首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

This study evaluated the effects of plastic mulched ridge-furrow cropping on soil biochemical properties and maize (Zea mays L.) nutrient uptake in a semi-arid environment. Three treatments were evaluated from 2008 to 2010: no mulch (narrow ridges with crop seeded next to ridges), half mulch (as per no mulch, except narrow ridges were mulched), and full mulch (alternate narrow and wide ridges, all mulched with maize seeded in furrows). Compared to the no mulch treatment, full mulch increased maize grain yield by 50% in 2008 and 25% in 2010, but reduced yield by 21% in 2009 after low precipitation in early growth. Half mulch had a similar grain yield to no mulch in the three cropping years, suggesting half mulch is not an effective pattern for maize cropping in the area. Mulch treatments increased aboveground nitrogen (N) uptake by 21?34% and phosphorus (P) uptake by 21?42% in 2008, and by 16?32% and 14?29%, respectively, in 2010; but in 2009 mulching did not affect N uptake and decreased P uptake. Soil microbial biomass and activities of urease, β-glucosidase and phosphatase at the 0?15 cm depth were generally higher during vegetative growth but lower during reproductive growth under mulch treatments than no mulch. Mulching treatments increased carbon (C) loss of buried maize residues (marginally by 5?9%), and decreased light soil organic C (15?27%) and carbohydrate C (12?23%) concentrations and mineralizable C and N (8?36%) at harvest in the 0?20 cm depth compared with no mulch, indicating that mulching promotes mineralization and nutrient release in soil during cropping seasons. As a result of these biological changes, mineral N concentration under mulch was markedly increased after sowing in upper soil layers compared with no mulch. Therefore, our results suggest that mulched cropping stimulated soil microbial activity and N availability, and thus contributed to increasing maize grain yield and nutrient uptake compared with no mulch.  相似文献   

2.
We examined the effects of various tillage intensities: no-tillage (NT), minimum tillage with chisel plow (MT), conventional tillage with mouldboard plow (CT), and zone-tillage subsoiling with a paraplow (ZT) applied in alternate years in rotation with NT, on the topsoil profile distribution (0–30 cm) of pH, soil organic carbon (SOC), organic N and available nutrients on a semi-arid soil from Central Spain. The equivalent depth approach was used to compare SOC, N and nutrient stocks in the various tillage treatments. Measurements made at the end of 5 years showed that in the 0–30 cm depth, SOC and N had increased under NT and ZT compared with MT and CT. Most dramatic changes occurred within the 0–5 cm depth where plots under NT and ZT had respectively 7.0 Mg ha−1 and 6.2 Mg ha−1 more SOC and 0.5 Mg ha−1 and 0.3 Mg ha−1 more N than under MT or CT. No-tillage and ZT plots, however, exhibited strong vertical gradients of SOC and N with concentrations decreasing from 0–5 to 20–30 cm. In the 0–20 cm layer, higher concentrations of P and K under NT and ZT than under MT or CT were also found. Soil pH under NT and ZT was 0.3 units lower than under MT or CT at a depth of 0–5 cm. This acidifying effect was restricted at the surface layer and in the 20–30 cm interval, pH values under NT and ZT were higher than in MT and CT plots. These results suggest that in the soil studied, ZT in rotation with NT maintain most advantages associated with NT, and present a definite potential for use as a partial-width rotational tillage practice.  相似文献   

3.
4.
The recent adoption of conservation farming systems in the semi-arid Canadian prairies opens up the possibility of replacing the traditional fallow period with non-cereal crops (oilseeds, legumes). However, information on changes to soil water regimes by inclusion of these crops, especially in combination with zero tillage, is sparse. A study was initiated in 1984 on a sandy clay loam soil at Lethbridge, Alberta, to investigate the performance of winter wheat (Triticum aestivum L.) under conventional, minimum and zero tillage in monoculture and in 2-year rotations with fallow, canola (Brassica campestris L.) or lentils (Lens culinaris Medic.)/flax (Linum usitatissimum L.). Conventional tillage in the Lethbridge region is shallow cultivation (10 cm) with a wide-blade (sweep) cultivator. Continuous cropping greatly depleted soil water reserves, resulting in some crop failures. Averaged over 10 years, available water for establishment of winter wheat in fall was least after canola (45 mm), followed by continuous winter wheat (59 mm), lentils/flax (74 mm) and fallow (137 mm). In this semi-arid region, the effect of rotation on soil water was much greater than that of tillage. Zero tillage had relatively little impact on available water to 1.5 m depth. However, once the experiment had been established for 6–7 years, available water in the 0–15 cm depth under winter wheat in spring was greatest under zero tillage. Precipitation storage efficiency during the fallow year was generally unaffected by tillage system.  相似文献   

