首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two trials were conducted to characterize the differences in utilization of dry-rolled and steam-flaked corn in a growing-finishing diet for feedlot cattle supplemented with and without ionophores. Ionophore treatments were: 1) no ionophore, 2) 33 mg/kg monensin sodium plus 11 mg/kg tylosin and 3) 33 mg/kg lasalocid sodium. In trial 1, treatment effects on feedlot performance were evaluated in a 239-d growing-finishing trial involving 180 crossbred steers (approximately 25% Brahman with the remainder represented by Hereford, Angus, Shorthorn and Charolais breeds in various proportions) with an average initial weight of 153 kg. In trial 2, treatment effects on characteristics of digestion were evaluated using six steers of similar breeding and background to those used in trial 1, with cannulas in the rumen and proximal duodenum. There were no interactions between corn processing and ionophore supplementation (P greater than .20). Average daily gain was not affected by steam-flaking as opposed to dry-rolling, however, feed intake was decreased 5.4% and feed conversion was improved 6.8% (P less than .01). Steam-flaking increased the estimated net energy value of the diet 7.7% and 8.5% for maintenance and gain, respectively (P less than .01). Steam-flaking increased the digestibility of starch 6.6% (P less than .01). Steam-flaking increased ruminal molar concentrations of propionate and decreased acetate:propionate ratio and estimated methane production (P less than .10). Both monensin-tylosin and lasalocid resulted in reduced feed intake (12.3 and 6.5%, respectively, P less than .01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Performance and digestibility experiments were conducted to determine the influence of moisture and flake density (FD) on the feeding value of steam-flaked corn (SFC). Dietary treatments consisted of finishing diets that contained 78% (DM basis) SFC that was tempered using 0, 6, or 12% moisture and processed to either 360 (SF28) or 310 (SF24) g/L. A 3 x 2 factorial arrangement of treatments was used. In Exp. 1, 78 steers were individually fed the respective treatments for 106 d. Moisture added during tempering tended (linear; P < 0.10) to increase starch availability but linearly decreased (P < 0.01) particle size. Decreasing flake density increased (P < 0.001) starch availability and also decreased (P < 0.001) particle size. Starch availability (P < 0.001), moisture (P < 0.001), and particle size (P = 0.05) were all greater for SFC that was collected the day of processing compared with SFC that had been processed the previous day. Steers fed diets containing SF24 consumed less DM as the moisture level increased, whereas steers fed diets containing SF28 had increased DMI as moisture level increased (moisture x FD interaction; P < 0.01). Nonetheless, ADG, G:F, and most carcass characteristics did not differ among treatments. In Exp. 2, 6 multicannulated Jersey steers were used in a 6 x 6 Latin square using the same treatments as in Exp. 1. Increasing moisture intake linearly decreased (P < 0.05) starch intakes. Organic matter and N intakes followed similar trends but were not different. Decreasing FD tended to increase (P < 0.10) microbial N flow to the duodenum and increased microbial efficiency (P < 0.05). Ruminal starch digestibility was 90.5%, and total tract starch digestibility was 99.5% without adding moisture or processing beyond SF28. Moisture additions to corn before steam flaking resulted in few differences in performance or digestibility, despite increases in starch availability that occurred as moisture increased. Processing corn more extensively than SF28 may be unnecessary and cost-prohibitive.  相似文献   

