首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Conversion of natural forest to agricultural land use has significantly lowered the soil organic matter (SOM) content in sandy soils of northeast Thailand. This paper reviews the findings of comparative studies on contents of SOM pools (labile, i.e. microbial biomass and particulate organic matter—POM and stable, i.e. humic substance) and related soil aggregate formation, in natural forest plots and cultivated fields (monocrops of cassava, sugarcane and rice) in sites representative of northeast Thailand from the viewpoints of terrain (i.e. undulating), soils (sandy) and land use and discusses the restoration of SOM and fertility (nitrogen) in these degraded soils. Monocultural agriculture brings about the degradation of all SOM pools and associated soil aggregation as compared to the forest system because of decreased organic inputs and more frequent soil disturbance. The build‐up of SOM was achieved through the continuous recycling of organic residues produced within the system. Low‐quality residues contributed the largest SOM build‐up in whole and fractionated SOM pools, including POM and humic substance. However, to restore N fertility, high quality residues, (i.e. with low C/N ratios, lignin and polyphenols) were also needed. Timing of N release to meet crop demand was achieved by employing a mixture of high and low quality residues. Selection of appropriate residues for N sources was affected by environmental factors, notably soil moisture regimes, which differed in upland field and lowland paddy subsystems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
耕作对土壤有机物和土壤团聚体稳定性的影响   总被引:17,自引:8,他引:17  
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980‘s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to assess the impact of conventional agricultural management on soil quality. POM was investigated using solid-state ^13C nuclear magnetic resonance (NMR) to determine any qualitative differences that may be attributed to cultivation. Results show a highly significant loss in total SOC, POM and aggregate stability in the cultivated fields as compared to the grassland fields and a significant loss of POM-C as a percentage of total SOC.Integrated results of the NMR spectra of the POM show a loss in carbohydrate-C and an increase in aromatic-C in the cultivated fields, which translates to a loss of biological lability in the organic matter. Conventional cultivation decreased the quantity and quality of SOM and caused a loss in aggregate stability resulting in an overall decline in soil quality.  相似文献   

3.
《Geoderma》2005,124(1-2):143-155
With respect to carbon sequestration in soil, attempts have been made to identify soil organic matter (SOM) fractions that respond more rapidly to changes in land-use than bulk SOM, which could thus serve as early indicators for the overall stock change. We used a combination of physical fractionation (size and density separation) and chemical characterisation (C-to-N ratios, CuO lignin signature, 13C NMR spectroscopy) to identify sensitive SOM fractions in an agricultural system with sandy dystric cambisols in Bavaria, Germany, 7 years after a land-use change. Land-use types included long-term arable land and grassland, and conversion from one system to the other. Soil carbon and nitrogen contents in 0–3 cm increased from 14 to 39 mg organic carbon g−1 soil, and from 1.7 to 3.9 mg nitrogen g−1 soil in the following order: permanent arable, conversion grassland to arable, conversion arable to grassland, and permanent grassland. Wet sieving and ultrasonic dispersion with 22 J ml−1 released <5% and 60% to 80%, respectively, of the amount of particles >20 μm relative to complete dispersion. The most sensitive fraction, with respect to land-use, was SOM in the fraction >20 μm not released after sequential wet sieving and ultrasonic dispersion. In contrast, the proportion of free light (wet sieving, density <1.8 g cm−3) and occluded light (ultrasonic dispersion with 22 J ml−1, <1.8 g cm−3) particulate organic matter (POM) showed no clear response to land-use. The structural composition of POM indicated its vegetation origin with a selective enrichment of lignin and a loss of O-alkyl C relative to its plant precursors. Decomposition of the occluded light POM was only slightly advanced relative to the free light POM. In mineral fractions <20 μm, SOM was significantly more transformed than in the coarse fractions, as shown by NMR spectroscopy; however, it revealed no specific land-use pattern. An exception to this was the proportion of O-alkyl C in the clay fraction, which increased with SOC content. Ratios of alkyl to O-alkyl C in mineral fractions <20 μm differentiated samples gave a better differentiation of samples than the C-to-N ratios. We conclude that neither free nor occluded light POM are appropriate early indicators for changes in land-use at the investigated sites; however, total SOM, its distribution with depth, and SOM allocated in stable aggregates >20 μm were more sensitive.  相似文献   

