首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land use in a 208 ha representative catchment in the Tigray Highlands, Dogu'a Tembien district in Northern Ethiopia was studied in relation to soil geography. Typical soils are Vertisols, Vertic Cambisols, Cumulic Regosols, Calcaric Regosols and Phaeozems. Patterns of land use vary greatly within the catchment and results from χ2‐tests showed strong associations (p < 0·001) between soil type and land use and crop production system. There is a strong association between cropland and colluvium high in basaltic content because the most fertile soils, such as Vertisols and Vertic Cambisols, have developed on this material. Preference is for autochthonous soils on in situ parent material, irrespective of the rock type, to be put under rangeland. Land use by smallholders in Dogu'a Tembien appears to be the result primarily of the interaction between environmental and social factors. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Accelerated soil erosion is a major threat to soil, and there are great variations in the rate of soil erosion over time due to natural and human-induced factors. The temperate forest zone of Russia is characterized by complex stages of land-use history (i.e. active urbanization, agricultural development, land abandonment, etc.). We have for the first time estimated the rates of soil erosion by the WaTEM/SEDEM model (rainfall erosion) and by a regional model (snowmelt erosion) over the past 250 years (from 1780 to 2019) for a 100-km2 study site in the Moscow region of Russia. The calculations were made on the basis of a detailed historical reconstruction of the following factors: the location of the arable land, crop rotation, the rain erosivity factor, and the maximum snow water equivalent. The area of arable land has decreased more than 3.5-fold over the past 250 years. At the end of the 20th century, the rates of gross erosion had declined more than 5.5-fold (from 28 × 103 to 5 × 103 t?ha?1?yr?1) in comparison with the end of the 18th century. Changes in the boundaries of arable land and also the relief features had led to a significant intra-slope accumulation of sediments. As a result of sediment redeposition within the arable land, the variation in net soil erosion was significantly lower than the variation in gross soil erosion. The changes in arable land area and in crop composition are the factors that have to the greatest extent determined the changes in soil erosion in this territory.  相似文献   

3.
The mountainous region of the Himalayas is covered with forest, grassland, and arable land, but the variation in ecosystem functions has not been fully explored because of the lack of available data. This study appraises the changes in soil properties over the course of a year (spring, summer, autumn, winter) for forest, grassland, and arable soils in a typical hilly and mountainous region of Azad Jammu and Kashmir, Pakistan. Soil samples were collected from major land-cover types in the mountain region: natural forest, grassland, and cultivated land (arable). The natural forest served as a control against which changes in soil properties resulting from removal of natural vegetation and cultivation of soil were assessed. Soil samples were collected from depths of 0–15 and 15–30 cm six times during the year and examined for changes in temperature, moisture, electrical conductivity (EC), micronutrients [iron, manganese, copper, and zinc (Fe, Mn, Cu, Zn, respectively)], and microbial population. Significant differences were found in soil temperature, soil moisture, Fe, Mn, Cu, Zn, and number of bacteria, actinomycetes, and fungi among the three land-cover types. Soil under cultivation had 4–5 °C higher temperature and 3–6% lower moisture than the adjacent soils under grassland and forest. Electrical conductivity (EC) values of forest, grassland, and arable soil were 0.36, 0.30, and 0.31 dS m?1, indicating that soil collected from the forest had 18–20% more EC than the adjacent arable and grassland soils. On average, amounts of Fe, Mn, Cu, and Zn in the soil collected from the arable site were 6.6, 5.7, 1.7, and 0.8 mg kg?1, compared with 24.0, 12.1, 3.5, and 1.2 mg kg?1 soil in the forest soil, showing that arable had two to four times less micronutrients than grassland and forest. Populations of bacteria, actinomycetes, and fungi in the forest were 22.3 (105), 8.2 (105), and 2.5 (103), respectively, while arable land exhibited 8.2 (105), 3.2 (105), and 0.87 (103). Season (temperature) and depth showed significant effects on microbial activity and nutrient concentration, and both decreased significantly in winter and in the subsurface layer of 15?30 cm. Different contents of the parameters among arable, grassland, and forest soils indicated an extractive effect of cultivation and agricultural practices on soil. Natural vegetation appeared to be a main contributor to soil quality as it maintained the moisture content and increased the nutrient status and microbial growth of soil. Therefore, it is important to sustain high-altitude ecosystems and reinstate the degraded lands in the mountain region.  相似文献   

