首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of total electrolyte concentration (TEC) and sodium adsorption ratio (SAR) of water on ESR‐SAR relationships of clay (Typic Haplustert), clay loam (Vertic Haplustept) and silt loam (Lithic Haplorthent) soils was studied in a laboratory experiment. Twenty four solutions, encompassing four TEC levels viz., 5, 10, 20, and 50 mmolc l—1 and six SAR levels viz., 2.5, 5, 10, 15, 20, and 30 mmol1/2l—1/2 were synthesized to equilibrate the soil samples using pure chloride salts of calcium, magnesium, and sodium at Mg:Ca = 1:2. SAR of equilibrium solution decreased as compared to the equilibrating solution and more so in waters of low salt concentration and high SAR. At low electrolyte concentration, high SAR values were not attained in the equilibrium solution because of addition of calcium and magnesium from the mineral dissolution and from the exchange phase. Irrespective of TEC, exchangeable sodium in all the soils increased by about 4.5 to 5‐fold and irrespective of SAR, it increased by about 1.4‐ to 1.8‐fold. A positive interaction of TEC and SAR influenced the ESP build‐up and CEC played a major role in the visual disparity in sodication of these soils. At higher TEC levels, considerable increase in ESP was observed when it was corrected for anion exclusion and more so in silt loam followed by clay loam and clay soils. The values for Gapons' constant were in the range 0.0110—0.0176, 0.0142—0.0246, and 0.0189—0.0344 mmol—1/2l1/2 in clay, clay loam, and silt loam soils, respectively. Increase in TEC from 5 to 50 mmolc l—1 resulted in 5.84, 8.33, and 9.77 % decrease in Gapons' constant of clay, clay loam, and silt loam soils, respectively. The soils exhibited differential affinity for Ca2+, Mg2+ or Na+ under different quality waters. Regression coefficients of ESR‐SAR relationship were lower for low TEC as compared with high TEC waters. The exchange equilibrium was strongly affected by TEC of the solution phase. Variation in soil pH was gradual with respect to TEC and SAR of equilibrating solution and no sharp change was observed. Soluble salt concentration was doubled upon equilibration with low salt waters at all SAR levels in all the soils. However, the salt concentration remained unchanged upon equilibration with high salt waters. Considering pH 8.5 a boundary between soil salinity and sodicity, ESP values attained at TEC 5 mmolc l—1 were 7.34, 8.02, and 14.32 for clay, clay loam, and silt loam soils, respectively.  相似文献   

2.
Sodium (Na+) dominated soils reduce saturated hydraulic conductivity (Ks) by clay dispersion and plugging pores, while gypsum (CaSO4•2H2O) application counters these properties. However, variable retrieval of texturally different saline–sodic soils with gypsum at soil gypsum requirement (SGR) devised to define its quantity best suited to improve Ks, leach Na+ and salts. This study comprised loamy‐sand (LS), sandy loam (SL), and clay loam (CL) soils with electrical conductivity of saturation extract (ECe) of ~8 dS m−1, sodium adsorption ratio (SAR) of ~44 (mmol L−1)1/2 and exchangeable sodium of ~41%, receiving no gypsum (G0), gypsum at 25% (G25), 50% (G50) and 75% (G75) of SGR. Soils packed in lysimeters were leached with low‐carbonate water [EC at 0·39 dS m−1, SAR at 0·56 (mmol L−1)1/2 and residual sodium carbonate at 0·15 mmolc L−1]. It proved that a rise in gypsum rate amplified Ks of LS ≫ SL > CL. However, Ks of LS soil at G25 and others at G75 remained efficient for salts and Na+ removal. Retention of calcium with magnesium (Ca2+ + Mg2+) by LS and SL soils increased by G50 and decreased in G75, while in CL, it also increased with G75. The enhanced Na+ leaching efficiency in LS soil with G25 was envisaged by water stay for sufficient time to dissolve gypsum and exchange and leach out Na+. Overall, the superiority of gypsum for LS at G25, SL at G50 and CL at G75 predicted cost‐effective soil reclamation with a decrease in ECe and SAR below 0·97 dS m−1 and 5·92 (mmol L−1)1/2, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Sodic water and spring water percolated through clay, clay loam, and sandy loam (SL) soils with exchangeable sodium percentages (ESPs) of 0, 10, 30, and 50. Reduction in saturated hydraulic conductivity and water stable aggregates recorded at higher ESPs. At ESP ≈30, application of sodic and spring water to clay soil (C) reduced saturated hydraulic conductivity from 1.2 to 3 mm hr?1, whereas in SL soil, the values were 2.8 and 6.2 mm hr?1, respectively. Results indicated that at any ESP and water source, the highest free swelling obtained was in the C soil. This study has practical importance to the management of irrigation water quality with respect to soil deterioration.  相似文献   