5.
《CATENA》2008,72(3):382-393
Soil development with time was investigated on beach ridges with ages ranging from about 1380 to 6240 14C-years BP at the eastern coast of central Patagonia. The main pedogenic processes are accumulation of organic matter and carbonate leaching and accumulation within the upper part of the soils. Soil formation is strongly influenced by incorporation of eolian sediments into the interstitial spaces between the gravel of which the beach ridges are composed. Different amounts of eolian material in the soils lead to differentiation into Leptosols (containing ≤ 10% fine earth in the upper 75 cm) and Regosols (containing > 10% fine earth). Soil depth functions and chronofunctions of organic carbon, calcium carbonate, pH, Ca:Zr, Mg:Zr, K:Zr, Na:Zr, Fe:Zr, Mn:Zr, and Si:Al (obtained from X-ray fluorescence analysis) were evaluated. To establish soil chronofunctions mean values of the horizon data of 0–10 cm below the desert pavement were used, which were weighted according to the horizon thicknesses. The depth function of pH shows a decrease towards the surface, indicating leaching of bases from the upper centimeters. Chronofunctions of pH show that within 6000 radiocarbon years of soil development pH drops from 7.0 to 6.6 in the Leptosols and from 8.1 to 7.5 in the Regosols. The higher pH of the Regosols is due to input of additional bases from the eolian sediments. Chronofunctions of Ca:Zr and K:Zr indicate progressive leaching of Ca and K in the Regosols, showing close relationships to time (R2 = 0.972 and 0.995). Na leaching as indicated by decreasing Na:Zr ratios shows a strong correlation to time only in the Leptosols (R2 = 0.999). Both, Leptosols and Regosols show close relationships to time for Fe:Zr (R2 = 0.817 and 0.824), Mn:Zr (R2 = 0.940 and 0.803), and Si:Al (0.971 and 0.977), indicating enrichment of Fe and Mn and leaching of Si. Leaching of mobile elements takes place on a higher level in the Regosols than in the Leptosols from the beginning of soil formation. Hence, a significant part of the eolian sediments must have been incorporated into the beach ridges very soon after their formation.  相似文献   

6.
Soil development with time was investigated on beach ridges with ages ranging from about 1380 to 6240 14C-years BP at the eastern coast of central Patagonia. The main pedogenic processes are accumulation of organic matter and carbonate leaching and accumulation within the upper part of the soils. Soil formation is strongly influenced by incorporation of eolian sediments into the interstitial spaces between the gravel of which the beach ridges are composed. Different amounts of eolian material in the soils lead to differentiation into Leptosols (containing ≤ 10% fine earth in the upper 75 cm) and Regosols (containing > 10% fine earth). Soil depth functions and chronofunctions of organic carbon, calcium carbonate, pH, Ca:Zr, Mg:Zr, K:Zr, Na:Zr, Fe:Zr, Mn:Zr, and Si:Al (obtained from X-ray fluorescence analysis) were evaluated. To establish soil chronofunctions mean values of the horizon data of 0–10 cm below the desert pavement were used, which were weighted according to the horizon thicknesses. The depth function of pH shows a decrease towards the surface, indicating leaching of bases from the upper centimeters. Chronofunctions of pH show that within 6000 radiocarbon years of soil development pH drops from 7.0 to 6.6 in the Leptosols and from 8.1 to 7.5 in the Regosols. The higher pH of the Regosols is due to input of additional bases from the eolian sediments. Chronofunctions of Ca:Zr and K:Zr indicate progressive leaching of Ca and K in the Regosols, showing close relationships to time (R2 = 0.972 and 0.995). Na leaching as indicated by decreasing Na:Zr ratios shows a strong correlation to time only in the Leptosols (R2 = 0.999). Both, Leptosols and Regosols show close relationships to time for Fe:Zr (R2 = 0.817 and 0.824), Mn:Zr (R2 = 0.940 and 0.803), and Si:Al (0.971 and 0.977), indicating enrichment of Fe and Mn and leaching of Si. Leaching of mobile elements takes place on a higher level in the Regosols than in the Leptosols from the beginning of soil formation. Hence, a significant part of the eolian sediments must have been incorporated into the beach ridges very soon after their formation.  相似文献   