3.
Two experiments were conducted to evaluate the comparative feeding value of dried shredded sugarbeets (DSSB; 0, 20, and 40% of diet DM) as a replacement for steam-flaked corn (SFC) in finishing diets for feedlot cattle. In Exp. 1, 60 calf-fed Holstein steers (476 ± 6.3 kg) were used in a 97-d finishing trial. Substitution of SFC with DSSB did not affect ADG or DMI (P > 0.20). Increasing DSSB decreased gain efficiency (ADG:DMI; linear effect, P = 0.04) and dietary NE (linear effect, P = 0.03). Given that SFC has a NE(m) value of 2.38 Mcal/kg, the replacement NE(m) and NE(g) values for DSSB were 1.94 and 1.29 Mcal/kg, respectively. There were no treatment effects (P > 0.20) on carcass characteristics. In Exp. 2, 6 cannulated Holstein steers (205 kg) were used in a replicated 3 × 3 Latin square design to evaluate treatment effects on digestion. Ruminal digestion of starch, NDF, and feed N were not affected (P > 0.10) by DSSB, although ruminal OM digestion tended to increase (linear effect, P < 0.08). Replacing SFC with DSSB decreased flow of starch to the small intestine, but it increased flow of microbial N (linear effect, P = 0.05). There were no treatment effects (P > 0.14) on postruminal digestion of OM, NDF, starch, or feed N or total tract digestion of OM, starch, and N. Substitution of DSSB increased (linear effect, P = 0.05) total tract NDF digestion and decreased (linear effect, P = 0.05) dietary DE (Mcal/kg). Given that SFC has a DE value of 4.19 Mcal/kg, the replacement DE value of DSSB was 3.68 Mcal/kg. There were no treatment effects (P > 0.12) on ruminal pH or total VFA; however, DSSB decreased propionate (linear effect, P = 0.05) and increased acetate (linear effect, P = 0.07), butyrate (linear effect, P = 0.05), valerate (linear effect, P = 0.04), and estimated methane production (linear effect, P = 0.05). We concluded that DSSB may replace SFC in finishing diets at levels of up to 40% without detrimental effects on ADG and carcass characteristics. The NE value of DSSB is 82% that of SFC (DM basis). Partial replacement of SFC with DSSB alters ruminal VFA patterns, increasing estimated methane energy loss and slightly decreasing the efficiency of DE utilization.  相似文献   

4.
One hundred thirty crossbred steers (324 kg) were used in a 121-d comparative slaughter trial to evaluate the feeding value of fat in steam-flaked corn- (SFC) or wheat- (SFW) based diets. Treatments consisted of an 88% concentrate finishing diet containing 1) SFC, no fat; 2) SFC, 6% yellow grease (YG); 3) SFC, 6% cottonseed oil soapstock (COS); 4) SFW, no fat; 5) SFW, 6% YG; and 6) SFW, 6% COS. There were no interactions (P greater than .10) between grain type and performance response to supplemental fat. Fat supplementation increased (P less than .05) ADG by 7.3% and decreased (P less than .01) DMI/gain by 10.6%. Fat supplementation decreased (P less than .05) ruminal OM digestion by 5% and net flow of microbial N to the small intestine by 14.5% but did not affect (P greater than .10) total tract digestion of OM, ADF, or starch. Substituting SFW for SFC did not influence (P greater than .10) ADG but tended (P greater than .10) to increase DMI/gain and decreased (P less than .05) the NEm and NEg of the diet by 3.4 and 4.3%, respectively. Ruminal OM digestion was similar (P greater than .10) for SFC and SFW. Flow of microbial N to the small intestine was 12% greater (P less than .05) with SFW. Total tract digestibilities of OM and starch were similar (P greater than .10) for both grains. However, ADF digestion was lower (34%, P less than .01) with SFW. It is concluded that the feeding value of supplemental fat is similar for wheat- and corn-based finishing diets. The performance response to supplemental YG and COS was similar. The NEm and NEg values of YG were 6.35 and 4.93 Mcal/kg, respectively, whereas the corresponding values for COS were 5.69 and 4.60 Mcal/kg. Supplementation of growing-finishing diets with up to 6% (.45 kilograms/day) of fat did not directly influence body composition. The NE value of SFW was approximately 96% of the value of SFC.  相似文献   