4.
Abandonment of mountain grassland often changes vegetation composition and litter quantity and quality, but related effects on labile soil organic matter (SOM) are largely unknown. The aim of this study was to investigate the impacts of grassland management and abandonment on soil carbon distribution in light (< 1.6 g cm–3) particulate organic matter (POM) and aggregation along a gradient of management intensity including hay meadows, pastures, and abandoned grasslands. The reduction of management intensity is an interregional phenomenon throughout the European Alps. We therefore selected sites from two typical climate regions, namely at Stubai Valley, Austria (MAT: 3°C, MAP: 1097 mm) and Matsch Valley, Italy (MAT: 6.6°C, MAP: 527 mm), to evaluate effects of land‐use change in relation to climate. Free water‐floatable and free POM (wPOM, fPOM), and an occluded POM fraction (oPOM), were isolated from three water‐stable aggregate size classes (2–6.3 mm, 0.25–2 mm, < 0.25 mm) using density fractionation. Aggregate mean weight diameter slightly decreased with decreasing management intensity. In contrast to absolute POM‐C, fPOM‐C increased in aggregates at both sites with abandonment. Because the oPOM‐C was less affected by abandonment, the ratio of oPOM‐C : fPOM‐C shifted from > 1 to < 1 from meadow to abandoned grassland in aggregates at both sites and thus independent of climate. This suggests that in differently managed mountain grasslands free and occluded POM are functionally different SOM fractions. In bulk soil, the oPOM‐C : fPOM‐C ratio is better suited as an indicator for the response of SOM to management reduction in subalpine grasslands than the total soil C, absolute or relative POM‐C content.  相似文献   

5.
Soil organic matter plays a pronounced role in soil aggregation, showing a wide variation depending upon soil-management practices. This study was conducted to characterize organic-matter changes in aggregate fractions in response to land-use change and long-term fertilization. Two experimental sites were established for this study: Site 1 included grassland (GL) and bare land (BL); site 2 comprised three treatments under cropland: no fertilizer application (NF), nitrogen and phosphorus fertilizer application (NP), and NP amended with organic manure (NPM). There was significantly increased carbon (C) sequestration (P < 0.001) in particulate organic matter (POM) observed under grassland and NPM relative to other plots, especially in large macroaggregates, attributable to lack of disturbance and organic input. The protected coarse and fine POM-C together accounted for 15% on average of soil organic carbon, ranging from 10.1 to 18.6% for all plots. The enhanced correlation occurred between protected POM-C fractions and soil C stocks and soil aggregation (calculated as mean weight diameter, MWD) (P = 0.000) relative to other C fractions, indicating that the increases in POM fractions resulting from long-term vegetation restoration and organic amendment enhance soil aggregation and C sequestration in this black soil. In contrast, the significantly negative relationship between MWD and fine-to-coarse POM-C ratio implied that this ratio might account for the decreased soil aggregation. Principal component analysis (PCA) showed that three PCs accounted for 42.6, 25.7, and 11.8%, respectively, and together more than 80% of the total variance. The protected POMs with significantly greater positive PC1 loadings (>0.8), particularly for large macroaggregates, were highly sensitive to changes induced by land use and fertilizer-management practices, leading to the wide variations in soil properties. The interrelation of organic matter with soil aggregation helps us to better understand the mechanisms of C protection and restoration in this black soil in the context of soil degradation and climate change.  相似文献   

