首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Studies with surface samples of Iowa soils selected to obtain a wide range in properties showed that the following treatments of field-moist soils had no effect on urease activity: leaching with water ; drying for 24 h at temperatures ranging from 30 to 60°C ; storage for 6 months at temperatures ranging from ?20 to 40°C; incubation under aerobic or waterlogged conditions at 30 or 40°C for 6 months. No loss of urease activity could be detected when field-moist soils were air-dried and stored at 21–23°C for 2yr, but complete loss of urease activity was observed when they were dried at 105°C for 24 h or autoclaved (120°C) for 2h. Inactivation of urease in moist soils was detected at temperatures above 60°C.Treatment of field-moist soils with proteolytic enzymes which cause rapid destruction of jackbean urease did not decrease urease activity, but jackbean urease was destroyed or inactivated when added to sterilized or unsterilized soils.Although no decrease in urease activity could be detected when field-moist soils were air-dried, an appreciable (9–33%) decrease in urease activity was observed when air-dried soils were incubated under aerobic or waterlogged conditions. This decrease occurred within a few days, and prolonged incubation or repetition of the drying-incubation treatment did not lead to a further decrease in urease activity. Treatment of incubated air-dried soil with urease or glucose initially increased urease activity to a level exceeding that of the undried soil, but this activity decreased with time and eventually stabilized at the level observed for the undried soil.The work reported supports the conclusions from previous work that the native urease in Iowa soils is remarkably stable and that different soils have different levels of urease activity determined by the ability of their constituents to protect urease against microbial degradation and other processes leading to inactivation of enzymes.  相似文献   

2.
Dissolved organic carbon (DOC) and nitrogen (DON) are important components of the carbon and nitrogen turnover in soils. Little is known about the controls on the release of DOC and DON from forest floors, especially about the influence of solid phase properties. We investigated the spatial variation of the release of DOC and DON from Oe and Oa forest floor samples at a regional scale. Samples were taken from 12 different Norway spruce sites with varying solid phase properties, including C/N ratio, pH, different fractions of extractable carbon and exchangeable cations. Most of these solid phase properties are available for large forested areas of Europe in high spatial resolution. The samples were incubated at water holding capacity for eight weeks at 15°C and then extracted with an artificial throughfall solution to measure DOC and DON release. The rates of soil respiration and N-mineralization were determined to estimate soil microbial activity. The release of DOC and DON from Oe samples was two- to threefold higher than from Oa samples. The amounts released differed by one order of magnitude among the sites. The DOC/DON ratios in the percolates of the Oa samples were much higher as compared to the solid phase C/N, indicating different release rates of DOC and DON. In contrast, the DOC/DON ratios of the Oe percolates were in the range of the C/N ratios of the solid phase. The release of DOC and DON from Oe samples was not statistically correlated to any of the measured solid phase parameters, but to N-mineralization. The DOC and DON release from the Oa samples was positively related only to pH and soil respiration. Overall it was not possible to explain the large spatial variation of DOC and DON release by the measured solid phase properties with satisfying accuracy.  相似文献   

3.
The adenosine triphosphate (ATP) contents of seven soil samples were determined after air-drying, freeze-drying, storage, incubation with glucose or water. The amount of ATP extracted was rapidly reduced after air-drying of the field moist soils, but a short period of wetting of the air-dried soils increased their ATP contents significantly. Addition of an ATP-uncoupler to the air-dried soils indicated that the additional amount of ATP extracted after wetting may not be due to synthesis during the wetting, but from some other processes. Freeze-drying of moist soils reduced the amounts of ATP extracted from soils to a lesser extent than air-drying. Storage of the freeze-dried soils at 25° and — 15°C led to substantial losses of ATP.Incubation of soils with and without glucose rapidly increased the ATP contents of soils, particularly those which had been air-dried previously.Biomass C: ATP ratios in two soils declined during the first few days of incubation and then became relatively constant as incubation proceeded, although significantly different for a loam and a clay soil.  相似文献   

