首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding and release of volatile compounds to and from beta-cyclodextrin were measured in model aqueous systems using static equilibrium headspace and dynamic headspace dilution. Beta-cyclodextrin decreased the static equilibrium headspace for some volatiles (e.g., ethyl octanoate and decanone) due to binding, but dilution studies demonstrated that binding was readily reversible. Dynamic release of hydrophobic volatile compounds was similar to that observed from emulsions. When beta-cyclodextrin was added to fat free yogurt, the release of a commercial lemon flavoring was modified and was similar to release from a regular fat yogurt. Sensory difference testing confirmed the release results. The data demonstrate that beta-cyclodextrin can be used to modify flavor delivery in both model and real systems; the effects in the latter are sensorially significant.  相似文献   

2.
Static equilibrium headspace was diluted with a stream of nitrogen to study the stability of the volatile headspace concentration. The headspace dilution profile of 18 volatile compounds above aqueous and ethanolic solutions was measured in real time using atmospheric pressure chemical ionization-mass spectrometry. Under dynamic conditions the volatiles headspace concentration above water solutions decreased readily upon dilution. The presence of ethanol helped to maintain the volatile headspace concentration when the ethanol solution concentration was above 50 mL/L. This effect was such that under dynamic conditions the absolute volatile concentration above an ethanolic solution was higher than that above an aqueous solution, contrary to results observed in equilibrium studies. The ratio of the headspace concentration of volatiles above ethanolic 120 mL/L and water solutions was correlated to their air/water partition coefficient.  相似文献   

3.
Parameters determining the partitioning behavior of volatile compounds between a cloud emulsion and the gas phase were measured under static equilibrium headspace conditions, using volatiles (e.g., ethyl hexanoate, cymene, and octanol) representing different volatilities and different degrees of hydrophobicity. The significant factors were the molecular characteristics of the volatile and the concentration of the oil phase. The nature of the lipid (C8 and C12 triglycerides), particle size, and emulsifier type (modified starch and gum arabic) did not significantly alter volatile partitioning. An empirical model based on the partition behavior and physicochemical parameters of 67 volatile compounds was produced. This predicted the partition of volatiles (R(2) = 0.83) in cloud emulsions as a function of lipid content. The significant terms (P < 0.05) in the empirical model were Log P, Log solubility, the dipole vector, and the oil fraction.  相似文献   

4.
Supercritical fluids can extract components from some matrixes (e.g., fat and flavors from food) as well as infusing additives into synthetic polymer matrixes. To study the feasibility of infusing flavors into matrixes as a potential flavoring mechanism, a wide range of volatile flavor compounds was infused into a well-defined synthetic polymer (low-density polyethylene) using supercritical carbon dioxide. The polymer was then extracted, and the amount of infused compound was determined. The effects of time, temperature, pressure, rate of depressurization, volatile concentration, and volatile properties on the degree of infusion were studied. Infusion with supercritical carbon dioxide achieved much higher loadings of the polymer (0.01 to 6.87 mg/g LDPE, depending on the volatile molecule being infused) compared to those achieved by static diffusion. Forty-five volatiles were infused, from which a model was developed to predict infusion as a function of certain physicochemical properties.  相似文献   

5.
Static equilibrium was established between the gas phase (headspace) and an unstirred aqueous phase in a sealed vessel. The headspace was then diluted with air to mimic the situation when a container of food is opened and the volatiles are diluted by the surrounding air. Because this first volatile signal can influence overall flavor perception, the parameters controlling volatile release under these conditions are of interest. A mechanistic model was developed and validated experimentally. Release of compounds depended on the air-water partition coefficient (K(aw)) and the mass transport in both phases. For compounds with K(aw) values <10(-)(3), K(aw) was the factor determining release rate. When K(aw) was >10(-)(3), mass transport in the gas phase became significant and the Reynolds number played a role. Because release from packaged foods occurs at low Reynolds numbers, whereas most experiments are conducted at medium to high Reynolds numbers, the experimentally defined profile may not reflect the real situation.  相似文献   