6.
Recent studies have concluded that the dynamics of soil structure are central to the understanding of soil organic matter (SOM) cycling and the ensuing soil‐water–nutrient relationships. Aggregate turnover directly controls the stabilization and physical protection of SOM. Therefore, quantifying aggregate dynamics will improve our ability to predict SOM behaviour as affected by ecosystem management and global change. We present an approach to directly quantify aggregate dynamics using rare‐earth oxides as tracers. A 6‐week laboratory incubation was set up to measure aggregate dynamics at different times. We made samples in which each different aggregate size‐fraction contained a different tracer. By following the redistribution of these tracers into the other aggregate size‐fractions, we could quantify all soil mass transfers between aggregate size‐fractions. A comparison with a control soil showed that the tracer did not affect soil respiration or the aggregation process itself. Tracer mixing homogeneity, recovery and immobility were tested and validated. While initially macroaggregate formation occurred rapidly, microaggregate formation occurred more slowly during the experiment. Subsequent aggregate stabilization was more pronounced for the newly formed microaggregates than for the newly formed macroaggregates. Calculated turnover times were smaller for macroaggregates than for microaggregates (i.e. 30 vs. 88 days). Further research is needed to investigate to what extent these results can be extrapolated to the field. Our results confirmed existing qualitative views and concepts on aggregate dynamics in a quantitative way and will be valuable in directly linking aggregate turnover to the stabilization and protection of SOM.  相似文献   

7.
Vineyard management practices to enhance soil conservation principally focus on increasing carbon (C) input, whereas mitigating impacts of disturbance through reduced tillage has been rarely considered. Furthermore, information is lacking on the effects of soil management practices adopted in the under-vine zone on soil conservation. In this work, we evaluated the long-term effects (22 years) of alley with a sown cover crop and no-tillage (S + NT), alley with a sown cover crop and tillage (S + T), and under-vine zone with no vegetation and tillage (UV) on soil organic matter (SOM), microbial activity, aggregate stability, and their mutual interactions in a California vineyard in USA. Vegetation biomass, microbial biomass and activity, organic C and nitrogen (N) pools, and SOM size fractionation and aggregate stability were analysed. Soil characteristics only partially reflected the differences in vegetation biomass input. Organic C and N pools and microbial biomass/activity in S + NT were higher than those in S + T, while the values in UV were intermediate between the other two treatments. Furthermore, S + NT also exhibited higher particulate organic matter C in soil. No differences were found in POM C between S + T and UV, but the POM fraction in S + T was characterized by fresher material. Aggregate stability was decreased in the order: S + NT > UV > S + T. Tillage, even if shallow and performed infrequently, had a negative effect on organic C and N pools and aggregate stability. Consequently, the combination of a sown cover crop and reduced tillage still limited SOM accumulation and reduced aggregate stability in the surface soil layer of vineyards, suggesting relatively lower resistance of soils to erosion compared to no-till systems.  相似文献   

8.
Quantity and quality of soil organic matter (SOM) affect physical, chemical, and biological soil properties, and are pivotal to productive and healthy grasslands. Thus, we analyzed the distribution of soil aggregates and assessed quality, quantity, and distribution of SOM in two unimproved and improved (two organic and two conventional) grasslands in subarctic Iceland, in Haplic and Histic Andosols. We also evaluated principal physicochemical and biological soil properties, which influence soil aggregation and SOM dynamics. Macroaggregates (>250 µm) in topsoils were most prominent in unimproved (62–77%) and organically (58–69%) managed sites, whereas 20–250 µm aggregates were the most prominent in conventionally managed sites (51–53%). Macroaggregate stability in topsoils, measured as mean weight diameter, was approximately twice as high in organically managed (12–20 mm) compared with the conventionally managed (5–8 mm) sites, possibly due to higher organic inputs (e.g., manure, compost, and cattle urine). In unimproved grasslands and one organic site, macroaggregates contributed between 40% and 70% of soil organic carbon (SOC) and nitrogen to bulk soil, whereas in high SOM concentration sites free particulate organic matter contributed up to 70% of the SOC and nitrogen to bulk soil. Aggregate hierarchy in Haplic Andosols was confirmed by different stabilizing mechanisms of micro- and macroaggregates, however, somewhat diminished by oxides (pyrophosphate-, oxalate-, and dithionite-extractable Fe, Al, and Mn) acting as binding agents for macroaggregates. In Histic Andosols, no aggregate hierarchy was observed. The higher macroaggregate stability in organic farming practice compared with conventional farming is of interest due to the importance of macroaggregates in protecting SOM and soils from erosion, which is a prerequisite for soil functions in grasslands that are envisaged for food production in the future.  相似文献   