4.
This paper describes the accumulation of uranium in soils from superphosphate applied annually to arable and grassland soils. Rates of application of superphosphate were equivalent to about 33kg P and 15 gU ha?1 year?1 in three experiments at Rothamsted and to about 37 kg P and 16g U ha ?1 year ?1 in one experiment in New Zealand. Most of the uranium (about 1300 g U ha ?1) applied in superphosphate to the clay loam soil at Rothamsted since 1889 was retained, like P, in the plough layer of arable soils or was adsorbed by the organic surface layers of soils under permanent grassland. Uranium applied in superphosphate to grassland in New Zealand since 1954 (about 330 g U ha?1) was also concentrated in the surface layers of the soil.  相似文献   

5.
Agricultural soil CO2 emissions and their controlling factors have recently received increased attention because of the high potential of carbon sequestration and their importance in soil fertility. Several parameters of soil structure, chemistry, and microbiology were monitored along with soil CO2 emissions in research conducted in soils derived from a glacial till. The investigation was carried out during the 2012 growing season in Northern Germany. Higher potentials of soil CO2 emissions were found in grassland (20.40 µg g?1 dry weight h?1) compared to arable land (5.59 µg g?1 dry weight h?1) within the incubating temperature from 5°C to 40°C and incubating moisture from 30% to 70% water holding capacity (WHC) of soils taken during the growing season. For agricultural soils regardless of pasture and arable management, we suggested nine key factors that influence changes in soil CO2 emissions including soil temperature, metabolic quotient, bulk density, WHC, percentage of silt, bacterial biomass, pH, soil organic carbon, and hot water soluble carbon (glucose equivalent) based on principal component analysis and hierarchical cluster analysis. Slightly different key factors were proposed concerning individual land use types, however, the most important factors for soil CO2 emissions of agricultural soils in Northern Germany were proved to be metabolic quotient and soil temperature. Our results are valuable in providing key influencing factors for soil CO2 emission changes in grassland and arable land with respect to soil respiration, physical status, nutrition supply, and microbe-related parameters.  相似文献   

6.
Abstract

The investigations aimed to: 1) evaluate water erosion rates on undulating slopes in Lithuania under different land use systems; 2) study changes in soil physical properties on the differently eroded slopes; and 3) better understand relationships between soil physical properties and soil erodibility. Research data were obtained on loamy sand and clay loam Eutric Albeluvisols located on the undulating hilly relief of the ?emai?iai Uplands of Western Lithuania. The results of 18 years of water erosion investigations under different land use systems on slopes of varying steepness are presented. Attention is focused on changes in soil physical properties in relation to soil erosion severity. Measured water erosion rates in the field experiments were: 3.2–8.6 m3 ha?1 yr?1 under winter rye, 9.0–27.1 m3 ha?1 yr?1 under spring barley and 24.2–87.1 m3 ha?1 yr?1 under potatoes. Perennial grasses completely prevented water erosion, while erosion-preventive grass-grain crop rotations (67% grasses, 33% cereal grains) decreased soil losses by 75–80% compared to the field crop rotation, containing 17% tillage crops (potatoes), 33% grasses and 50% cereal grains. The grain-grass crop rotation (33% grasses and 67% cereal grains) decreased soil erosion rates by 23–24%. The percentage of clay-silt and clay fractions of arable soil horizons increased, while the total soil porosity and moisture retention capacity decreased with increased soil erosion. Phytocenoses, including sod-forming perennial grasses and grass-grain crop rotations, led to changes in the physical properties of eroded soils; soil bulk density decreased and percentage total porosity and moisture retention capacity increased. The grass-grain crop rotations increased the water-stable soil structure (measured as water-stable soil aggregates) by 11.03 per cent units and sod-forming perennial grasses increased aggregate stability by 9.86 per cent units compared with the grain-grass crop rotation on the 10–14° slope. Therefore, grass-grain crop rotations and sod-forming perennial grasses decreased soil erodibility and thus could assist both erosion control and the ecological stability of the vulnerable hilly-undulating landscape.  相似文献   