5.
Four Holstein steers (212 kg) with cannulas in the rumen and proximal duodenum were used in a 4 x 4 Latin square experiment to study the influence of degree of ruminal biohydrogenation (BH) on the feeding value of supplemental fat. Treatments consisted of an 88% concentrate finishing diet supplemented with 1) 2% yellow grease (control); 2) 4% formaldehyde-protected fat (Rumentek), 2% yellow grease (LBH); 3) 2% Rumentek, 4% yellow grease (MBH); or 4) 6% yellow grease (HBH). Ruminal BH of HBH, MBH, and LBH diets was 74, 68, and 54%, respectively. High-fat supplementation decreased (7%, P < .05) intestinal digestibility of 18:0 but increased intestinal digestibility of 18:1 (3%, P < .10), 18:2 (14%, P < .01), and 18:3 (23%, P < .05). Increases in intestinal digestibility of 18:0 (quadratic effect, P < .05), 18:1 (linear effect, P < .01), 18:2 (linear effect, P < .01), 18:3 (linear effect, P < .05), and total fatty acids (linear effect, P < .05) were inversely related to BH. For every 1% increase in the proportion of 18:1 fat entering the small intestine, the digestibility of 18:0 increased 1%. High-fat supplementation depressed ruminal digestion of OM (11%, P < .05), NDF (16%, P < .05), starch (6%, P < .05), and feed N (12%, P < .01). Formaldehyde-protein protection of fat diminished its depressing effects on ruminal digestion of NDF (quadratic effect, P < .10) and enhanced ruminal escape of feed N (linear effect, P < .10). Postruminal digestion of OM was greater (4.6%, P < .10) for high-fat diets. High-fat diets decreased (P < .05) total tract digestion of OM (1.9%), NDF (7.4%), and starch (.5%). Postruminal and total tract digestibility of OM, NDF, N, and starch was not affected (P > .10) by BH. In a 125-d finishing trial, 100 yearling steers (362 kg) were used to evaluate treatment effects on growth performance. High-fat diets did not affect (P > .10) ADG but increased (P < .10) feed efficiency (9%, P < .10), dietary NEm (7.6%, P < .05), and dressing percentage (9%, P < .05). The magnitude of the increase in dressing percentage was inversely related (linear effect, P < .10) to BH. We conclude that decreasing ruminal BH will increase postruminal digestibility of fat, and hence the NE value of dietary fat. The synergistic effect of increasing the proportion of 18:1 on intestinal digestion of fat enables higher levels of fat supplementation. Protecting fat from BH minimizes the detrimental effects of supplemental fat on fiber digestion.  相似文献   

6.
A feedlot growth-performance trial and a metabolism trial were conducted to evaluate the comparative feeding value of tapioca pellets (TP). In the growth-performance trial treatments consisted of a steam-flaked corn (SFC)-based finishing diet in which a blend of 86% TP and 14% peanut meal replaced SFC at the rate of 0, 15, or 30% of diet DM. Daily weight gain (P less than .10) and DM intake (P less than .01) were greatest when 15% of the diet DM consisted of TP. Feed/gain increased linearly (P less than .01) with TP substitution into the diet. Treatment effects on carcass merit were small (P greater than .10), except that marbling score was greater with 15% TP than with either 0 or 30% TP. In the metabolism trial involving four Holstein steers, treatments consisted of an 88% concentrate diet containing 67% of either SFC or TP. Ruminal and total tract digestibility of starch was similar (P greater than .10) for SFC and TP, averaging 91 and 99%, respectively. Postruminal (P less than .05) and total tract (P less than .01) digestibility of N was lower for the TP than for the SFC diet. Total tract digestibility of N in TP was 3%. Little, if any, ADF in TP was fermented in the rumen. Total tract digestibility of ADF in TP was 16%. Total tract digestibility of DM (P less than .01) and OM (P less than .05) decreased 7 and 5%, respectively, with TP substitution for SFC. Virtually all the difference in OM digestibility could be attributed to differences in ADF excretion. The DE value of the diet decreased 11.5% (P less than .01) with the substitution of TP for SFC. It was concluded that TP can replace up to 30% of the DM in growing-finishing diets without adversely affecting ADG or DM intake of feedlot cattle. Tapioca pellets have approximately 86% the NE value of SFC.  相似文献   