7.
8.
A limiting factor to the no-tillage system in arid and semi-arid regions is the possibility of soil densification from lack of tillage. This research examines the extent and duration of the effects of periodic (rotational) zone-tillage over 2 years, on selected soil physical and chemical properties and crop yields. In the first year four tillage treatments were applied: conventional tillage with mouldboard plow (CT), minimum tillage with chisel plow (MT), no-tillage (NT) and zone-tillage subsoiling with a paraplow (ZT). In the second year, the ZT plots were returned to NT to follow the residual effects of ZT. The soil was a loamy sand (Calcic Haploxeralf) from semi-arid Central Spain and the crop rotation was grey pea (Pisum sativum L.)–barley (Hordeum vulgare L.). Crop residues on the soil surface after sowing grey pea were 85% in NT plots, 55% in ZT plots and 15% in MT plots. When comparing NT and ZT, the immediate effects of subsoiling on soil physical properties were significant (P < 0.05). Soil strength as measured by cone index approached 3.0 MPa in NT and was reduced to <1.0 MPa by ZT over 300 mm sampling depth. Soil moisture content and bulk density were improved by ZT. No-till and ZT favoured surface accumulation of soil organic carbon (SOC), total N and available P and K. Stratification ratio of SOC was not different among tillage systems, but soil N stratification ratio followed the order NT > ZT > MT > CT. Grey pea yields were reduced by 3 Mg ha−1 in the NT and MT compared with ZT. Crop residues on the soil surface after barley sowing were 80% in NT, 56% in ZT, and 12% in MT. At the end of the second year, soil strength, soil moisture and bulk density in ZT declined to NT levels at all soil depths. The positive effect of ZT in increasing SOC in the top layer had also disappeared. However, total N, and available P and K concentrations under NT and ZT were still significantly higher than in MT and CT. Stratification ratios of SOC under NT and ZT were >2 and more than two-fold those under MT and CT. Nitrogen stratification ratio under ZT increased and no significant differences between NT and ZT could be reported. Barley yield was 0.6 Mg ha−1 higher in ZT compared with NT. Our results suggest that ZT improved the physical and chemical condition of the soil studied in months following subsoiling. These positive effects, however, diminished with time and only some residual effects on total N and available P and K content in the top-layer were still evident after 2 years.  相似文献   

9.
Nitrogen (N) deposition is a major threat to the semiarid Mediterranean ecosystems. We simulated a gradient of N deposition (0, 10, 20 and 50 kg N ha?1 year?1?+?6.4 kg N ha?1 year?1 ambient deposition) in a Mediterranean shrubland from central Spain. In autumn 2011 (after 4 years of experimental duration), soil cores were taken to extract the soil fauna. Acari (45.54%) and Collembola (44.00%) were the most represented taxonomical groups, and their abundance was negatively related to soil pH. Simulated N deposition had an impact on the total number of individuals in soil as well as on Collembola and Pauropoda abundance. Collembola abundance increased with N loads up to 20 kg N ha-1 year-1 and then decreased. This response was attributed to soil acidification (between 0 and 20 kg N ha-1 year-1) and increased soil ammonium (between 20 and 50 kg N ha-1 year-1). Pauropoda were favoured by additions of 50 kg N ha-1 year-1, and it was the only taxonomical group whose abundance was exclusively related to N deposition, suggesting their potential as bioindicators. Contrary to predictions, there was a negative relationship between soil faunal abundance and plant diversity. In conclusion, soil faunal communities from semiarid Mediterranean ecosystems in central Spain seem to be primarily influenced by soil chemistry (mainly pH) but are also susceptible to increased N deposition. The main drivers of change under increased N deposition scenarios seem to be soil acidification and increased ammonium in soils where nitrate is the dominant mineral N form.  相似文献   