4.
The influence of the duration and conditions of storage of soil samples on the activity of soil enzymes (catalase, β-fructofuranosidase, and dehydrogenase) was studied for the main soils of southern Russia (different subtypes of chernozems, chestnut soils, brown forest soils, gray forest soils, solonetzes, and solonchaks). The following soil storage conditions were tested: (1) the air-dry state at room temperature, (2) the airdry state at a low positive (in a refrigerator, +4°C) temperature, (3) naturally moist samples at a low positive temperature, and (4) naturally moist samples at a negative (in a freezer, −5°C) temperature. It was found that the sample storing caused significant changes in the enzymatic activities, which depended on the soil type, the land use, the type of enzyme, and the duration and conditions of the sample storage. In the course of the storage, the changes in the enzymatic activity had a nonlinear character. The maximum changes were observed in the initial period (up to 12 weeks). Then, a very gradual decrease in the activity of the studied enzymes was observed. Upon the long-term (>12 weeks) storage under the different conditions, the difference in the activities of the soil enzymes became less pronounced. The storage of soil samples in the air-dried state at room temperature can be recommended for mass investigations.  相似文献   

5.
Soil biochemical properties are useful indicators of soil quality as they are very sensitive to disturbance. Sample storage or pre-treatments could affect the results in these assays, which are normally determined on fresh samples, kept cold or frozen. The objectives of this study were to (i) evaluate the effect of air-drying or incubation of rewetted air-dried soil samples on microbial biomass carbon (MBC), basal soil respiration (BSR), qCO2 and water soluble carbon (WSC), in soils from different locations, with different degradation status and sampling seasons, and (ii) assess if air-drying or incubation of rewetted air-dried soil samples is an accurate sample storage and pre-treatment procedure for these soil properties in soil quality evaluations under semiarid Mediterranean conditions. Our results showed that air-drying does not have the same effects on MBC, BSR, qCO2 and WSC depending on the geographical situation and sampling date. It seems that the warmest and driest place and season show less variation when using air-dried soil samples, with values representative of those obtained under field-moist conditions. Short incubations (4, 8 and 12 days at 23 °C) provoked a general decrease in all properties, probably due to labile organic compounds depletion. Hence, air-dried soils can be used as part of soil quality analysis to estimate these biochemical properties in summer time in the semiarid region of South-East Spain, because they have not suffered severe affections. Moreover, MBC could also be determined using air-dried soil in the driest zones during all year. In contrast, estimations with incubated soil samples are not, in any case, representative of field-moist soil values.  相似文献   

6.
About the sorption of dissolved organic matter to forest soils This investigation characterizes the major forest soils of the temperate climatic zones (leptosols, vertisols, cambisols, luvisols, podzols, stagnosols, gleysols) as sorbents for dissolved organic matter (DOM). Sorption isotherms were obtained for 135 soil horizons from 36 profiles. When solutions containing no DOC were added, the release of dissolved organic carbon (DOC) was highest for horizons rich in organic C (A and Bh horizons). In subsoil horizons DOC release was much lower. Most of the investigated top soils (A and E horizons) and Bh, Bg, and C horizons showed a weak DOC sorption. This was caused by low contents of sorbents (clay and sesquioxides) and/or high contents of organic C. Organic C seems to reduce the DOC sorption by occupying binding sites. Subsoils rich in clay and sesquioxides like Bs, Bt, and Bw horizons showed a strong retention of DOC. Under the aerobic conditions of the experiments, some of the subsoils of stagnosols and gleysols also showed a strong sorption of DOC. However, in sorption experiments conducted after an anaerobic incubation, the DOC sorption decreased significantly.  相似文献   

7.
Terrestrial export of dissolved organic carbon (DOC) to watercourses has increased in boreal zone. Effect of decomposing material and soil food webs on the release rate and quality of DOC are poorly known. We quantified carbon (C) release in CO2, and DOC in different molecular weights from the most common organic soils in boreal zone; and explored the effect of soil type and enchytraeid worms on the release rates. Two types of mor and four types of peat were incubated in laboratory with and without enchytraeid worms for 154 days at +?15 °C. Carbon was mostly released as CO2; DOC contributed to 2–9% of C release. The share of DOC was higher in peat than in mor. The release rate of CO2 was three times higher in mor than in highly decomposed peat. Enchytraeids enhanced the release of CO2 by 31–43% and of DOC by 46–77% in mor. High molecular weight fraction dominated the DOC release. Upscaling the laboratory results into catchment level allowed us to conclude that peatlands are the main source of DOC, low molecular weight DOC originates close to watercourse, and that enchytraeids substantially influence DOC leaching to watercourse and ultimately to aquatic CO2 emissions.  相似文献   