7.
Feedlot performance was studied in a 262-d trial using 126 crossbred beef steers (182 kg initial BW) to determine whether source of dietary roughage influences performance and carcass characteristics by steers fed growing (112 d) and finishing (150 d) diets with various flake densities (FD) of steam-processed sorghum grain. A 3 x 3 arrangement of treatments (two pens of seven steers each) was used, with dietary roughages being chopped alfalfa hay or 50:50 mixtures (equal NDF basis) of cotton-seed hulls or chopped wheat straw with alfalfa hay; sorghum grain was steam-flaked to densities of 386, 322, and 257 g/L (SF30, SF25, and SF20, reflecting bushel weight in pounds). The effects of these same FD on nutrient digestibilities were determined in three experiments with 24 crossbred steers fed finishing diets containing each of the roughage sources. No interactions between FD and roughage type were detected in any performance or carcass measurements (P > .10). Intake of DM decreased linearly (P < .05) in response to decreased FD. Daily rate and efficiency of gain were not altered (P >.10) by FD. Decreasing FD decreased linearly (P < .05) dressing percentage and fat thickness, but not other carcass measurements. Dietary roughage did not affect (P >.10) daily gains or carcass measurements, but DM intake was lower and feed efficiencies were superior (P < .05) when alfalfa hay was the sole source of roughage. Cottonseed hulls and wheat straw were relatively less valuable in the low roughage finishing diets than in higher roughage growing diets. Digestibilities of starch increased linearly as FD was decreased (P = .02) when steers were fed diets containing wheat straw, but not for alfalfa hay or cottonseed hull diets. Digestibilities of DM did not vary with changes in FD; however, changes in CP, NDF, and ADF digestibilities due to FD seemed to differ among experiments. In conclusion, performance and carcass measurement responses by growing-finishing steers to differences in sorghum grain FD were not related to source of dietary roughage, but diets with alfalfa hay as the only source of roughage were most efficient. Decreasing FD of sorghum grain below 386 g/L (30 lb/bu) was not advantageous in improving performance or carcass merit by growing-finishing steers.  相似文献   

8.
Two hundred twenty-eight crossbred steers (304 kg) were used in a 125-d comparative slaughter trial to evaluate the influence of level and source of supplemental fats on their feeding value for feedlot cattle. Dietary treatments consisted of a steam-rolled, barley-based finishing diet containing 1) no supplemental fat; 2) 4% yellow grease (YG); 3) 4% blended animal-vegetable fat (BVF); 4) 8% YG; 5) 8% BVF or 6) 6% BVF and 2% crude soybean lecithin. Increasing level of supplemental fat in the diet resulted in linear improvements (P less than .01) in weight gain, feed conversion and NE value of the diet. Estimated NE values of YG and BVF were similar and did not appear to be influenced by level of supplementation, averaging 5.78 and 4.61 Mcal/kg for maintenance and gain, respectively. Fat supplementation resulted in linear increases in empty body fat (P less than .01), kidney, pelvic and heart fat (P less than .01) and marbling score (P less than .05). Partially replacing BVF with lecithin did not influence (P greater than .10) steer performance, carcass merit or estimated NE value of the diet. The comparative feeding value (in terms of both diet acceptability and NE value) of the supplemental fats tested was similar and was apparently not influenced by level of supplementation up to 8% of diet DM.  相似文献   