10.
Phosphate-induced zinc retention in a tropical semi-arid soil   总被引:14,自引:0,他引:14  
Zinc (Zn) deficiency symptoms and sporadic responses to applied Zn are being observed frequently in the Nigerian savanna, and one cause is thought to be the growing use of phosphorus (P) fertilizers. This study was designed to test the hypothesis of P-induced Zn retention in the soils. Soil mixed eith P was incubated at field capacity for 3 weeks at 30 ± 2°C. P levels added to the soil were 0, 500, 1000 and 2000 mg per kg soil. After 3 weeks of incubation, water-soluble Zn in soil decreased by 92% and exchangeable Zn by 78% with 2000 mg kg?1 of applied P. Zn levels ranging from 0 to 200 mg kg?1 were added to the P-incubated soil to determine the Zn sorption isotherm and retention capacity. The P-treated soil retained 93 ± 2% of added Zn compared with 52 ± 2% of the control soil. P treatment changed the Zn sorption isotherm from an L-curve isotherm to an H-curve isotherm, indicating strong affinity of P-treated soil for Zn, probably as a result of the formation of Zn-phosphate complexes on the soil surface and precipitation at sufficiently large concentrations of P and Zn. At 2000 mg P kg?1, up to 90% of Zn retained by the soil was bound in solid form as ZnHPO4. Varying the soil pH from 3.5 to 9.0, Zn retention by the soil was related to Zn hydrolysis with maximum adsorption occurring at pH 7.3 ± 0.2. The dependence of sorbed Zn on Zn(OH)2° at pH 3.5–7.4 of P-treated soil indicated that significant van der Waals forces might be involved in Zn retention. The implication of the results of this study for the region is that fertilizer-P placement around a growing crop plant, commonly practised to maximize fertilizer-P efficiency, can potentially limit Zn solubility and availability.  相似文献   

11.
Interactions between arbuscular mycorrhizal fungi (AMF) and plants are essential components of ecosystem functioning; however, they remain poorly known in dry ecosystems. We examined the relationship between seven shrub species and their associated AMF community in a semi-arid plant community in southern Spain. Soil characteristics and plant physiological status were measured and related to AMF community composition and genetic diversity by multivariate statistics. We found differences in AMF communities in soils under shrubs and in gaps among them, whereas no differences were detected among AMF communities colonizing roots. Soil nutrients content drove most of the spatial variations in the AMF community and genetic diversity. AMF communities were more heterogeneous in fertile islands with low nitrogen-to-phosphorus ratio and vice versa. AMF genetic diversity increased in soils limited by phosphorus and with high soil organic matter content, while AMF genetic diversity increased in roots growing in soil not limited by phosphorus. Overall, we could not find a clear link between plant performance and the associated AMF community. Our findings show that different shrub species generate islands of fertility which differ in nutrient content and, therefore, support different AMF communities, increasing AMF diversity at the landscape level.  相似文献   

12.
Summary The value of sewage sludge for improving the fertility and productivity of a degraded semi-arid grassland soil was tested by quantifying and describing the effects of surface application of sewage sludge on soil chemical properties and the soil microbial community. Three surface application rates (22.5, 45, and 90 Mg sludge ha–1) were tested over the course of two growing seasons. Most nutrient levels, including N, P, and K, increased linearly with increasing sludge application rates. Soil pH, however, declined linearly, from 7.8 to 7.4, with increasing sludge application rates. With the exception of Zn, heavy metals, including Cd, did not increase with the small decrease in pH or with increasing sludge application rates. Soil bacterial, fungal, and ammonium oxidizer populations increased linearly with increasing sludge application rates, and Streptomyces spp. populations remained relatively unchanged. The diversity of fungal groups declined initially with increasing sewage sludge rates but rebounded to near pretreatment levels under the low and intermediate application rates within 1 year. High fungal populations and low fungal diversity were related to the high nutrient contents provided by sludge amendment. Mucor spp. and Penicillium chrysogenum dominated the sludge-amended soils, and their densities in the treated soils in the first growing season were almost directly proportional to the sludge application rates. The improvement in soil fertility of a degraded semi-arid grassland due to sludge application was reflected in populations, diversity, and composition of the soil microbial community.The research reported here was conducted in cooperation with the USDI Bureau of Land Management which furnished funds and field study locations  相似文献   