4.
As metropolitan areas expand, the municipal and industrial uses of freshwater increase. Therefore, water resources for irrigation become limited and wastewater reuse for irrigation becomes a good alternative. For this purpose, the effects of suspended solids in wastewater on the soil physical properties, i.e., saturated hydraulic conductivity, Ks, have to be considered. The objectives of this research were to study the effects of applying freshwater and differently treated wastewater on Ks in the surface and subsurface layers of sandy‐loam, loam, and clay‐loam soils. This effect was studied by investigating the ratio of Ks for wastewater to Ks for fresh water in soil surface as Kr1 and in soil subsurface as Kr2. The results showed that the application of freshwater did not reduce the Kr1 considerably. However, the reduction in Kr1 mainly occurred in soil depth of 0–50 mm due to the application of wastewater. This effect is more pronounced in clay‐loam soil than in loam and sandy‐loam soils. It is concluded that application of wastewater with TSS (total suspended solid) of ≥ 40 mg L–1 resulted in Kr1 reduction of >50% in different soil textures. However, the Kr2 reduction at soil depth of 100–300 mm is not considerable by application of wastewater for different soil textures. Further, it is concluded that less purified wastewater can be used in light‐texture soils resulting in less reduction in Kr1. Empirical models were developed for predicting the value of Kr1 as a function of amounts of wastewater application and TSS for different soil textures that can be used in management of wastewater application for preventing deterioration of soil hydraulic conductivity.  相似文献   

5.
The effects of zeolite application (0, 4, 8 and16 g kg?1) and saline water (0.5, 1.5, 3.0 and 5.0 dS m?1) on saturated hydraulic conductivity (K s) and sorptivity (S) in different soils were evaluated under laboratory conditions. Results showed that K s was increased at salinity levels of 0.5‐1.5 dS m?1 in clay loam and loam with 8 and 4 g zeolite kg?1 soil, respectively, and at salinity levels of 3.0–5.0 dS m?1 with 16 g zeolite kg?1 soil. K s was decreased by using low and high salinity levels in sandy loam with application of 8 and 16 g zeolite kg?1, respectively. In clay loam, salinity levels of 0.5–3.0 dS m?1 with application of 16 g kg?1 zeolite and 5.0 dS m?1 with application of 8 g zeolite kg?1 soil resulted in the lowest values of S. In loam, all salinity levels with application of 16 g zeolite kg?1 soil increased S compared with other zeolite application rates. In sandy loam, only a salinity level of 0.5 dS m?1 with application of 4 g zeolite kg?1 soil increased S. Other zeolite applications decreased S, whereas increasing the zeolite application to 16 g kg?1 soil resulted in the lowest value of S.  相似文献   