8.
This study was performed to investigate changes in available soil phosphate associated with temperature under submerged conditions and to explore the possibility for estimating those under submerged conditions during the early growth (tillering) stage of rice plants (Oryza sativa L.). An incubation experiment was conducted under submerged conditions at three temperatures (10°C, 17.5°C and 25°C) using paddy soils collected over a widespread area in Japan. In most soils, significant positive correlations were observed between available soil phosphate and cumulative temperature to 650°C, which corresponded to the tillering stage in Japan. Relationships between the regression formulae of the available phosphate against cumulative temperature to 650°C and soil chemical properties measured in air-dried soil were investigated. The results indicate that the available phosphate of paddy soil against cumulative temperature during tillering stage under submerged conditions can be estimated from the results of air-dried soil analyses which can be conducted before a crop season.  相似文献   

9.
Soil carbon (C) saturation implies an upper limit to a soil's capacity to store C depending on the contents of silt + clay and poorly crystalline Fe and Al oxides. We hypothesized that the poorly crystalline Fe and Al oxides in silt + clay fraction increased the C saturation and thus reduced the capacity of the soil to sorb additional C input. To test the hypothesis, we studied the sorption of dissolved organic carbon (DOC) on silt + clay fractions (<53 µm) of highly weathered oxic soils, collected from three different land uses (i.e., improved pasture, cropping and forest). Soils with high carbon saturation desorbed 38% more C than soils with low C saturation upon addition of DOC, whereas adsorption of DOC was only observed at higher concentration (>15 g kg?1). While high Al oxide concentration significantly increased both the saturation and desorption of DOC, the high Fe oxide concentration significantly increased the desorption of DOC, supporting the proposition that both oxides have influence on the DOC sorption in soil. Our findings provide a new insight into the chemical control of stabilization and destabilization of DOC in soil.  相似文献   

10.
不同浸提剂处理森林土壤溶解性有机碳含量比较   总被引:1,自引:0,他引:1  
丁咸庆  柏菁  项文化  侯红波  彭佩钦 《土壤》2020,52(3):518-524
为了解亚热带森林土壤溶解性有机碳(DOC)的特征规律,采用培养离心的方法获取土壤溶液测得DOC含量,对比传统水溶性有机碳(WSOC)提取法间的差异。选取湖南大山冲森林公园保存完好的3种亚热带典型次生林地,按10cm一层采集剖面土壤,采用不同方法提取测定土壤DOC和WSOC含量,分析与土壤理化指标的相关性及方法间的显著性关系。结果表明:①典型森林土壤DOC或WSOC含量随土壤剖面深度的增加,呈显著下降趋势。培养离心提取测得的土壤DOC含量明显较低,仅0.82~9.52 mg/kg,超纯水浸提的风干土WSOC含量达10.56~249.19 mg/kg,而0.5 mol/L K2SO4提取的鲜土WSOC含量达155.70~576.94 mg/kg,0.5mol/L K2SO4浸提的干土WSOC含量最高,达158.94~797.56 mg/kg,含量表现为:DOC<干土超纯水浸提WSOC<鲜土K2SO4浸提WSOC<干土K2...  相似文献   

11.
Freezing and thawing may substantially influence the rates of C and N cycling in soils, and soil frost was proposed to induce NO losses with seepage from forest ecosystems. Here, we test the hypothesis that freezing and thawing triggers N and dissolved organic matter (DOM) release from a forest soil after thawing and that low freezing temperatures enhance the effect. Undisturbed soil columns were taken from a soil at a Norway spruce site either comprising only O horizons or O horizons + mineral soil horizons. The columns were subjected to three cycles of freezing and thawing at temperatures of –3°C, –8°C, and –13°C. The control columns were kept at constant +5°C. Following the frost events, the columns were irrigated for 20 d at a rate of 4 mm d–1. Percolates were analyzed for total N, mineral N, and dissolved organic carbon (DOC). The total amount of mineral N extracted from the O horizons in the control amounted to 8.6 g N m–2 during the experimental period of 170 d. Frost reduced the amount of mineral N leached from the soil columns with –8°C and –13°C being most effective. In these treatments, only 3.1 and 4.0 g N m–2 were extracted from the O horizons. Net nitrification was more negatively affected than net ammonification. Severe soil frost increased the release of DOC from the O horizons, but the effect was only observed in the first freeze–thaw cycle. We found no evidence for lysis of microorganisms after soil frost. Our experiment did not confirm the hypothesis that soil frost increases N mineralization after thawing. The total amount of additionally released DOC was rather low in relation to the expected annual fluxes.  相似文献   