13.
Atrazine is a widely used herbicide and is often a contaminant in terrestrial and freshwater ecosystems. It is uncertain, however, how the activity of soil macrofauna affects atrazine fate and transport. Therefore, we investigated whether earthworms enhance atrazine biodegradation by stimulating herbicide degrading soil microflora, or if they increase atrazine persistence by facilitating herbicide sorption. Short (43 d) and medium term (86 d) effects of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on mineralization, distribution, and sorption of U-ring-14C atrazine and on soil C mineralization was quantified in packed-soil microcosms using silt loam soil. A priming effect (stimulation of soil C mineralization) caused by atrazine supply was shown that likely lowered the earthworm net effect on soil C mineralization in atrazine-treated soil microcosms. Although earthworms significantly increased soil microbial activity, they reduced atrazine mineralization to 14CO2-C from15.2 to 11.7% at 86 d. Earthworms facilitated formation of non-extractable atrazine residues within C-rich soil microsites that they created by burrowing and ingesting soil and organic matter. Atrazine sorption was highest in their gut contents and higher in casts than in burrow linings. Also, gut contents exhibited the highest formation of bound atrazine residues (non-extractable atrazine). Earthworms also promoted a deeper and patchier distribution of atrazine in the soil. This contributed to greater leaching losses of atrazine in microcosms amended with earthworms (3%) than in earthworm-free microcosms (0.003%), although these differences were not significant due to high variability in transport from earthworm-amended microcosms. Our results indicated that earthworms, mainly by casting activity, facilitated atrazine sorption, which increased atrazine persistence. As a consequence, this effect overrode any increase in atrazine biodegradation due to stimulation of microbial activity by earthworms. It is concluded that the affect of earthworms of atrazine mineralization is time-dependent, mineralization being slightly enhanced in the short term and subsequently reduced in the medium term.  相似文献   

14.
Systematic exportation, burning of crop residues and decreases in fallow periods have led to a large-scale depletion of soil organic matter and degradation of soil fertility in the cotton (Gossypium hirsutum L.) cropping systems of Cameroon. The present study tested whether soil management systems based on a no-till with mulch approach intercropped with cereals, which has been shown to restore cotton production, could boost the biological activity of soil macrofauna. The impacts of no tillage with grass mulch (Brachiaria ruziziensis Germain and Eward) (NTG) and no tillage with legume mulch (Crotalaria retusa L. or Mucuna pruriens Bak.) (NTL) on the abundance, diversity and functional role of soil invertebrates were evaluated during the third year of implementation in northern Cameroon (Windé and Zouana), compared to conventional tillage (CT) and no tillage (NT) without mulch. Macrofauna were sampled from two 30 cm × 30 cm soil cubes (including litter) at the seeding stage of cotton, and 30 days later. The collected organisms were grouped into detritivores, herbivores and predators. Examination of the soil macrofauna patterns revealed that the abundance and diversity of soil arthropods were significantly higher in NTG and NTL than in CT plots (+103 and +79%, respectively), while that of NT plots was in-between the no tillage groups and CT (+37%). Regarding major ecological functions, herbivores and predators were significantly more abundant in NTG and NTL plots than in CT plots at Windé (+168 and +180%, respectively), while detritivores, predators and herbivores were significantly more abundant in the NTG plots than in CT plots at Zouana (+92, +517 and +116%, respectively). Formicidae (53.6%), Termitidae (24.7%) and Lumbricidae (9.4%) were the most abundant detritivores while Julidae (46.1%), Coleoptera larvae (22.1%) and Pyrrhocoridae or Reduviidae (11.8%) were the dominant herbivores. The major constituents of the predatory group were Araneae (33.8%), Carabidae (24.6%), Staphylinidae (15.7%) and Scolopendridae (10.3%). Direct seeding mulch-based systems, NTG and NTL, favoured the establishment of diverse macrofaunal communities in the studied cotton cropping system.  相似文献   

15.
Sodosol soils are at risk of degradation under existing fallow management practices involving tillage. Topsoil erosion exposes horizons with reduced infiltration and low concentrations of plant nutrients. Conservation management systems are needed on these soils to avoid a reversion to low intensity grazing. This paper reports on a 4 year study (1986–1989) of the effects of tillage practices on profile soil water and crop yield in a Sodosol (Typic Natrustalf) in central Queensland, Australia. The tillage treatments were: zero till fallow (weed control by herbicides), reduced till fallow (chisel plough/scarifier or herbicides) and conventional till fallow (chisel plough/scarifier) in two linked experiments. In the first experiment, wheat was grown in three contour bays (approximately 1 ha), and in the second, wheat was grown in replicated plots (30 m × 6 m) to allow statistical comparisons.

Zero till provided consistent advantages in grain yield in all 4 years compared with conventional till. Zero till also outyielded reduced till as well as conventional till in the plot experiment. The average yield increase of 0.5 t ha−1 in zero till compared with convention till was associated with greater water use and increased water use efficiency. Tillage practice caused only marginal differences in the available water content in the root zone (0–100 cm) at sowing; zero and reduced till contained, on average, an additional 4 and 8 mm, respectively, compared with conventional till. The tillage treatments had no effect on plant available water capacity. Some of the soil water that accumulated during the fallow drained beyond the root zone in all treatments and was not available to the following wheat crop. At the conclusion of the experiment, soil water accumulation in the 100–180 cm soil layer was 86 mm in zero till, 39 mm in reduced till and 40 mm in conventional till.