7.
Phosphorus in the soil microbial biomass (biomass P) and soil biomass carbon (biomass C) were linearly related in 15 soils (8 grassland, 6 arable, 1 deciduous woodland), with a mean P concentration of 3.3% in the soil biomass. The regression accounted for 82% of the variance in the data. The relationship was less close than that previously measured between soil biomass C and soil ATP content and indicates that biomass P measurements can only provide a rough estimate of biomass C content. Neither P concentration in the soil biomass, nor the amount of biomass P in soil, were correlated with soil NaHCO3-extractable inorganic, organic or total P.The calculated mean annual flux of P through the biomass (in a soil depth of 10 cm) in 8 grassland soils was large, 23 kg P ha?1 yr?1, and more than three times the mean annual P flux through 6 arable soils (7 kg P ha?1 yr?1), suggesting that biomass P could make a significant contribution to plant P nutrition in grassland.About 3% of the total soil organic P in the arable soils was in microbial biomass and from 5 to 24% in the grassland soils. The decline in biomass P when an old grassland soil was put into an arable rotation for about 20 yr was sufficient to account for about 50% of the decline in total soil organic P during this period. When an old arable soil reverted to woodland, soil organic P doubled in 100 yr; biomass P increased 11-fold during the same period.  相似文献   

8.
The behaviour of P in a range of English arable soils was examined by plotting the change in resin P in the topsoil (ΔPres) at the end of a 3‐ to 5‐year period, against the P balance over the same period (fertilizer P applied minus offtake in crops, estimated from farmers’ reported yields and straw removal). Based on the assumption that values for offtake per tonne of crop yield used for UK arable crops are valid averages, 20–60% of ΔPres was explained by the balance. Applying excess P fertilizer increased Pres, and reducing P fertilizer use decreased it; typically 3–4 kg P ha?1 was required for each mg L?1ΔPres (6–8 kg ha?1 for each mg L?1 of Olsen P). About half the P balance seems to be resin extractable and this differed little between soil groups, except in cases of very low P (index 0) in which the P buffering was stronger, and on very high P soils (index 4/5) when buffering was less. However, on calcareous soils and red soils, when fertilizer was applied in accord with offtake, Pres fell by up to 4 mg L?1 year?1 (2 mg L?1 yr?1 olsen P) and to prevent this an extra 3–10 kg P ha?1 year?1 fertilizer was required. But on most non‐calcareous soils, replacing offtake maintained Pres, with perhaps slight rises on soils of low clay content or greater organic matter content. In soils under arable rotations, the apparent recovery of P from fertilizer was often around 100%, falling to 85% on Chalk soils and 75% on medium–heavy soils on limestone or Lower Chalk. The fate of the ‘missing’ P needs clarification. The case for corrections to current P fertilizer recommendations in the UK on certain soil types is discussed.  相似文献   

9.
A simple, sensitive method developed for the analysis of geostandards was used to measure the accumulation of Cd in soils from superphosphate applied annually to grass-land and arable soils for many years. Rates of application were equivalent to 33 kg P and 5 g Cd ha?1 yr?1 for 95 yr in three experiments in England and to 37 kg P and 20 g Cd ha?1 yr ?1 for 30 yr in one experiment in New Zealand. Very little Cd accumulated in the surface horizons (0–22.5cm) of either of the arable soils from England; about one-quarter of the applied Cd was detected in the sub-soil (22.5–45.0 cm) of one experiment (Broadbalk) but none in the second (Barnfield). About one-half of the applied Cd was retained in the 0–22.5 cm horizon of grassland soils from both England and New Zealand. The light (<2.2 gcm?3) organic-rich fraction of Park Grass soil from Éngland contained about three times as much Cd as the heavier, mineral-rich fraction. This suggests that when Cd is incorporated into organic matter its mobility is decreased and soil pH then has smaller effects on its mobility. Uptake of Cd by grass-clover pasture in New Zealand averaged only 0.4 g Cd ha?1 yr?1 or 2% of the amount applied.  相似文献   

10.
Purpose

Recent research suggests that Swedish organic arable soils have been under-recognized as a potential source of phosphorus (P) loading to water bodies. The aim of this study was to compare P losses through leaching from organic and high-fertility mineral soils. In addition, the effectiveness of a magnesium-salt-coated biochar applied below the topsoil as a mitigation strategy for reducing P losses was evaluated.