9.
Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P 相似文献   

10.
Two experiments were conducted to evaluate the influence of dry-rolling (DRS) and tempering agent (TA) addition during the steam-flaking of grain sorghum (SFS) for feedlot cattle. Five dietary treatments were compared: 1) DRS; 2) SFS, no TA; 3) SFS, 0.275 mg/kg of TA; 4) SFS, 1.375 mg/kg of TA; and 5) SFS, 2.750 mg/kg of TA. Bulk densities of DRS and SFS were 0.48 and 0.36 kg/L, respectively. Diets contained 70.6% grain sorghum (DM basis). One hundred fifty crossbred steers (336 kg of BW) were used in a 115-d finishing experiment to evaluate treatment effects on feedlot performance. Body weight gain averaged 1.49 kg/d and was not affected (P = 0.47) by treatments. The SFS reduced (P < 0.01) DMI (9%) and enhanced (P < 0.01) G:F (13%) and the NE(m) and NE(g) value of the diet (9 and 11%, respectively). Use of a TA before flaking sorghum did not influence (P > 0.20) cattle growth performance or NE(m) or NE(g) value of the diet. Given that the NE(m) and NE(g) values of DRS are 2.00 and 1.35 Mcal/kg, respectively (NRC, 1996), the corresponding values for SFS were 2.28 and 1.59 Mcal/kg. Five steers (397 kg of BW) with ruminal and duodenal cannulas were used in a 5 x 5 Latin square design to evaluate treatment effects on digestive function. Ruminal digestion of OM and starch was greater (14 and 16%, respectively; P < 0.01) for SFS vs. DRS. Steam-flaking sorghum increased (P < 0.01) postruminal digestion of OM (11%), N (10%), and starch (25%) and total tract digestion (P < 0.01) of OM (8.3%), N (8.2%), and starch (8.9%). Grain processing did not affect (P > 0.20) ruminal pH or VFA molar proportions. There was a cubic component (P < 0.10) to level of TA on ruminal pH and VFA molar proportions, with values being optimal at 1.375 mg/kg of tempering agent. It is concluded that steam-flaking grain sorghum will increase its NE value for maintenance and gain (14 and 18%, respectively) and enhance the MP value of the diet due to greater intestinal N digestion. The use of a TA to enhance the mechanical efficiency of the flaking process may not otherwise benefit the feeding value of sorghum.  相似文献   

11.
Holstein steers (n = 96; 375 kg) were used in a 144-d growth-performance trial to evaluate influence of level (42, 28.5, and 15%) of FFA content on feeding value of yellow grease. Two sources of yellow grease were compared: conventional yellow grease (CYG), containing 15% FFA, and griddle grease (GG), containing 42% FFA. Dietary treatments consisted of an 88% concentrate finishing diet supplemented with either 1) 0% fat, 2) 5% GG, 3) 2.5% GG and 2.5% CYG, or 4) 5% CYG. Fat supplementation increased ADG (11%; P<.05), feed efficiency (9%; P<.05), diet NE (6.4%; P<.05), carcass weight (4%; P<.10), dressing percentage (1%; P<.10), and kidney, pelvic, and heart fat (20%, P<.05). Increasing the FFA in supplemental fat increased (linear effect, P<.10) DM intake, ADG, and feed efficiency and decreased (linear effect, P<.10) retail yield. These improvements in performance were primarily due to increased DM intake. The NEm and NEg values of supplemental fats were not affected by FFA content, averaging 4.98 and 3.85 Mcal/kg, respectively. Treatment effects on characteristics of ruminal and total tract digestion were evaluated using four Holstein steers (180 kg) with cannulas in the rumen and proximal duodenum. Supplemental fat did not influence (P>.10) ruminal or total tract digestion of OM, ADF, starch or N. Postruminal fatty acid digestion was less (P<.10) for fat-supplemented diets than for unsupplemented diets (73.0 vs. 78.6%). The decrease in postruminal fatty acid digestibility with fat supplementation was mainly due to a decreased (16.7%; P<.05) digestibility of C18:0. Postruminal digestibility of the supplemental fat was 68%. There were no treatment effects (P>.10) on ruminal pH. Ruminal biohydrogenation of fatty acids was directly proportional to estimates of methane production. We conclude that the feeding value of conventional yellow grease and griddle grease is similar and that differences in the FFA content of yellow grease will not negatively affect diet acceptability and growth performance of feedlot cattle.  相似文献   

12.
Approximately 75% to 80% of expenses involved in cattle feeding in commercial feedlots are feed costs. Grains are used in feedlot diets to improve the performance and efficiency of feedlot cattle by increasing the energy density of diets. Grains for these diets are commonly processed for various reasons, including improving palatability, altering particle size, increasing digestibility, altering the rate, site, and extent of digestion, and facilitating preservation or storage. Altering the rate, site, and extent of digestion in turn can alter cattle performance. This article focuses on processing methods common to feedlots and the primary grains fed, corn and grain sorghum.  相似文献   