6.
In the Far West Texas region in the USA, long‐term irrigation of fine‐textured valley soils with saline Rio Grande River water has led to soil salinity and sodicity problems. Soil salinity [measured by saturated paste electrical conductivity (ECe)] and sodicity [measured by sodium adsorption ratio (SAR)] in the irrigated areas have resulted in poor growing conditions, reduced crop yields, and declining farm profitability. Understanding the spatial distribution of ECe and SAR within the affected areas is necessary for developing management practices. Conventional methods of assessing ECe and SAR distribution at a high spatial resolution are expensive and time consuming. This study evaluated the accuracy of electromagnetic induction (EMI), which measures apparent electrical conductivity (ECa), to delineate ECe and SAR distribution in two cotton fields located in the Hudspeth and El Paso Counties of Texas, USA. Calibration equations for converting ECa into ECe and SAR were derived using the multiple linear regression (MLR) model included in the ECe Sampling Assessment and Prediction program package developed by the US Salinity Laboratory. Correlations between ECa and soil variables (clay content, ECe, SAR) were highly significant (p ≤ 0·05). This was further confirmed by significant (p ≤ 0·05) MLRs used for estimating ECe and SAR. The ECe and SAR determined by ECa closely matched the measured ECe and SAR values of the study site soils, which ranged from 0·47 to 9·87 dS m−1 and 2·27 to 27·4 mmol1/2 L−1/2, respectively. High R2 values between estimated and measured soil ECe and SAR values validated the MLR model results. Results of this study indicated that the EMI method can be used for rapid and accurate delineation of salinity and sodicity distribution within the affected area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
干粉PAM溶解时间对土壤饱和导水率的动态影响   总被引:1,自引:0,他引:1  
韩冬  魏占民  于健  宋日权 《土壤》2016,48(2):368-373
本试验选取两种质地土壤(黏壤土和砂壤土),采用3种干粉PAM施用水平(0、22.5 kg/hm~2和45 kg/hm~2),测定土样在10.25 mm/h入渗速度下的土壤饱和导水率(KS),然后根据土样团聚体含量和稳定性及团聚结构的微观图片,分析干粉PAM影响下土壤结构的变化特征,进而说明干粉PAM溶解时间对KS的影响机理。结果表明:施用PAM后,KS随干粉PAM在水中溶解时间的延长而逐渐减小,最终趋于稳定;干粉PAM溶解时间较短时,PAM处理的KS高于对照,其中PAM施用水平45 kg/hm~2时砂壤土KS提高幅度最大,较对照提高26.87%,但不同PAM施用量处理间的KS差异不显著。干粉PAM溶解时间足够长时,PAM处理的KS均显著低于对照,其中PAM施用水平45 kg/hm~2时黏壤土KS降低幅度最大,较对照降低10.86%,但是不同施用量处理间KS差异不显著。从影响机理上分析,PAM主要是通过增加土壤团聚体含量及稳定性来提高KS;而干粉PAM溶解时间足够长时,由于PAM易吸附土壤颗粒,水解后的PAM分子链不断伸张延长,堵塞了土壤孔隙,加上PAM本身的黏滞特性,从而降低了KS。研究干粉PAM溶解时间对KS的动态影响,可以为PAM在改善土壤导水能力方面的应用提供理论依据。  相似文献   

8.
浑水土壤入渗具有复杂的上边界变化过程,其上边界导水能力的变化规律是研究浑水土壤入渗特性的重要基础。为研究浑水入渗形成致密层过程中导水率的变化情况,该研究进行了17组(9组正交试验处理,8组用于模型验证)浑水饱和土柱入渗试验,通过对试验结果进行多元回归构建多因素(浑水含沙率、黏粒含量及入渗时间)影响下砂土导水率动态模型;并结合浑水饱和土柱入渗特性进行合理假设,分别建立浑水砂壤土和粉壤土饱和土柱导水率动态模型并进行验证。结果表明:浑水含沙率、黏粒含量及入渗时间对砂土导水率影响极显著(P<0.01),入渗时间为砂土影响导水率变化的主要因素,其次为含沙率和黏粒含量;建立的砂土导水率动态模型决定系数为0.853,均方根误差为0.004 cm/min,表明该模型可客观反映各因素与导水率之间的关系;模型验证试验结果中均方根误差小于0.01 cm/min,相对误差绝对值均值小于7%,说明该导水率动态模型可靠性较高;砂壤土和粉壤土导水率动态模型决定系数分别为0.912和0.930,均方根误差分别为2×10-3和5×10-5 cm/min;模型验证中均方根...  相似文献   