12.
The dependency of the retention of dissolved organic carbon (DOC) on mineral phase properties in soils remains uncertain especially at neutral pH. To specifically elucidate the role of mineral surfaces and pedogenic oxides for DOC retention at pH 7, we sorbed DOC to bulk soil (illitic surface soils of a toposequence) and corresponding clay fraction (< 2 μm) samples after the removal of organic matter and after removal of organic matter and pedogenic oxides. The DOC retention was related to the content of dithionite‐extractable iron, specific surface area (SSA, BET‐N2 method) and cation exchange capacity (pH 7). The reversibility of DOC sorption was determined by a desorption experiment. All samples sorbed 20–40 % of the DOC added. The DOC sorption of the clay fractions explained the total sorption of the bulk soils. None of the mineral phase properties investigated was able to solely explain the DOC retention. A sorption of 9 to 24 μg DOC m–2 indicated that DOC interacted only with a fraction of the mineral surface, since loadings above 500 μg m–2 would be expected for a carbon monolayer. Under the experimental conditions used, the surface of the silicate clay minerals seemed to be more important for the DOC sorption than the surface of the iron oxides. The desorption experiment removed 11 to 31 % of the DOC sorbed. Most of the DOC was strongly sorbed.  相似文献   

13.
The objective of this study was to investigate the effects of mono‐ and polyvalent cations on sorption of the two hydrophobic compounds nonylphenol (NP) and phenanthrene (Phe). To this end, exchange sites of a sandy soil were saturated with either Na+, Ca2+, or Al3+ and excess salts were removed by washing. The samples were then sterilized and either stored moist, dried at room temperature, or at 20°C, 60°C, or 105°C in a vented oven. Saturation with Na+ led to an increase of dissolved organic C (DOC) concentration in the soil water extracts, whereas the polyvalent cations Ca2+ and Al3+ decreased it. The 1H‐NMR relaxometry analyses showed that Al3+ restricted the mobility of water molecules that are confined within the SOM structure to a higher extent than Ca2+ or Na+. According to contact‐angle (CA) analyses, cation treatment did not significantly change the wetting properties of the samples. Batch sorption–desorption experiments showed no clear salt‐treatment effects on the sorption and desorption equilibria or kinetics of NP and Phe. Instead, the sorption coefficients and sorption hysteresis of NP and Phe increased in dry soil. With increasing drying temperature the CA of the soils and the sorption of both xenobiotics increased significantly. We conclude that structural modifications of SOM due to incorporation of polyvalent cations into the interphase structure do not modify the sorption characteristics of the soil for hydrophobic compounds. Instead, increasing hydrophobization of organic soil constituents due to heat treatment significantly increased the accessible sorption sites for nonpolar organic compounds in this soil.  相似文献   