6.
A comparison was made between the amounts of volatiles in the headspace above a solution and the breath volatile content (exhaled from the nose or mouth) after consumption of the same solution. The amounts of volatiles in the breath were lower than those in the headspace, with breath exhaled via the mouth containing, on average, 8-fold more volatiles than breath exhaled via the nose. Dilution of the sample by saliva in-mouth did not appear to be a major factor affecting volatile delivery. Instead, the rate of in vivo equilibration (mass transfer) appeared to be the most significant factor, principally affecting volatile delivery from the solution to the gas phase. Thereafter, gas-phase dilution of the volatile as it passed through the upper airway resulted in a further decrease in volatile concentration. The final factor affecting the volatile concentration exhaled from the nose was absorption of volatiles to the nasal epithelia, which was greatest for those compounds with the lowest air/water partition coefficients.  相似文献   

7.
A fully computer-controlled apparatus was designed. It combines a glass reactor with a temperature-controlled hood, in which headspace volatiles are captured. Flavored liquids can be introduced into the reactor and exposed to conditions of temperature, air flow, shear rate, and saliva flow as they occur in the mouth. As the reactor is completely filled before measurements are started, creation of headspace just before sampling start prevents untimely flavor release resulting in real time data. In the first 30 s of flavor release the concentrations of the volatiles can be measured up to four times by on-line sampling of the dynamic headspace, followed by off-line trapping of the samples on corresponding Tenax traps and analysis using GC-TDS-FID. Flavor compounds from different chemical classes were dissolved in water to achieve concentrations typically present in food (micrograms to milligrams per liter). Most of the compounds showed constant release rates, and the summed quantities of each volatile of three 10 s time intervals correlated linearly with time. The entire method of measurement including sample preparation, release, sampling, trapping, thermodesorption, and GC analysis showed good sensitivity [nanograms (10 s)(-1)] and reproducibility (mean coefficient of variation = 7.2%).  相似文献   

8.
Gas chromatography-olfactometry (GC-O) and proton transfer reaction-mass spectrometry (PTR-MS) techniques were used to deduce the profile of odor-active and volatile compounds of three grana cheeses: Grana Padano (GP), Parmigiano Reggiano (PR), and Grana Trentino (GT). Samples for GC-O analysis were prepared by dynamic headspace extraction, while a direct analysis of the headspace formed over cheese was performed by PTR-MS. The major contributors to the odor profile were ethyl butanoate, 2-heptanone, and ethyl hexanoate, with fruity notes. A high concentration of mass 45, tentatively identified as acetaldehyde, was found by PTR-MS analysis. Low odor threshold compounds, e.g., methional and 1-octen-3-one, which contributed to the odor profile but were not detected by FID, were detected by PTR-MS. Principal component analysis on both GC-O and PTR-MS data separated the three cheese samples well and showed specific compounds related to each sample.  相似文献   

9.
Reproduction of flowering dogwood trees occurs via obligate out-crossing, and U.S. native bees have been suggested to be primary pollinators of this ecologically and economically important deciduous tree. Whether floral volatiles play a role in reproduction of the dogwood remains unclear. Objectives of this study were to identify principal volatile chemicals emitted from dogwood flowers and to assess a temporal volatile emission profile and volatile consistency across four cultivars. Inflorescences with intact bracts and 5 cm flower pedicel were removed from dogwood trees and subjected to headspace volatile collection. Six principal volatile compounds were detected from the flowers of the cultivar 'World's Fair' with 3-formylpyridine as the most abundant constituent. Subsequent headspace analyses performed using inflorescences without bracts or floral pedicels alone indicated that 3-formylpyridine, E-beta-ocimene, S-linalool, and ketoisophorone were mainly emitted from inflorescences. Experiments were also conducted to determine whether volatile emissions differed across time and between different cultivars of flowering dogwood. When volatile emission was analyzed for 48 h using 12 h light/dark cycles, the emission of several volatile compounds displayed diurnal patterns. Finally, whereas florets in inflorescences of four different dogwood cultivars emitted similar levels of the six principal floral volatile chemicals, 'Cherokee Brave' flowers alone yielded 4-methoxybenzaldehyde and germacrene-D. The implications of the findings of this study to dogwood breeding programs are discussed.  相似文献   