13.
Two experiments were conducted to determine the influence of chemical and physical corn kernel traits on digestibility and feedlot cattle performance. Seven commercially available corn hybrids representing a range in kernel traits were evaluated for a variety of chemical and physical traits that included test weight, 1,000-grain weight, kernel size, starch, CP, amylose, Stenvert Hardness tests (kernel hardness traits), tangential abrasive dehulling device loss, 12-h in vitro starch disappearance, and rate and extent of in situ DM disappearance. Differences among hybrids existed for all physical kernel traits measured. In Exp. 1, 224 steers in 28 pens were fed the same hybrids for 167 d in a completely randomized design. All diets were formulated to have 12.5% CP and contained 66% dry-rolled corn (DM basis). There were no differences (P >0.20) among corn hybrids for DMI, ADG, or carcass characteristics. However, efficiency of gain (G:F) was influenced by hybrid (P < 0.01) with a difference of 9.5% from the least to the most efficient. In Exp. 2, 7 ruminally cannulated heifers were used in a 7 x 7 Latin square design to determine the effects of these hybrids on nutrient digestibility, VFA concentrations, and ruminal pH. Total-tract OM and starch digestibilities were not different (P >0.15) among hybrids and averaged 77.9 and 95.1%, respectively. Differences (P < 0.05) among hybrids existed for ruminal propionate concentration and the acetate to propionate ratio. Kernel hardness traits correlated (P < 0.05) with G:F were 1,000-grain weight (r = -0.81), Stenvert time to grind (r = -0.83), and the proportion of Stenvert soft to coarse particle height (r = 0.83). Propionate concentration was not correlated (r = 0.45) with G:F but was correlated (P = 0.02) to the Stenvert time to grind (r = -0.83). Cattle fed dry-rolled corn hybrids with greater proportions of soft endosperm had greater concentrations of propionate and gained more efficiently than cattle fed hybrids with a harder endosperm. Selecting for these softer kernel traits may improve the efficiency of gain in feedlot cattle.  相似文献   

14.
Six crossbred steers (315 kg) with cannulas in the rumen, proximal duodenum and distal ileum were used to study the influence of level and source of dietary fat on characteristics of digestion. Dietary treatments consisted of a steam-rolled barley-based finishing diet containing 1) no supplemental fat; 2) 4% yellow grease (YG); 3) 4% blended animal-vegetable fat (BVF); 4)8% YG; 5) 8% BVF or 6) 6% BVF and 2% crude lecithin. Increasing level of fat supplementation resulted in linear decreases (P less than .01) in ruminal and total tract digestion of OM and ADF and intestinal digestion of fat (P less than .05). At the 4 and 8% levels of supplementation, intestinal true digestibility of fat averaged 80.1 and 69.3%, respectively. Ruminal molar proportions of acetate decreased, and propionate molar proportion, as well as DE and ME values of the diet, increased linearly (P less than .01) with level of fat supplementation. The DE and ME values for fat were 8.17 and 9.76 at the 4% level and 7.35 and 8.72 Mcal/kg at the 8% level of supplementation, respectively. Yellow grease supplementation resulted in greater (P less than .05) ruminal fiber digestion and greater ruminal molar proportions of propionate than BVF. Intestinal fat digestion was similar (P greater than .10) for YG and BVF. Adding 25% lecithin to BVF resulted in greater ruminal fiber digestion and greater ruminal molar proportions of acetate; however, lecithin tended (P less than .10) to have a lower ME value than BVF.  相似文献   