Materials and methods

Phosphorus leaching was measured from four medium- to high-P arable soils, two Typic Haplosaprists (organic 1 and 2), a Typic Hapludalf (sand), and an unclassified loam textured soil (loam), in a 17-month field study utilizing 90-cm-long lysimeters. A magnesium-salt-coated biochar was produced and characterized using X-ray powder diffraction (XPD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and X-ray adsorption (XANES) spectroscopy, and its phosphate adsorption capacity was determined at laboratory scale. It was also applied as a 3-cm layer, 27 cm below the soil surface of the same lysimeters and examined as a mitigation measure to reduce P leaching.

Results and discussion

Total-P loads from the 17-month, unamended lysimeters were in the order of organic 2 (1.2 kg ha?1)?>?organic 1 (1.0 kg ha?1)?>?sand (0.3 kg ha?1)?>?loam (0.2 kg ha?1). Macropore flow, humic matter competition for sorption sites, and fewer sorption sites likely caused higher P losses from the organic soils. Analysis by XRD and SEM revealed magnesium was primarily deposited as periclase (MgO) on the biochar surface but hydrated to brucite (Mg(OH)2) in water. The Langmuir maximum adsorption capacity (Qmax) of the coated biochar was 65.4 mg P g?1. Lysimeters produced mixed results, with a 74% (P?<?0.05), 51% (NS), and 30% (NS) reduction in phosphate-P from the organic 1, organic 2, and sand, respectively, while P leaching increased by 230% (NS) from the loam.

Conclusions

The findings of this study indicate that P leached from organic arable soils can be greater than from mineral soils, and therefore, these organic soils require further investigation into reducing their P losses. Metal-enriched biochar, applied as an adsorptive layer below the topsoil, has the potential to reduce P losses from medium- to high-P organic soils but appear to be less useful in mineral soils.

  相似文献   

11.
This study evaluated physical properties of selected soil series and their implications on the soil compaction and erosion in Abeokuta, southwestern Nigeria. Daily rainfall data (1999–2007) were collected to estimate the rainfall erosivity. Seven soil series (Iwo, Iseyin, Ekiti, Jago, Okemesi, Apomu, and Egbeda) were sampled from 0–15, 15–30, and 30–50 cm depths for particle size distribution, organic carbon, pH, upper plastic limit, and compactibility (Proctor test). Microtopographical changes along and across toposequences of two farmers’ fields cleared mechanically and manually, respectively, were monitored using the erosion pin method. Mean annual erosivity (EI30) was high (7646 MJ mm ha?1 hr?1). Particle size, organic carbon, and pH were similar (p ≥ 0.05), while upper plastic moisture was ≤?2% among different soil series. Soil-moisture density curves indicated a maximum bulk density of 1.77–1.99 g cm?3 for a moisture range of 7.6–14%; while the soils were prone to compaction at low moisture content. Microtopographic changes were found between –2 and 0 cm and –8 and –2 cm on mechanically and manually cleared farmland, respectively. Spatial dependence showed that the soil erosion could be predicted within 5–8 m distance. To avoid erosion and compaction, soil water content should be less than 7.6% before the introduction of mechanical tillage.  相似文献   