10.
Relative retention, volatility, and temporal release of volatile compounds taken from aldehyde, ester, and alcohol chemical classes were studied at 70 degrees C in model systems using equilibrium static headspace analysis and real time dynamic headspace analysis. These systems were medium-chain triglycerides (MCT), sunflower oil, and two structured systems, i.e., water-in-oil emulsion and L2 phase (water-in-oil microemulsion). Hydrophilic domains of the emulsion type media retained specifically the hydrophilic compounds and alcohols. Four kinetic parameters characterizing the concentration- and time-dependent releases were extracted from the aroma release curves. Most of the kinetic parameter values were higher in structured systems than in oils particularly when using MCT. The oil nature was found to better control the dynamic release profiles than the system structures. The release parameters were well-related (i) to the volatile hydrophobicity as a function of the oil used and (ii) to the retention data in the specific case of the L2 phase due to a specific release behavior of alcohols.  相似文献   

11.
This work focused on developing a method to determine the volatile compounds that contribute to individual masses observed by PTR-MS in the headspace of a food product (e.g., cheese crackers). The process of interfacing a PTR-MS with a GC-MS (electron impact) through an existing sniffing port is outlined, and the problems faced in doing so are discussed. For the interface developed, linearity for both detectors working online for a wide range of concentrations of a selected compound (hexanal) was good (R(2) = 0.88). There was also a good correlation between the responses for both instruments (confidence interval for the slope between 0.56 and 1.18) over a range in concentrations despite the different ionization processes taking place. The application of our system (PTR-MS/GC-MS interface) to a real food system (cheese crackers) in which volatiles were isolated via purge and trap allowed the assignments of most of the PTR-MS masses to major volatile compounds in the samples. However, in this interface it is important to consider some limitations related to GC resolution, compound identification by EI-MS, PTR-MS sensitivity (and overloading), PTR-MS inlet requirements (ca. 20 mL/min), ion chemistry in the PTR-MS, and potentially changing sample composition over time, altering the contribution of a given compound to a specific ion. These issues are discussed.  相似文献   

12.
The feasibility of monitoring volatile flavor compounds formed by thermal treatment of skimmed milk powder in real time by atmospheric pressure chemical ionization mass spectrometry (APCIMS) was established. Skim milk powder samples were heated isothermally (70 to 120 degrees C) at different moisture contents (2.2 and 12.7 g water/100 g dry solids). Headspace was sampled and analyzed continuously in full scan mode (30-180 amu) by APCIMS. The identity of the volatile compounds monitored by APCIMS was confirmed by coupled GC-EI-APCIMS. The concentration measured by the APCIMS was the net effect of three processes, namely formation of the compound, partition from the skim milk powder into the gas phase, and dilution due to the headspace sampling method used. Preliminary experiments established that the technique could follow the effects of heating temperature and moisture content on the formation of selected compounds from skim milk powder.  相似文献   

13.
Flavored yogurts differing in fat content were eaten, and the release of flavor volatiles was measured by monitoring the volatile composition of air from the nose in real time by atmospheric pressure ionization mass spectrometry. Low-fat yogurts (0.2%) were found to release volatiles more quickly and at higher intensity but with less persistence than yogurts containing fat at 3.5 and 10% fat. Yogurts with increasing fat content had higher viscosity and lower relative particle size. Lipophilic compounds were more affected by fat for maximum volatile intensity, but not time-to-maximum intensity or persistence. Sensory assessment of the yogurts found significant differences in intensity and speed of onset of flavor, but not overall length of perception.  相似文献   

