循环过程涉及的新型机制研究方向、修复钝化技术的创新延展趋势;期望在稳产、增产的基础上,寻求一种深度融合现代农业生产模式、保障稻田安全利用的土壤钝化改良技术体系或模式。  相似文献   

19.
Changes in farming practices over long times can affect the sorption behaviour of MCPA ((4‐chloro‐2‐methylphenoxy)acetic acid). We studied the adsorption–desorption mechanisms of MCPA on soil with varied amounts and origins of soil organic matter obtained from a long‐term field experiment with various organic amendments. The origin of the soil organic matter seems to be crucial for the sorption behaviour of MCPA. Samples of soil amended with sewage sludge sorbed MCPA more strongly than the soil under any other treatment. Peat‐amended soil was second followed by soil receiving animal manure, green manure, mineral fertilizer without N and the fallowed soil. Both the carbon content and the origin of the organic matter are important for the sorption. A decrease of carbon content of a soil does not necessarily imply a reduction of sorption capacity for polar organic acids such as MCPA. Nevertheless, our adsorption–desorption experiments suggest that with decreasing carbon content the role of mineral sorption mechanisms could become more pronounced. Our results showed that interactions of soil organic matter and soil minerals distinctly influence adsorption properties for MCPA.  相似文献   

20.
The sorption and desorption of phenol and aniline on selected soils and soil components and on some energy-related solid wastes were investigated. Isotherms were generally nonlinear and were described usually by the Freundlich equation. Most partition coefficients were low, and no significant correlation was shown with organic C content, pH, cation exchange capacity, or particle-size of the sorbent. It appears that sorption of small polar aromatic compounds, such as phenol and aniline, cannot be defined by a single sorbent characteristic, but is affected by both the organic and mineral components of the sorbents. Hysteresis was observed in most sorption-desorption experiments; a fraction of the sorbate was irreversibly held by the sorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号