12.
Nitrous oxide emission (N2O) from applied fertilizer across the different agricultural landscapes especially those of rainfed area is extremely variable (both spatially and temporally), thus posing the greatest challenge to researchers, modelers, and policy makers to accurately predict N2O emissions. Nitrous oxide emissions from a rainfed, maize-planted, black soil (Udic Mollisols) were monitored in the Harbin State Key Agroecological Experimental Station (Harbin, Heilongjiang Province, China). The four treatments were: a bare soil amended with no N (C0) or with 225?kg?N ha?1 (CN), and maize (Zea mays L.)-planted soils fertilized with no N (P0) or with 225?kg?N ha?1 (PN). Nitrous oxide emissions significantly (P?<?0.05) increased from 141?±?5?g N2O-N?ha?1 (C0) to 570?±?33?g N2O-N?ha?1 (CN) in unplanted soil, and from 209?±?29?g N2O-N?ha?1 (P0) to 884?±?45?g N2O-N?ha?1 (PN) in planted soil. Approximately 75?% of N2O emissions were from fertilizer N applied and the emission factor (EF) of applied fertilizer N as N2O in unplanted and planted soils was 0.19 and 0.30?%, respectively. The presence of maize crop significantly (P?<?0.05) increased the N2O emission by 55?% in the N-fertilized soil but not in the N-unfertilized soil. There was a significant (P?<?0.05) interaction effect of fertilization?×?maize on N2O emissions. Nitrous oxide fluxes were significantly affected by soil moisture and soil temperature (P?<?0.05), with the temperature sensitivity of 1.73–2.24, which together explained 62–76?% of seasonal variation in N2O fluxes. Our results demonstrated that N2O emissions from rainfed arable black soils in Northeast China primarily depended on the application of fertilizer N; however, the EF of fertilizer N as N2O was low, probably due to low precipitation and soil moisture.  相似文献   

13.
Abstract: In recent years, sulfur (S) deficiencies in winter wheat (Triticum aestivum L.) have become more common, particularly on coarse‐textured soils. In Study I, field experiments were conducted in 2001/2002 through 2003/2004 on Mississippi River alluvial soils (Experiment I) and an upland, loessial silt loam (Experiment II) to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg ha?1 and a fall rate of 22.4 kg sulfate (SO4)‐S ha?1 on grain yield of three varieties. In Study II, field experiments were conducted in 2001/2002 and 2004/2005 on alluvial soils to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg SO4‐S ha?1 in fields where S‐deficiency symptoms were present. Grain yield response to applied S occurred only on alluvial, coarse‐textured, very fine sandy loam soils (Study II) that had soil SO4‐S levels less than the critical level of 8 mg kg?1 and organic‐matter contents less than 1 g kg?1 in the 0‐ to 15‐, 15‐ to 30‐, and 30‐ to 45‐cm depths. Soil pH increased with soil depth. Optimum S rate was 11.2 kg SO4‐S ha?1 in 2001/2002 and 5.6 kg SO4‐S ha?1 in 2004/2005. On the upland, loessial silt loam soil, soil SO4‐S levels accumulated with depth, whereas organic‐matter content and pH decreased. In the loessial soils, average soil SO4‐S levels in the 15‐ to 30‐ and 30‐ to 45‐cm soil depths were 370% greater than SO4‐S in the surface horizon (0 to 15 cm).  相似文献   

14.
Potassium (K) leaching is affected by soil texture and available K, among other factors. In this experiment, effects of soil texture and K availability on K distribution were studied in the presence of roots, with no excess water. Soils from two 6-year field experiments on a sandy clay loam and a clay soil fertilized yearly with 0, 60, 120, and 180 kg ha?1 of K2O were accommodated in pots that received 90 kg ha?1 of K2O. Soybean was grown up to its full bloom (R2). Under field conditions, K leaching below the arable layer increased with K rates, but the effect was less noticeable in the clay soil. Potassium leaching in a sandy clay loam soil was related to soil K contents from prior fertilizations. With no excess water, in the presence of soybean roots, K distribution in the profile was significant in the lighter textured soil but was not apparent on the heavier textured soil.  相似文献   