Results indicate that zero till can be a more productive wheat farming practice than conventional mechanical tillage. The increase in water storage below the root zone of the wheat crop shows that there may be benefit in using a deeper-rooting crop or pasture species in rotation with wheat, particularly after zero till fallows.  相似文献   


16.
17.
The influence of three spatially hierarchical factors upon soil macrofauna biodiversity was studied in four pasture plots in eastern Amazonia. The first factor was the local depth of the soil. The second factor was the ground cover type on the soil samples (bare ground, grass tufts, dead trees lying on the ground). The third factor was the dimensions of the grass tufts sampled (size and shape). The effect of each factor upon the morphospecies richness and density of total soil macrofauna was analysed. Detailed results are given for earthworms, termites, ants, beetles and spiders. All factors significantly affected the morphospecies richness and/or density of the soil macrofauna. The type of ground cover had the strongest influence, affecting the total richness and density of the soil macrofauna and of almost all the groups represented. The soil depth affected only the density of the termites and the global morphospecies richness. Interactions between soil depth and ground cover type affected the total macrofauna morphospecies richness and the density of the earthworms. The dimensions of the grass tuft influenced the global morphospecies richness, the morphospecies richness of the ants and the density of the spiders.  相似文献   

18.
In recent decades, the conversion of forest to agricultural land has been a major worldwide concern and a cause of environmental and soil-quality degradation. In this study, soil-quality indices (SQIs) were applied using several soil properties to determine the effects of land use on soil quality in a 206.50 km2 area in Kurdistan Province, Iran. The Weighted Additive Soil Quality Index (SQIw) was calculated using two scoring methods and two soil indicator selection approaches. Nine soil-quality indicators/variables were measured for 124 soil samples (0–30 cm depth). Calculated SQIs were digitally mapped with a random forest (RF) model using auxiliary data. The RF model was the best predictor of the SQI computed using the total dataset (TDS) and linear score function (SQIw-TDS-linear). Soil quality was better estimated using non-linear scoring (r2 = 0.82) than with linear scoring (r2 = 0.73). The mean values of all SQIs were significantly greater in forestland than cropland. It is clear that soil quality is considerably reduced by deforestation, and that best management practices that maintain soil quality and reduce erosion must be developed for the soils of this region if they are to remain productive.  相似文献   

19.
Seedbanks of five weed species were monitored in response to tillage and crop rotations in a semi-arid location in northern Jordan. Tillage practices of mouldboard- or chisel-plowing and cropping patterns of barley (Hordeum vulgare) planting or fallow were evaluated on permanently established subplots. Soil samples were collected from the upper 10 cm for three consecutive years, immediately after performing tillage and prior to planting. Soil seedbanks of the five dominant weed species (Anthemis palestina, Diplotaxis erucoides, Hordeum marinum, Rhagadiolus stellatus, and Trigonella caelesyriaca) were estimated by recovering viable seeds through greenhouse and laboratory procedures. At initiation, more viable seeds were present in soil subjected to mouldboard plowing than chisels plowing. In the following two sampling seasons, significant rotation by tillage interaction affected the seedbank of each species. Generally, mouldboard plowing increased weed seedbanks when combined with frequent fallowing. Conversely, chisel plowing combined with barley cropping generally reduced weed seedbank sizes. Results emphasized the importance of managing weeds during fallow to avoid the build up of H. marinum, a serious grass weed in semi-arid environments.  相似文献   

20.
In the north of France, a century of industrial metallurgic activities produced significant heavy metal soil pollution. In the north of France zinc smelter waste created a gradient of zinc concentration from 171 to 19 000 ppm in 35 m. The aim of this study was to evaluate the effects of soil pollution on the composition, density and diversity of macrofauna communities. The results showed that heavy metals reduce the overall density of earthworms and other macrofauna populations. The composition of the macrofauna community changed with the degree of pollution. There was no simple relationship between soil zinc content and species richness. In polluted areas, the number of species could be lower, equal or higher than in unpolluted zones. Increase of species richness in some polluted zones was due to the settlement of tolerant arthropod taxa. Coleoptera and some Arachnida were possibly favoured by the litter accumulation resulting from the reduced population densities of earthworms and other decomposers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号