9.
Dispersion is an important issue for clay leaching in soils. In paddy soils of the Red River Delta (RRD), flooding with fresh water and relatively high leaching rates can accelerate dispersion and the translocation of clay. For the clay fraction of the puddled horizon of a typical paddy soil of the RRD, the effect of various cations and anions as well as humic acid (HA) at different pH values on the surface charge (SC) were quantified and the dispersion properties were determined in test tubes and described by the C50 value. In the <2 µm fraction, dominated by illite, the proportion of 2:1 vs. 1:1 clay minerals is 5:1. The organic‐C content of the clay fraction is 2.2%. Surface charge was found to be highly pH‐dependent. At pH 8 values of –32 and at pH 1 of –8 mmolc kg–1 were obtained. Complete dispersion was observed at pH > 4, where SC is > –18 mmolc kg–1. The flocculation efficiency of Ca strongly depends on the pH. At pH 4, the C50 value is 0.33, 0.66 at pH 5, and 0.90 mmol L–1 at pH 6. At pH 6, close to realistic conditions of paddy soils, the effect of divalent cations on the SC and flocculation decreases in the order: Pb > Cu > Cd > FeII > Zn > Ca > MnII > Mg; FeII was found to have a slightly stronger effect on flocculation than Ca. An increase in concentrations of Ca, MnII, and Mg from 0 to 1 mmol L–1 resulted in a change in SC from –25 to approx. –15 mmolc kg–1. In comparison, the divalent heavy‐metal cations Pb, Cu, Cd, and Zn were found to neutralize the SC more effectively. At a Pb concentration of 1 mmol L–1, the SC is –2 mmolc kg–1. From pH 3 to 5, the dispersion of the clay fraction is facilitated rather by SO than by Cl, which can be explained by the higher affinity of SO to the positively charged sites. With an increase of the amount of HA added, the SC continuously shifts to more negative values, and higher concentrations of cations are needed for flocculation. At pH 3, where flocculation is usually observed, the presence of HA at a concentration of 40 mg L–1 resulted in a dispersion of the clay fraction. While high anion concentrations and the presence of HA counteract flocculation by making the SC more negative, FeII and Ca (C50 at pH 6 = 0.8 and 0.9 mmol L–1, respectively) are the main factors for the flocculation of the clay fraction. For FeII and Ca, the most common cations in soil solution, the C50 values were found to be relatively close together at pH 4, 5, and 6, respectively. Depending on the specific mineralogical composition of the clay fraction, SC is a suitable measure for the determination of dispersion properties and for the development of methods to keep clay particles in the soil in the flocculated state.  相似文献   

10.
Understanding soil water dynamics and storage is important to avoid crop failure on highly weathered, porous and leached soils. The aim of the study was to relate soil moisture characteristics to particle-size distributions and chemical properties. On average, Atterberg limits were below 25% in the A-horizon and not more than26.56% in the B-horizon, whereas soil bulk density was between 1.27 and 1.66Mgm?3. The saturated hydraulic conductivity (Ksat) was generally between 0.20 and 5.43 cm h?1 in the top soil and <1.31 cm h?1 in the subsoil. The higher Ksat values for the A-horizons were attributed to the influence soil microorganisms operating more in that horizon. The amount of water retained at field capacity or at permanent wilting point was greater in the B-horizons than in the A-horizons, suggesting that clay accumulation in the B-horizon and evapotranspiration effects in the A-horizon may have influenced water retention in the soils. Soil moisture parameters were positively related to clay content, silt content, exchangeable Mg2+, Fe2O3 and Al2O3, and negatively related to sand content, SiO2, sodium absorption ratio, exchangeable sodium percentage and bulk density. The low clay content may explain why drainage was so rapid in the soils.  相似文献   