15.
Three experiments were conducted to identify factors influencing steam-flaked corn (SFC) characteristics and feeding value. In Exp. 1, corn samples (n = 108) were tempered for 2 h using 6, 10, or 14% moisture containing 0 or 0.67 mL of surfactant/L. Samples were steamed for 20 or 40 min and flaked to 360, 335, or 310 g/L. Treatments were arranged in a 3 x 2 x 2 x 3 factorial. No interactions existed in Exp. 1. Increasing tempering moisture linearly (P < 0.001) increased corn moisture after tempering, steaming, and flaking; however, SFC moisture was not increased (quadratic; P < 0.001) greatly by applying more than 10% water during tempering. The surfactant, steam time, and flake density had no effect (P = 0.16 to 0.93) on corn moisture after tempering, steaming, or flaking, but adding a surfactant during tempering decreased (P = 0.05) moisture loss after flaking. Starch availability was unaffected (P = 0.31 to 0.84) by tempering moisture concentration, tempering with a surfactant, or steam time but was increased (linear; P < 0.01) by decreasing flake density. Flake durability was increased by increasing tempering moisture (linear; P < 0.001), tempering with a surfactant (P = 0.04), increasing steam time (P < 0.001), and decreasing flake density (linear; P = 0.02). In Exp. 2, 89 heifers (initial BW = 350 kg) were fed 75% SFC-based diets for 108 d to determine the effects of SFC particle size on performance and carcass traits. Treatments were SFC that was mixed for 0 (4,667 microm) or 15 min (3,330 microm) before addition of other ingredients. Heifers fed 3,330-microm SFC tended (P = 0.13) to eat less DM, but ADG and G:F did not differ (P = 0.58 to 0.65) between treatments. Carcass traits did not differ, except that heifers fed 3,330-microm SFC had less (P = 0.008) KPH. In Exp. 3, 96 heifers (initial BW = 389 kg) were fed for 82 d diets containing 73% SFC that was either 18 or 36% moisture. Heifers fed 36% moisture SFC ate less DM (P = 0.02) and gained slower (P = 0.05) than heifers fed 18% moisture SFC, but G:F did not differ (P = 0.93) with SFC moisture. Heifers fed 36% moisture SFC were fatter at the 12th rib (P = 0.009), but all other carcass traits did not differ. Methods that increase moisture of SFC improved durability, but extreme moisture levels negatively affected cattle performance. Flake particle size did not affect cattle performance. Flake density is the major factor affecting starch availability in SFC.  相似文献   

16.
玉米是肉牛养殖生产中的重要能量饲料.经蒸汽压片处理的玉米可提高牛对玉米的消化吸收率,饲喂蒸汽压片玉米可对肉牛瘤胃发酵、生产性能、肉品质等产生积极影响.文章结合有关研究报道,简述玉米蒸汽压片技术、蒸汽压片玉米营养价值以及饲喂蒸汽压片玉米对肉牛生产性能的影响,以期为蒸汽压片玉米在肉牛养殖生产中的应用推广提供参考.  相似文献   

17.
Two hundred fifty-two steers (366 kg) were assigned to a 3 x 2 x 2 factorial arrangement of three densities of steam-flaked sorghum grain (bulk [flake] density of 437, 360, and 283 g/liter, B34, B28, and B22, respectively), two roughage levels (9 [R9] and 18% [R18]) and two feeding strategies (ad libitum [AD] or multiple of maintenance [MM], 2.3, 2.5, and 2.7 MM for wk 1, 2, and 3, and 2.9 MM thereafter). Steers fed R18-AD gained faster than steers fed R18-MM (1.59 vs 1.52 kg/d, P = .10); for R9 diets, no difference (P greater than .25) was found between steers fed AD and MM (interaction, P = .07). Flake density did not affect ADG (1.53 kg, P greater than .2). Dry matter intake decreased (9.8, 9.3, and 9.0 kg/d, linear, P less than .001) and gain efficiency (G/DMI, kg of gain/100 kg of DMI) increased (15.7, 16.5, and 16.9, linear, P less than .001; quadratic, P = .19) as processing degree increased (B34 to B22). Percentage of choice carcasses for B34 (67.0%) was higher (linear, P = .05) than for B28 (51.9%) and B22 (52.3%). Fecal starch and pH were 10.8, 5.7, and 4.0%, and 6.11, 6.23, and 6.37 for B34, B28, and B22, respectively (linear, P less than .001). The correlation between fecal starch and pH was -.51 (P less than .001, n = 252). Enzymatic glucose release, in vitro 6-h gas production, microbial protein synthesis, and protein degradability were 375, 483, and 559 mg/g; 24.7, 28.2, and 31.1 ml/.2 g; 6.15, 6.88, and 7.84 g/100g; and 61.4, 56.6, and 42.2% for B34, B28, and B22, respectively (linear, P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Six crossbred steers (344 kg) with "T" cannulas in the rumen and proximal duodenum (6 cm from the pyloric sphincter) were used in a crossover experiment to evaluate the feeding value of wood sugar concentrate (WSC) in a finishing diet for feedlot steers. Composition of WSC was as follows: DM, 49.5%; ash, 19.2%; N, .1%; hydrolyzable sugars, 38.9% and lignosulfonate, 28.8%. Dietary treatments consisted of a finishing diet based on steam-flaked corn supplemented or not supplemented with 10.5% WSC (DM basis). Adding WSC to the diet increased (P less than .10) passage of OM to the small intestine. However, passage of N constituents (non-ammonia N, microbial N and feed N) was not affected (P greater than .10). Postruminal digestion of OM and N was depressed (P less than .05) 11.5% and 6.7%, respectively, with WSC supplementation. Total tract digestibilities of OM and GE were depressed (P less than .01) 4.1 and 4.2%, respectively. Adjusting for constituent passage of the basal diet, estimated digestible OM and DE values for WSC used in this trial were 42.7% and 2.02 Mcal/kg. WSC (DM basis) had 76% and 64%, respectively, of the energy value of hemicellulose extract (masonex) and cane sugar molasses. Because a high level (10% of diet DM) of WSC depressed postruminal N digestion, WSC levels of feedlot diets that are marginal in protein should not exceed 5% of diet DM.  相似文献   