14.
 Nitrification and denitrification are, like all biological processes, influenced by temperature. We investigated temperature effects on N trace gas turnover by nitrification and denitrification in two soils under two experimental conditions. In the first approach ("temperature shift experiment") soil samples were preincubated at 25  °C and then exposed to gradually increasing temperatures (starting at 4  °C and finishing at 40–45  °C). Under these conditions the immediate effect of temperature change was assessed. In the second approach ("discrete temperature experiment") the soil samples were preincubated at different temperatures (4–35  °C) for 5 days and then tested at the same temperatures. The different experimental conditions affected the results of the study. In the temperature shift experiment the NO release increased steadily with increasing temperature in both soils. In the discrete temperature experiment, however, the production rates of NO and N2O showed a minimum at intermediate temperatures (13–25  °C). In one of the soils (soil B9), the percent contribution of nitrification to NO production in the discrete temperature experiment reached a maximum (>95% contribution) at 25  °C. In the temperature shift experiment nitrification was always the dominant process for NO release and showed no systematic temperature dependency. In the second soil (soil B14), the percent contribution of nitrification to NO release decreased from 50 to 10% as the temperature was increased from 4  °C to 45  °C, but no differences were evident in the discrete temperature experiment. The N2O production rates were measured in the discrete temperature experiment only. The contribution of nitrification to N2O production in soil B9 was considerably higher at 25–35  °C (60–80% contribution) than at 4–13  °C (15–20% contribution). In soil B14 the contribution of nitrification to N2O production was lowest at 4  °C. The effects of temperature on N trace gas turnover differed between the two soils and incubation conditions. The experimental set-up allowed us to distinguish between immediate effects of short-term changes in temperature on the process rates, and longer-term effects by which preincubation at a particular temperature presumably resulted in the adaptation of the soil microorganisms to this temperature. Both types of effects were important in regulating the release of NO and N2O from soil. Received: 20 October 1998  相似文献   

15.
Modelling the effects of pH on phosphate sorption by soils   总被引:4,自引:0,他引:4  
Samples of six soils were incubated at 60°C for 24 h with several levels of either calcium carbonate or hydrochloric acid. Phosphate sorption was then measured on sub-samples of the treated soils over 24 h at 25°C. In one set of measurements on all soils, 0.01 M calcium chloride was used as the background electrolyte. In another set, on two soils, 0.01 M sodium chloride was used. An interpolation method was used to give points on the three-dimensional surface relating the final pH of the suspensions to sorption of phosphate at specified solution concentrations of phosphate. The effects of pH on phosphate sorption differed between soils. For unfertilized soils, increases in pH up to about pH 5.5 decreased sorption. Further increases in pH decreased sorption further in one soil and increased it in three others. For fertilized soils, measured sorption increased with pH. When sodium chloride was used instead of calcium chloride, there was a more marked trend for sorption to decrease as pH increased. Differences between the soils were ascribed to differences in two soil properties. One was the rate at which the electrostatic potential in the plane of adsorption decreased as pH increased. Only small differences in the rate of change of potential were needed to reproduce the observed differences between soils. The electrostatic potential would decrease more quickly in solutions of a sodium salt than in solutions of a calcium salt and this explains the observed differences between these media. The other soil property that affected observed sorption was the release of phosphate from the soil. The amount released was largest at low pH. Consequently, for fertilized soils, measured sorption increased with pH.  相似文献   

16.
The effect of two methods for the preparation of soil samples for sorption experiments—hard (dehydration at 105°C) and mild (drying over P2O5 at 20°C in vacuum) drying—on the values of the vaporphase sorption of p-xylene was studied depending on the content of organic matter in the soil. It was shown with dark gray forest and chernozemic soils as examples that the hard drying of soil samples taken from the upper layer of the humus profile with a high content (>4%) of organic carbon decreased their sorption capacity in the range of 0–5% by 7–81%. Therefore, the method is unsuitable for these soils. It was also found that the mild method of soil preparation had obvious analytical advantages.  相似文献   

17.
Dissolved organic carbon (DOC) constitutes an important carbon input flux to forested mineral soils. Seepage from mineral subsoils contains only small amounts of DOC because of mineralization, sorption or the formation of particulate organic matter (POM). However, the relation between these processes is largely unknown. Therefore, the objective of this study was to quantify the mineralization of DOC from different depths of forest soils, and to determine degradation rate constants for rapidly and slowly degradable DOC pools. Mineralization of DOC and formation of POM in mineral soil solution from two forested sites in northern Bavaria (Germany) were quantified in a 97 days laboratory incubation experiment. Furthermore, spectroscopic properties such as specific UV absorption and a humification index derived from fluorescence emission spectrometry were measured before and after incubation. DOC in all samples turned out to belong mainly to the stable DOC pool (> 95 %) with half‐lives ranging from years to decades. Spectroscopic properties were not suitable to predict the mineralization of DOC from mineral soils. However, together with data on DOC from the forest floor and long‐term data on DOC concentrations in the field they helped to identify the processes involved in C sequestration in mineral subsoils. Mineralization, formation of POM, and probably sorption seem all to be responsible for maintaining low concentrations of DOC in the upper mineral soil. DOC below the upper mineral soil is highly resistant to mineralization, and thus the further decrease of DOC concentrations in the subsoil as observed under field conditions cannot be attributed to mineralization. Our results suggest that sorption and to some minor extent the formation of POM may be responsible for C sequestration in the subsoil.  相似文献   