14.
Changes in the volatility of selected flavor compounds in the presence of nonvolatile food matrix components were studied using headspace solid-phase microextraction (HS-SPME) combined with GC-MS quantification. Time-dependent adsorption profiles to the SPME fiber and the partition coefficients between different phases were obtained for several individual volatiles, showing that HS-SPME analysis with a short sampling time can be used to determine the "true" headspace concentration at equilibrium between the headspace and a sample matrix. Equilibrium dialysis followed by HS-SPME/GC-MS was carried out to confirm the ability of HS-SPME extraction for monitoring the free volatile compounds in the presence of proteins. In particular, a short sampling time (1 min) avoided additional extraction of volatiles bound to the protein. Interactions between several selected flavor compounds and nonvolatile food matrix components [beta-lactoglobulin or (+)-catechin] were also studied by means of HS-SPME/GC-MS analysis. The volatility of ethyl hexanoate, heptanone, and hexanal was significantly decreased by the addition of beta-lactoglobulin compared to that of isoamyl acetate. Catechin decreased the volatility of ethyl hexanoate and hexanal by 10-20% and increased that of 2-heptanone by approximately 15%. This study indicates that HS-SPME can be a useful tool for the study of the interactions between volatile compounds and nonvolatile matrix components provided the kinetic and thermodynamic behavior of the volatiles in relation to the fiber chosen for the studies is carefully considered.  相似文献   

15.
Solid-phase microextraction (SPME) fibers were evaluated for their ability to adsorb volatile flavor compounds under various conditions with coffee and aqueous flavored solutions. Experiments comparing different fibers showed that poly(dimethylsiloxane)/divinylbenzene had the highest overall sensitivity. Carboxen/poly(dimethylsiloxane) was the most sensitive to small molecules and acids. As the concentrations of compounds increased, the quantitative linear range was exceeded as shown by competition effects with 2-isobutyl-3-methoxypyrazine at concentrations above 1 ppm. A method based on a short-time sampling of the headspace (1 min) was shown to better represent the equilibrium headspace concentration. Analysis of coffee brew with a 1-min headspace adsorption time was verified to be within the linear range for most compounds and thus appropriate for relative headspace quantification. Absolute quantification of volatiles, using isotope dilution assays (IDA), is not subject to biases caused by excess compound concentrations or complex matrices. The degradation of coffee aroma volatiles during storage was followed by relative headspace measurements and absolute quantifications. Both methods gave similar values for 3-methylbutanal, 4-ethylguaiacol, and 2,3-pentanedione. Acetic acid, however, gave higher values during storage upon relative headspace measurements due to concurrent pH decreases that were not seen with IDA.  相似文献   

16.
The flavor volatiles in three Japanese rice cultivars, Nihonbare, Koshihikari, and Akitakomachi, during cooking were directly extracted by using a modified headspace solid‐phase microextraction (SPME) method and analyzed by gas chromatography‐mass spectrometry (GC‐MS). A total of 46 components were identified, including aldehydes, ketones, alcohols, and heterocyclic compounds, as well as fatty acids and esters, phenolic compounds, hydrocarbons, etc. The amount of key odorant compounds increased with cooking, while the amount of low‐boiling volatiles decreased. The similarities and differences of the three rice cultivars were determined through a comparison of their volatile components. Nihonbare was characterized by a higher amount of indole but an absence of the chemical class of fatty acid esters. In contrast, both Koshihikari and Akitakomachi had a higher amount of 4‐vinylphenol and an abundance of those esters. Koshihikari and Akitakomachi were quite similar in regard to those flavor volatiles. Furthermore, the observations in the research may suggest that the volatile components at cooking stage (I) were the representatives of the flavor volatiles of uncooked rice, while the volatile constituents at cooking stage (IV) were the representatives of the flavor volatiles of cooked rice.  相似文献   