9.

Purpose  

It is known that soil organic matter (SOM) dynamics are sensitive to fertilizations, but it is different from soil to soil. It is unclear how the long-term applications of organic manure and mineral fertilizers impact the accumulation and distribution of soil organic carbon (SOC) and total nitrogen (TN) especially in soil aggregate fractions of Chinese Mollisols, which have been intensively cultivated for decades under maize monocropping and conventional tillage ways. Thereby, the research of this kind is very important for the sustainable use of agricultural land in China, where land resources are extremely limited for its huge population. The objectives of this study were to identify how the long-term fertilization treatments would affect the aggregate, SOC and TN distribution pattern in the Chinese Mollisol, and how soil aggregation contribute to the storage and stabilization process of SOC and TN.  相似文献   

10.
Abstract. Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam Lixisol to evaluate long-term effects of tillage (hand hoeing or oxen ploughing) with or without 10 t ha−1 yr−1 of manure and fallowing on SOM and N concentrations and their distribution in particle size fractions. The field was sown annually to sorghum ( Sorghum bicolor [L.] Moench). Ten years later, total organic C and total N, SOM fractions and their N concentrations, and sorghum yield were determined. Continuous sorghum cultivation without organic inputs caused significant losses of C and N in the hoed and ploughed plots. However, addition of manure to hoed plots was effective in maintaining similar levels of C and N to fallow plots. Without manure, SOM was mainly stored in the size-fraction <0.053 mm (fine organic matter, FOM). SOM was mainly stored in the size-fraction between 0.053 and 2 mm (particulate organic matter, POM). In plots with manure and in fallow plots, the addition of manure more than doubled POM concentrations, with levels in tilled plots exceeding those of the fallow plots, and the highest levels in manually hoed plots. Nitrogen associated with POM (POM-N) followed a similar trend to POM. Hoeing and ploughing led to a decline in sorghum grain yield. Manure application increased yields by 56% in the hoed plots and 70% in the ploughed plots. Grain yield was not correlated with total SOM but was positively correlated with total POM. This study indicated that POM was greatly affected by long-term soil management options.  相似文献   

11.
Various methods exist for the isolation of particulate organic matter (POM), one of the soil‐organic‐matter (SOM) fractions reacting most sensitive on land‐use or soil‐management changes. A combination of density separation and ultrasonic treatment allows to isolate two types of POM: (1) free POM and (2) POM occluded in soil aggregates. POM fractions are closely linked to their biochemical function for the formation and stabilization of aggregates, therefore methods using different aggregate sizes may result in different POM fractions isolated. We evaluated two physical fractionation procedures to reveal whether they yield different POM fractions with respect to amount and composition, using grassland and arable soils with sandy‐loam to sandy–clay‐loam texture and thus low macroaggregate stability. Method I used air‐dried aggregates of <2.0 mm size and a low‐energy sonication for aggregate disruption, method II used field‐moist aggregates <6.3 mm and a high‐energy–sonication procedure for aggregate disruption. POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C‐NMR spectroscopy. With both methods, about similar proportions of the SOM are isolated as free or occluded POM, respectively. The free‐ and occluded‐POM fractions obtained with method I are also rather similar in C and N concentration and composition as shown by 13C‐NMR spectroscopy. Method II isolates a free‐ and occluded‐POM fraction with significantly different C and N concentrations. NMR spectra revealed significant differences in the chemical composition of both fractions from method II, with the occluded POM having lower amounts of O‐alkyl C and higher amounts of aryl C and alkyl C than the free POM. Due to the use of larger, field‐moist aggregates with minimized sample pretreatment, two distinctly different POM fractions are isolated with method II, likely to be more closely linked to their biochemical function for the formation and stabilization of aggregates. High‐energy sonication as in method II also disrupts small microaggregates <63 µm and releases fine intraaggregate POM. This fraction seems to be a significant component of occluded POM, that allows a differentiation between free and occluded POM in sandy soils with significant microaggregation. It can be concluded, that microaggregation in arable soils with sandy texture is responsible for the storage of a more degraded occluded POM, that conversely supports the stabilization of fine microaggregates.  相似文献   