11.
Knowledge of hydraulic properties is essential for understanding water movement in soil. However, very few data on these properties are available from the Loess Plateau of China. We determined the hydraulic properties of two silty loam soils on agricultural land at sites in Mizhi and Heyang in the region. Undisturbed soil cores were collected from seven layers to one meter depth to determine saturated hydraulic conductivity, soil water retention curves and unsaturated hydraulic conductivity (by the hot-air method). Additional field methods (internal drainage and Guelph permeameter) were applied at the Heyang site to compare differences between methods. Soil water retention curves were flatter at Mizhi than at Heyang. Water contents at saturation and wilting point (1500 kPa) were higher at Heyang than at Mizhi. However, unsaturated hydraulic conductivity was lower at Heyang than at Mizhi, with maximum differences of more than six orders of magnitude. Nevertheless, the two soils had similar saturated hydraulic conductivities of about 60 cm day− 1. Comparison between the methods showed that soil water retention curves obtained in the laboratory generally agreed well with the field data. Field-saturated conductivities had similar values to those obtained using the soil core method. Unsaturated hydraulic conductivities predicted by the Brooks–Corey model were closer to field data than corresponding values predicted by the van Genuchten model.  相似文献   

12.
《Geoderma》2006,130(1-2):1-13
Dilution of high-sodicity soil water by low-sodicity rainfall or irrigation water can cause declining soil hydraulic conductivity (K) by inducing swelling, aggregate slaking and clay particle dispersion. Investigations of sodicity-induced reduction in K are generally restricted to repacked laboratory cores of air-dried and sieved soil that are saturated and equilibrated with sodic solution before tests are conducted. This approach may not yield a complete picture of sodicity effects in the field, however, because of loss of antecedent soil structure, small sample size, detachment of the sample from the soil profile, reliance on chemical equilibrium, and differing time scales between laboratory and field processes. The objectives of this study were to: (i) compare the electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) in laboratory cores of intact field soil that had, or had not, undergone prior saturation and equilibration with sodic solution; (ii) compare the pressure infiltrometer (PI) field method with the intact laboratory soil core (SC) method for assessing sodicity effects on saturated soil hydraulic conductivity; and (iii) characterize hydraulic conductivity reduction in a salt-affected sandy loam soil and a salt-affected clay soil in Sicily as a result of diluting high-sodicity soil water with low-sodicity water.In terms of EC, ESP and SAR, quasi-equilibrium between soil and infiltrating solution was attainable in 0.08 m diameter by 0.05 m long laboratory cores of intact clay soil, regardless of whether or not the cores were previously saturated and equilibrated with solutions of SAR=0 or 30. In the sandy loam soil, the PI and SC methods produced statistically equivalent linear reductions in K as a result of diluting increasingly sodic soil water (SAR=0, 10, 20, 30) with deionised water. In the clay soil, the PI method produced no significant correlation between initial soil water SAR and K reduction, while the SC method produced a significant log-linear decline in K with increasing soil water SAR. Sodicity-induced reductions in K ranged from 3–8% (initial soil water SAR=0) to 85–94% (initial soil water SAR=30) in the sandy loam, and from 9–13% (initial soil water SAR=0) to 42–98% (initial soil water SAR=30) in the clay. The reductions in K were caused by aggregate slaking and partial blocking of soil pores by dispersed clay particles, as evidenced by the appearance of suspended clay in the SC effluent during infiltration of deionised water. As a result, maintenance of K in these two salt-affected soils will likely require procedures to prevent or control the build-up of sodicity.  相似文献   