17.
Volatile fingerprints of 30 cumin cheese samples of artisanal farmers' cheese of Leiden with EU Protected Designation of Origin (PDO) and 29 cumin cheese samples of varying commercial Dutch brands without PDO protection were used to develop authentication models. The headspace concentrations of the volatiles, as measured with high sensitivity proton-transfer mass spectrometry, were subsequently subjected to partial least-squares discriminant analysis (PLS-DA). Farmers' cheese of Leiden showed a distinct volatile profile with 27 and 9 out of the 60 predominant ions showing respectively significantly higher and lower concentrations in the headspace of the cheese in comparison to the other cumin cheeses. The PLS-DA prediction models developed classified in cross-validation 96% of the samples of PDO protected, artisanal farmers' cheese of Leiden correctly, against 100% of commercial cumin cheese samples. The characteristic volatile compounds were tentatively identified by PTR-time-of-flight-MS. A consumer test indicated differences in appreciation, overall flavor intensity, creaminess, and firmness between the two cheese groups. The consumers' appreciation of the cumin cheese tested was not influenced by the presence of a name label or PDO trademark.  相似文献   

18.
The volatile composition of the headspace from Citrus unshiu Marcov. forma Miyagawa-wase blossom was investigated. The volatile constituents were absorbed by a solid-phase microextraction (SPME) fiber and directly transferred to a GC-MS. Volatile compositional changes of C. unshiu blossom prepared via different drying methods (shade, microwave, and freeze-drying methods) were also determined. A total of 96 volatile constituents were confirmed in the headspace from these samples. Monoterpene hydrocarbons were prominent in the headspace volatiles of C. unshiu blossom: fresh, 84.1%; shade-dried, 60.0%; microwave-dried, 88.4%; and freeze-dried, 29.9%. p-Cymene (23.3%) was the most abundant component in the headspace of fresh C. unshiu blossom; gamma-terpinene was the most abundant in shade- and microwave-dried samples (26.8 and 31.2%, respectively) and beta-caryophyllene (10.5%) in freeze-dried sample. By using an electronic nose consisting of six metal oxide sensors, principal component analysis of the volatile compounds showed a clear aroma discrimination of the fresh and all dried blossom samples.  相似文献   

19.
Equilibration time and temperature were the factors studied to choose the best conditions for analyzing volatiles in roasted ground Arabica coffee by a static headspace sampling extraction method. Three temperatures of equilibration were studied: 60, 80, and 90 degrees C. A larger quantity of volatile compounds was extracted at 90 degrees C than at 80 or 60 degrees C, although the same qualitative profile was found for each. The extraction of the volatile compounds was studied at seven different equilibration times: 30, 45, 60, 80, 100, 120, and 150 min. The best time of equilibration for headspace analysis of roasted ground Arabica coffee should be selected depending on the chemical class or compound studied. One hundred and twenty-two volatile compounds were identified, including 26 furans, 20 ketones, 20 pyrazines, 9 alcohols, 9 aldehydes, 8 esters, 6 pyrroles, 6 thiophenes, 4 sulfur compounds, 3 benzenic compounds, 2 phenolic compounds, 2 pyridines, 2 thiazoles, 1 oxazole, 1 lactone, 1 alkane, 1 alkene, and 1 acid.  相似文献   

20.
In champagne tasting, gaseous CO(2) and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. In this study, a novel, rapid, and nonintrusive method aimed to simultaneously determine the content in gaseous CO(2) and ethanol above a glass poured with champagne, using a micro-gas chromatography technique coupled with a thermal conductivity detector, was presented. The simultaneous quantification of CO(2) and ethanol in the headspace of a champagne glass was monitored, in real tasting conditions, all along the first 15 min following pouring, depending on whether or not the glass shows effervescence. Both CO(2) and ethanol were found to be enhanced by the presence of ascending bubbles, thus confirming the close link between rising bubbles and the release of gaseous CO(2) and volatile organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号