12.
In order to evaluate the sustainability and efficiency of soil carbon sequestration measures and the impact of different management and environmental factors, information on soil organic matter (SOM) stability and mean residence time (MRT) is required. However, this information on SOM stability and MRT is expensive to determine via radiocarbon dating, precluding a wide spread use of stability measurements in soil science. In this paper, we test an alternative method, first developed by Conen et al. (2008) for undisturbed Alpine grassland systems, using C and N stable isotope ratios in more frequently disturbed agricultural soils. Since only information on carbon and nitrogen concentrations and their stable isotope ratios is required, it is possible to estimate the SOM stability at greatly reduced costs compared to radiocarbon dating. Using four different experimental sites located in various climates and soil types, this research proved the effectiveness of using the C/N ratio and δ15N signature to determine the stability of mOM (mineral associated organic matter) relative to POM (particulate organic matter) in an intensively managed agro-ecological setting. Combining this approach with δ13C measurements allowed discriminating between different management (grassland vs cropland) and land use (till vs no till) systems. With increasing depth the stability of mOM relative to POM increases, but less so under tillage compared to no-till practises. Applying this approach to investigate SOM stability in different soil aggregate fractions, it corroborates the aggregate hierarchy theory as proposed by Six et al. (2004) and Segoli et al. (2013). The organic matter in the occluded micro-aggregate and silt & clay fractions is less degraded than the SOM in the free micro-aggregate and silt & clay fractions. The stable isotope approach can be particularly useful for soils with a history of burning and thus containing old charcoal particles, preventing the use of 14C to determine the SOM stability.  相似文献   

13.
Particulate organic matter (POM) and light fraction organic matter (LFOM) are the fractions of soil organic matter (SOM) considered most active in terms of nutrient cycling and maintenance of soil structure. They respond quickly to changes in management and may offer insights into the long-term effect of management on SOM. However, the literature provides contradictory evidence regarding the factors which influence the amount of POM and LFOM, and there is little evidence to differentiate the relative importance of factors. Utilising data from over 150 experiments reported in the literature, we employed multiple regression to produce separate models quantifying the effect of management factors and environmental variables on POM, LFOM and total SOM; 29.3 % of the variance in the response variables was explained for POM, 28.3 % for LFOM, and 29.3 % for total SOM. Climate, organic amendments and inclusion of fallow periods were significant terms for all fractions. Climate had a larger influence on total SOM than POM or LFOM, whilst POM and LFOM were more strongly influenced by factors related to the recent history of organic matter addition; organic amendments and inclusion of fallows. Factors that were not significant variables for any of the fractions included tillage and application of N fertiliser, whilst soil texture was only a significant factor for SOM. General agreement between the total SOM, POM and LFOM models on the most important factors supports the idea that both POM and LFOM are good predictors of long-term changes to total SOM.  相似文献   