19.
Six crossbred steers (274 kg) with "T" cannulas in the rumen, proximal duodenum (6 cm from the pyloric sphincter) and distal ileum (20 cm from the ileal-cecal valve) were used in a crossover experiment to evaluate the feeding value of coconut alcohol bottoms-bottoms (CABB) in a finishing diet for feedlot steers. Dietary treatments consisted of a steam-rolled barley-based finishing diet supplemented with or without 6% CABB. The CABB was blended first with the steam-rolled barley portion of the diet prior to adding the other dietary ingredients. Ruminal digestion of ADF and N was not affected (P greater than .10) by CABB supplementation. Added CABB decreased total tract digestibility of OM, ADF, lipid and DE by 5.65 (P less than .01), 29.4 (P less than .05), 57.4 (P less than .01) and 5.65%, respectively. Adjusting for constituent passage of the basal diet, estimated total tract digestibility of OM, DE and lipid of the supplemental CABB was 1.1, -.23 and 16.4%, respectively. CABB essentially has no feeding value in finishing diets for cattle.  相似文献   

20.
A feedlot growth-performance trial involving 64 yearling steers and a metabolism trial involving four steers with cannulas in the rumen, proximal duodenum, and distal ileum were conducted to evaluate the comparative feeding value of steam-flaked corn (SFC, density = .30 kg/liter) and sorghum (SFS, density = .36 kg/liter) in finishing diets supplemented with or without .75% sodium bicarbonate (BICARB). No interactions between BICARB and grain type proved to be significant. Supplemental BICARB increased ADG 5.9% (P less than .10) and DMI 4.6% (P less than .05) but did not influence (P greater than .10) the NE value of the diet. Supplemental BICARB increased ruminal pH (P less than .01) and total tract fiber digestion (P less than .05). Differences in ruminal and total tract OM, starch, and N digestion were small (P greater than .10). Replacing SFC with SFS decreased (P less than .05) ADG 6.1% and increased (P less than .01) DMI/gain 9.7%. Corresponding diet NEm and NEg were decreased (P less than .01) 7.0 and 9.3%, respectively. Ruminal digestion of OM and starch tended to be lower (11.8 and 7.2%, respectively, P less than .10) for SFS. Ruminal degradation of feed N was 31% lower (P less than .05) for the SFS diets. Total tract digestibility of OM, N, DE, and ME were 3.3, 10.8, 4.4, and 5.5% lower (P less than .05), respectively, for the SFS vs SFC diets. In conclusion, 1) SFS had 92% the NEm of SFC; 2) differences in total tract starch digestibility were small and cannot explain the higher feeding value of SFC; 3) the low ruminal degradation of sorghum N (roughly 20%) should be considered in diet formulation to avoid a deficit in ruminally available N; and 4) .75% BICARB supplementation increased DMI and ADG of cattle fed highly processed grain-based diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号