15.
 In a first experiment, the effect of land use on the uptake rate of atmospheric CH4 was studied in laboratory incubations of intact soil cores. A soil under deciduous forest showed the highest CH4 oxidation. Its overall CH4 uptake during the measuring period (202 days) was 1.03 kg CH4 ha–1. Natural grassland showed the second highest CH4 oxidizing capacity (0.71 kg CH4 ha–1). The overall amount of CH4 uptake by fertilized pasture was 0.33 kg CH4 ha–1. CH4 oxidation in arable soils with different fertilizer treatments varied between 0.34 and 0.37 kg CH4 ha–1. Undisturbed soils had a higher CH4 uptake capacity than agricultural soils. The moisture content of the soil was found to be an important parameter explaining temporal variations of CH4 oxidation. Different methods of fertilization which had been commenced 10 years previously were not yet reflected in the total CH4 uptake rate of the arable soil. In a second experiment, a number of frequently used pesticides were screened for their possible effect on CH4 oxidation. In a sandy arable soil lenacil, mikado and oxadixyl caused significantly reduced CH4 oxidation compared to the control. Under the same conditions, but in a clayey arable soil, mikado, atrazine and dimethenamid caused a reduction of the CH4 uptake. In a landfill cover soil, with a 100-fold higher CH4 oxidation rate, no inhibition of CH4 oxidation was observed, not even when the application rate of pesticides was tenfold higher than usual. Received: 1 December 1998  相似文献   

16.
Vertisol soils of central India are heavy in texture, with high clay content and low organic matter. These soils are prone to degradation and the soil loss is due to poor management practices including excessive tillage. Based on a long-term study conducted for improving the quality of these soils, it was found that management practice such as low tillage (LT) + 4 t ha?1 compost + herbicide (Hb) recorded significantly higher organic carbon (OC) (6.22 g kg?1) and available N (188.5 kg ha?1) compared to conventional tillage (CT) + recommended fertilizer (RF) + off-season tillage (OT) + hand weeding (HW) (OC: 4.71 g kg?1, available nitrogen (N) (159.3 kg ha?1). Among the physical soil quality parameters, mean weight diameter (MWD) was significantly higher under LT + 4 t ha?1 straw + Hb (0.59 mm). The practice of LT + 4 t ha?1 straw + HW recorded significantly higher microbial biomass carbon (MBC) (388.8 μg g?1). The order of key indicators and their contribution towards soil quality was as follows: OC (29%) >, MBC (27%) > available zinc (Zn) (22%) > MWD (9%) > available boron (B) (8%), > dehydrogenase activity (DHA) (5%). The order of the best treatment which maintained soil quality index (SQI) values reasonably good (>1.5) was as follows: LT + 4t ha?1 compost + HW (1.65) > LT + 4 t ha?1 compost +Hb (1.60) > LT + 4t ha?1 straw + HW (1.50). Hence, these treatments could be recommended to the farmers for maintaining higher soil quality in Vertisols under soybean system. Correlation studies revealed stronger relationship between key indicators like OC (R2 = 0.627), MBC (R2 = 0.884), available Zn (R2 = 0.739) and DHA (R2 = 0.604) with Relative Soil Quality Index (RSQI). The results of the present study would be highly useful to the researchers, farmers and land managers.  相似文献   

17.
To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation‐wide 7‐km grid and analysed for SOC content. The average SOC stock in 0–100‐cm depth soil was 142 t C ha?1, with 63, 41 and 38 t C ha?1 in the 0–25, 25–50 and 50–100 cm depths, respectively. Changes at 0–25 cm were small. During 1986–97, SOC in the 25–50‐cm layer increased in sandy soils while SOC decreased in loam soils. In the subsequent period (1997–2009), most soils showed significant losses of SOC. From 1986 to 2009, SOC at 0–100 cm decreased in loam soils and tended to increase in sandy soils. This trend is ascribed to dairy farms with grass leys being abundant on sandy soils while cereal cropping dominates on loamy soils. A statistical model including soil type, land use and management was applied separately to 0–25, 25–50 and 50–100 cm depths to pinpoint drivers for SOC change. In the 0–25 cm layer, grass leys added 0.95 t C ha?1 year?1 and autumn‐sown crops with straw incorporation added 0.40 t C ha?1 year?1. Cattle manure added 0.21 t C ha?1 year?1. Most interestingly, grass leys contributed 0.58 t C ha?1 year?1 at 25–50 cm, confirming that inventories based only on top‐soils are incomplete. We found no significant effects in 50–100 cm. Our study indicates a small annual loss of 0.2 t C ha?1 from the 0–100 cm soil layer between 1986 and 2009.  相似文献   