14.
Wheat production in Morocco is constrained by both scarce climate and degraded soil quality. There is an urgent need to revert production decline while restoring country’s soils. Among conservation tillage systems known for their improvement in yield, no-till technology was found to influence soil quality as well. Soil quality indices are also affected by wheat rotations at medium and long-terms. This paper discusses changes in selected properties of a Calcixeroll soil, including total and particulate soil organic matter (SOM), pH, total N and aggregation, subjected, for 11 consecutive years, to various conservation and conventional agricultural systems. Tillage systems included no-tillage (NT) and conventional tillage (CT). Crop rotations were continuous wheat, fallow–wheat, fallow–wheat–corn, fallow–wheat–forage and fallow–wheat–lentils. Higher aggregation, carbon sequestration, pH decline and particulate organic matter (POM) buildup are major changes associated with shift from conventional- to NT system. Better stability of aggregates was demonstrated by a significantly greater mean weight diameter under NT (3.8 mm) than CT system (3.2 mm) at the soil surface. There was 13.6% SOC increase in (0–200 mm) over the 11-year period under NT, while CT did not affect much this soil quality indicator. Another valuable funding is the stratification of SOC and total nitrogen in NT surface horizon (0–25 mm) without their depletion at deeper horizon compared to tillage treatments. Fallow–wheat system resulted in reduction of SOC compared to WW, but 3-year wheat rotation tended to improve overall soil quality. Benefits from crop rotation in terms of organic carbon varied between 2.6 and 11.7%, with fallow–wheat–forage exhibiting the maximum. Combined use of NT and 3-year fallow rotation helped to improve soil quality in this experiment.  相似文献   

15.
Abstract. Knowledge of changes in soil organic matter (SOM) fractions resulting from agricultural practice is important for decision‐making at farm level because of the contrasting effects of different SOM fractions on soils. A long‐term trial sited under Sudano‐Sahelian conditions was used to assess the effect of organic and inorganic fertilization on SOM fractions and sorghum performance. Sorghum straw and kraal manure were applied annually at 10 t ha?1, with and without urea at 60 kg N ha?1. The other treatments included fallowing, a control (no fertilization), and inorganic fertilization only (urea, 60 kg N ha?1). Fallowing gave significantly larger soil organic carbon and nitrogen (N) levels than any other treatment. Total soil SOM and N concentrations increased in the following order: urea only < straw < control < straw+urea < manure with or without urea < fallow. Farming had an adverse effect on SOM and N status; however, this mostly affected the fraction of SOM >0.053 mm (particulate organic matter, POM). The POM concentrations in the control, straw and urea‐only treatments were about one‐half of the POM concentrations in the fallow treatment. POM concentrations increased in the following order: urea only < control < straw with or without urea < manure with or without urea < fallow. The fraction of SOM <0.053 mm (fine organic matter, FOM) was greater than POM in all plots except in fallow and manure+urea plots. Total N concentration followed the same trend as SOM, but cultivation led to a decline in both POM‐N and FOM‐N. Crop yield was greatest in the manure plots and lowest in the straw, control and urea‐only plots. Results indicate that under Sudano‐Sahelian conditions, SOM, POM and FOM fractions and crop performance were better maintained using organic materials with a low C/N ratio (manure) than with organic material with a high C/N ratio (straw). Urea improved the effect of straw on crop yield and SOM concentration.  相似文献   