18.
We wished to determine whether soil-test P was affected by storing air-dry soil samples at room temperature. The soil samples had been collected from field experiments and air-dried (<40°C) before measuring soil-test P (bicarbonate-extractable P). The samples were from field plots that had been treated with different applications of fertilizer P (superphosphate, rock phosphate) one or more years previously. Soil-test P was measured on two different sub samples of the same sample: either A, in the year the sample was collected; or B, after the sample had been stored at fluctuating room temperatures either from 2 to 8 years (four field experiments) or 17 years (59 field experiments). The room temperature ranged from 10 to 30°C, and averaged 17°C. The aim was to test whether soil-test P was systematically and consistently different between sub samples A and B. Differences between A and B were mostly small, and there were no consistent or systematic differences. For the Colwell soil test, applied to a range of south-western Australian soils, possible decreases in soil-test P due to continued reaction with the soil could not be detected using bicarbonate-extractable soil P, and storage of air-dry samples at room temperature did not significantly affect soil-test P measured up to 17 years later. We conclude that, provided fertilizer P has had time to react with soil in the field, no further changes in Colwell soil-test P occur during air-dry storage for up to 17 years at room temperature.  相似文献   

19.
Many farmlands are periodically flooded or ponded by excessive precipitation resulting in changes to soil chemical and biochemical properties. In this study, one set (eight treatments with four replications) of field-moist surface soils (0–15 cm) and their air-dried counterparts obtained from a long-term liming experiment were incubated at 30 °C under waterlogged conditions for 10 days, and the amounts of net NH4 +-N released (soluble and exchangeable) were determined after extraction with 4 M KCl. Another set of three surface soils were used to evaluate the effect of six heavy metals on the NH4 +-N release under waterlogged conditions. Results showed that increasing the liming rate from 0 to 17,930 kg ha?1 effective calcium carbonate equivalent increased the average soil pH from 4.98 to 7.06, averages of the amounts of NH4 +-N released ranged from 1.6 to 5.2 mg N kg?1 field-moist soil, and the corresponding amounts released in air-dried soils ranged from 18.9 to 32.9 mg N kg?1 soil. This increase of the amount NH4 +-N released in air-dried soil samples is presumably due to a slaking effect. At 5 mmol kg?1 soil, all six heavy metals inhibited the NH4 +-N released. The relative effectiveness of the heavy metals in inhibition of the NH4 +-N released varied among the three soils. Lead(II) was the most effective inhibitor of NH 4 +-N release in Clarion and Harps soils and Cd(II) in Harps soil. Cobalt(II), Cu(II), and Cd(II) were the least effective inhibitors of NH4 +-N release in Clarion, Harps, and Okoboji soils, respectively.  相似文献   

20.
Thirty two soil samples from China were analyzed for exchangeable K before and after drying. Most soil samples were higher in exchangeable K after air-drying and ovendrying (60°C) than when wet. Soil clay minerals, especially clay-size mica, affected K released in air-dry and oven-dry samples. According to composition of clay minerals of air-dried samples, five classes were recognized. Soil samples with high mica and montmorillonite have the highest exchangeable K. Samples that contained higher kaolinite than mica had lower exchangeable K. Samples with higher kaolinite than quartz and mica had still lower exchangeable K. Samples of sandy soils contained very low exchangeable K. When quartz was the main mineral, the samples that had kaolinite and gibbsite as the main clay minerals had very low exchangeable K. The degree of weathering (weathering mean) bore an inverse relationship to the amount of K released on drying in air or at 60°C. Udults and Udalfs (Red Earths) of southeastern China, because of their high K release on being dried, are inferred to have received fine mica from the Western Desert dust rainout, reported to Liu et al. (1981).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号