18.
Soil degradation affects soil properties such as structure, water retention, porosity, electrical conductivity (EC), sodium adsorption ratio (SAR), and soil flora and fauna. This study was conducted to evaluate the response of contrasting textured soils irrigated with water having different EC:SAR ratios along with amendments: gypsum (G), farm manure (FM), and mulch (M). Water of different qualities viz. EC 0.6 + SAR 6, EC 1.0 + SAR 12, EC 2.0 + SAR 18, and EC 4.0 + SAR 30 was used in different textured soils with G at 100% soil gypsum requirement, FM at 10 Mg ha?1, and M as wheat straw was added on surface soil at 10 Mg ha?1. Results revealed that the applied amendments in soils significantly decreased pHs and electrical conductivity (ECe) of saturated paste and SAR. Four pore volumes of applied water with leaching fraction 0.75, 0.77, and 0.78 removed salts 3008, 4965, and 5048 kg ha?1 in loamy sand, silty clay loam, and sandy clay loam soils, respectively. First four irrigations with LF of 0.82, 0.79, 0.75, and 0.71, removed 5682, 5000, 3967, and 2941 kg ha?1 salts, respectively. The decreasing order for salt removal with amendments was FM > G > M > C with LF = 0.85, 0.84, 0.71, and 0.68, respectively. This study highlights a potential role of soil textures to initiate any mega program for reclamation of saline-sodic soils in the perspective of national development strategies.  相似文献   

19.
Improved understanding of the seasonal dynamics of C and N cycling in soils, and the main controls on these fluctuations, is needed to improve management strategies and to better match soil N supply to crop N demand. Although the C and N cycles in soil are usually considered to be closely linked, few data exist where both C and N pools and gross N fluxes have been measured seasonally. Here we present measurements of inorganic N, extracted soluble organic N, microbial biomass C and N, gross N fluxes and CO2 production from soil collected under wheat in a ley‐arable and continuous arable rotation within a long‐term experiment. The amounts of inorganic N and extracted soluble organic N were similar (range 5–35 kg N ha−1; 0–23 cm) but had different seasonal patterns: whilst inorganic N declined during wheat growth, extracted soluble organic N peaked after cultivation and also during maximal stem elongation. The microbial biomass was significantly larger in the ley‐arable (964 kg C ha−1; 0–23 cm) than the continuous arable rotation (518 kg C ha−1; 0–23 cm) but with no clear seasonal pattern. In contrast, CO2 produced from soil and gross N mineralization showed strong seasonality linked to soil temperature and moisture content. Normalization of soil CO2 production and gross N mineralization with respect to these environmental regulators enabled us to study the underlying influence of the incorporation of fresh plant material into soil on these processes. The average normalized gross rates of N mineralized during the growing season were 1.74 and 2.55 kg N ha−1 nday−1 in continuous arable and ley‐arable rotations respectively. Production rates (gross N mineralization, gross nitrification) were similar in both land uses and matched rates of NH4+ and NO3 consumption, resulting in periods of net N mineralization and immobilization. There was no simple relationship between soil CO2 production and gross N mineralization, which we attributed to changes in the C : N ratio of the mineralizing pool(s).  相似文献   

20.
Abstract

Heavy clay soils with swell‐shrink properties comprise most of the arable land in northern Jordan. These soils are classified as Vertisols. Vertisols occupy a large and important part of the agricultural land in Jordan where rainfed agriculture is practiced. Five sites were selected to represent Vertisols occurring in different precipitation zones. Soil characterization was carried out to provide useful information to understand the genesis and behavior of these soils. Vertisols in northern Jordan occur on flat to gently sloping plains. Clay, silt, and sand fractions were uniformly distributed indicating active pedoturbation. Clay content is moderate to high, and the higher the rainfall the higher the clay content. The high cation exchange capacity (CEC)/clay ratio suggest montmorillonitic and mixed mineralogy. Calcium (Ca) was the most dominant extractable cation followed by magnesium (Mg), sodium (Na), and potassium (K). The similar patterns of distribution for the electrical conductivity values and soluble cations throughout the studied soil sites indicate the low leaching rate, eluviation, and illuviation processes within these studied sites. All soils belong to the Haploxererts soil great group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号