16.
Changes from natural tree species to rapidly growing exotic species as well as intensification of forestry operations with heavy machinery can lead to changes in the quantity and quality of organic matter inputs to soil and to disruption of soil physical structure. These two ecosystem properties are tightly linked to organic matter dynamics. Five adjacent forest stands were selected to study soil organic matter dynamics in soil physical fractions. On one hand, two semi-natural broadleaved forests (Quercus robur, Fagus sylvatica) and an adult radiata pine plantation (40-year-old,) in order to study the effect of species change on these parameters, and on the other, a chronosequence of Pinus radiata plantations (40-year-old; 3-year-old; 16-year-old), to study the effect of mechanization during harvesting and intense site preparation. Samples of intact topsoil (0-5 cm) were collected and aggregate-size distribution, mean weight diameter (MWD), total C and N, particulate organic matter (POM)-C, POM-N and microbial biomass-C were determined in each aggregate size fraction. Microbial respiration and nitrogen mineralization were also assessed in each aggregate size fraction, during a 28 day incubation period.Losses of POM-C and POM-N in the bulk soil due to mechanical site preparation were high relative to total soil C and N, which suggests that POM is a sensitive parameter to the effect of mechanization. The ratio C-POM:SOM was significantly related to MWD (R2 = 0.75, P < 0.001) reflecting that POM may play a key role in the topsoil aggregate formation in these stands. Semi-natural stands had a higher proportion of macroaggregates (0.25-2 mm) than the cultivated adult one. Megaaggregates (>2 mm) were the most abundant class in mature stands (82-92%), whereas macro- and microaggregates (<2 mm) were the most abundant ones in the intensely soil prepared P. radiata plantation (49%).Indicators for sustainable forest management related to soil organic matter should not only be assessed in terms of total C stocks but also with respect to sensitive organic matter and its degradability in different size classes.  相似文献   

17.
Clay minerals have a major role in soil aggregation because of their large specific surface area and surface charges, which stimulate interactions with other mineral particles and organic matter. Soils usually contain a mixture of clay minerals with contrasting surface properties. Although these differences should result in different abilities of clay minerals regarding aggregate formation and stabilization, the role of different clay minerals in aggregation has been seldom evaluated. In this study, we took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals in aggregation. First, grassland and tilled soil samples were separated in water into aggregate‐size classes based on the aggregate hierarchy model. Then, clay mineralogy and organic C in the aggregate‐size classes were analysed. Interstratified minerals containing swelling phases accumulated in aggregated fractions compared with free clay fractions under the two land‐uses. The accumulation increased with decreasing aggregate size from large macroaggregates (> 500 µm) to microaggregates (50–250 µm). Carbon content and carbon‐to‐nitrogen ratio followed the opposite trend. This fully supports the aggregate hierarchy model, which postulates an increasing importance of mineral reactivity in smaller aggregates than in larger aggregates in which the cohesion relies mostly on physical enmeshment by fungal hyphae or small roots. Consequently, differences in the proportion of the different 2:1 clay minerals in soils can influence their structure development. Further research on the links between clay mineralogy and aggregation can improve our understanding of mechanisms of soil resistance to erosion and organic matter stabilization.  相似文献   

18.
Maintaining the productivity of tropical pastures is a major challenge for the sustainable management of tropical landscapes around the globe. To address this issue, we examined linkages between soil organic matter (SOM), aggregation, and phosphorus (P) dynamics by comparing productive vs. degraded pastures in the deforested Amazon Basin of Colombia. Paired plots of productive (dominated by planted Brachiaria spp.) vs. degraded pasture were identified on nine farms in the Department of Caquetá and sampled during the rainy season of 2011. Aboveground pasture biomass production and nutrient content were measured. Surface soils (0–10 cm) were also fractionated by wet sieving, and C, 13C, N and P contents were analyzed for the bulk soil and various aggregate size classes. Productive pastures yielded more than double the aboveground biomass compared to degraded pastures (during a 35 day regrowth period following cutting), with over 60% higher N and P contents in this material. Similar trends were observed for the standing litter biomass and nutrient contents. Soil aggregate stability was found to differ between pasture types, with a mean weight diameter of 3590 vs. 3230 μm in productive vs. degraded pastures, respectively. Productive pastures were found to have 20% higher total soil C and N contents than degraded pastures. While there was no difference in total P content between pasture types, organic P was found to be nearly 40% higher in soils of productive vs. degraded pastures. Differences in total SOM between pasture types were largely explained by a higher C content in the large macroaggregate fraction (>2000 μm), and more specifically in the microaggregates (53–250 μm) occluded within this fraction. These findings confirm the role of microaggregates within macroaggregates as a preferential site for the physical stabilization of SOM, and furthermore, suggest that it may serve as a useful diagnostic fraction for evaluating management impacts on SOM in tropical pasture systems. Similar to trends observed for C and N, total P content was 25% higher in the microaggregates within large macroaggregates of productive vs. degraded pasture soils. This correspondence between C and total P contents in large macroaggregate fractions, along with elevated levels of organic P in productive pastures, suggests that this P is likely in an organic form and that there is a close link between soil structure, SOM dynamics and the maintenance of organic P in these soils. Given the potential relevance of organic P for efficient P cycling in these soils, our findings offer critical new insight for the management of SOM and aggregate-associated P pools in tropical pasture systems.  相似文献   

19.
用激光衍射法评价有机物和和碳酸盐对土壤团聚的作用   总被引:5,自引:0,他引:5  
>Aggregation in many soils in semi-arid land is affected by their high carbonate contents.The presence of lithogenic and/or primary carbonates can also inffuence the role of soil organic matter(SOM) in aggregation.The role of carbonates and SOM in aggregation was evaluated by comparing the grain-size distribution in two carbonate-rich soils(15% and 30% carbonates) under conventional tillage after different disaggregating treatments.We also compared the effect of no-tillage and conventional tillage on the role of these two aggregating agents in the soil with 30% of carbonates.Soil samples were treated as four different ways:shaking with water(control),adding hydrochloric acid(HCl) to remove carbonates,adding hydrogen peroxide(H2O2) to remove organic matter,and consecutive removal of carbonates and organic matter(HCl + H2O2),and then analyzed by laser diffraction grain-sizing.The results showed that different contributions of carbonates and SOM to aggregate formation and stability depended not only on their natural proportion,but also on the soil type,as expressed by the major role of carbonates in aggregation in the 15% carbonate-rich soil,with a greater SOC-to-SIC(soil organic C to soil inorganic C) ratio than the 30% carbonate-rich soil.The increased organic matter stocks under no-tillage could moderate the role of carbonates in aggregation in a given soil,which meant that no-tillage could affect the organic and the inorganic C cycles in the soil.In conclusion,the relative role of carbonates and SOM in aggregation could alter the aggregates hierarchy in carbonate-rich soils.  相似文献   

20.
The soil on mofette sites is affected by ascending geogenic carbon dioxide (CO2), which partially fills the soil atmosphere. We hypothesized that geogenic CO2 affects the stabilization of soil organic matter (SOM) at lower partial pressures than had been discussed previously for mofette sites. We studied loamy Ah horizons (n = 22; pH 3.4–4) of the soil along a transect on a grassland mofette site in the northwest Czech Republic with CO2 partial pressures (p(CO2)) of up to 0.52. The samples were fractionated by particle size, density and solubility (water‐soluble organic matter (WSOM)), and analysed quantitatively for organic carbon (C) and total nitrogen (N) and qualitatively (13C‐NMR spectroscopy). Soil OM with a narrower C:N ratio accumulated in the clay fraction, but at p(CO2) less than approximately 0.1 the proportion of SOM in the clay fraction relative to total SOM tended to decrease with increasing p(CO2), whereas that of particulate organic matter (POM) fractions increased with increasing p(CO2). We attribute the distribution of SOM among the mineral soil and POM to decreased interactions with minerals of the clay fraction. The formation of iron (Fe) hydroxides, which potentially sorb SOM, was not affected negatively by CO2. The potential reactivity of Fe hydroxides was even positively affected by increased p(CO2). Export of dissolved SOM into the subsoil might increase at mofette sites because of the large amounts of WSOM and decreasing interactions with minerals of the clay fraction. Therefore, our results show negative effects of CO2 on SOM stabilization even at moderate p(CO2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号