13.
This study assessed the impact of compost on the hydraulic properties of three soils (sandy loam, clay loam and diesel‐contaminated sandy loam) with relatively poor physical quality typical of brownfield sites. Soils were amended with two composts at 750 t/ha. Samples were also collected from a clay‐capped brownfield site, previously amended with 250, 500 or 750 t/ha of compost. Water‐release characteristics and saturated hydraulic conductivity were determined for all soils and physical quality indicators derived. Unsaturated flow in field profiles after compost application with two depths of incorporation and two indigenous subsoils was simulated using Hydrus‐1D. Compost generally increased water retention. Hydraulic conductivity tended to decrease following compost application in sandy loam but increased in clay and clay loam, where compost addition resulted in a larger dominant pore size. Although compost improved physical quality indicators, they remained suboptimum in clay and clay loam soil, which exhibited poor aeration, and in the contaminated sandy loam, where available water capacity was limited, possibly due to changes in wettability. Increasing application rates in the field enhanced water retention at low potentials and hydraulic conductivity near saturation but did not alter physical quality indicators. Numerical simulation indicated that the 500 t/ha application resulted in the best soil moisture regime. Increasing the depth of incorporation in the clay cap improved drainage and reduced waterlogging, but incorporation in more permeable subsoil resulted in prolonged dry conditions to greater depths.  相似文献   

14.
Soil degradation affects soil properties such as structure, water retention, porosity, electrical conductivity (EC), sodium adsorption ratio (SAR), and soil flora and fauna. This study was conducted to evaluate the response of contrasting textured soils irrigated with water having different EC:SAR ratios along with amendments: gypsum (G), farm manure (FM), and mulch (M). Water of different qualities viz. EC 0.6 + SAR 6, EC 1.0 + SAR 12, EC 2.0 + SAR 18, and EC 4.0 + SAR 30 was used in different textured soils with G at 100% soil gypsum requirement, FM at 10 Mg ha?1, and M as wheat straw was added on surface soil at 10 Mg ha?1. Results revealed that the applied amendments in soils significantly decreased pHs and electrical conductivity (ECe) of saturated paste and SAR. Four pore volumes of applied water with leaching fraction 0.75, 0.77, and 0.78 removed salts 3008, 4965, and 5048 kg ha?1 in loamy sand, silty clay loam, and sandy clay loam soils, respectively. First four irrigations with LF of 0.82, 0.79, 0.75, and 0.71, removed 5682, 5000, 3967, and 2941 kg ha?1 salts, respectively. The decreasing order for salt removal with amendments was FM > G > M > C with LF = 0.85, 0.84, 0.71, and 0.68, respectively. This study highlights a potential role of soil textures to initiate any mega program for reclamation of saline-sodic soils in the perspective of national development strategies.  相似文献   

15.
The purpose of this study was (1) to find a matching factor (u) between infiltration rate and hydraulic conductivity during steady-state infiltration, and (2) to propose equations based on infiltration and soil moisture-retention functions for prediction of the hydraulic conductivity K(θ) within the rapidly (non-capillary) drainable pores (RDP) and capillary-matrix pores of soils. The K(θ) of capillary pores was divided into K(θ)SDP, K(θ)WHP and K(θ)FCP within slowly drainable pores (SDP), water-holding pores (WHP) and fine capillary pores (FCP), respectively. Five soil profiles of calcareous sandy loam, alluvial saline and non-saline clay, located at the Nile Delta, were used to apply the proposed equations. The highest and the lowest values of K(θ)RDP were observed in calcareous and saline clay soil profiles, respectively. Values of K(θ)RDP remained higher than those for capillary pores in the studied soils. The predicted values of K(θ) in capillary and non-capillary pores classes were in the expected range for unsaturated hydraulic conductivity. Water sorptivity (S) was determined at initial unsaturated soil water conditions and calculated at steady-state infiltration (S w) using a derived equation. There was a decrease in S with an increase in soil water content; i.e. at steady-state infiltration, S decreased by 35–40% in calcareous soils and by 45–60% in alluvial clay soils. The parameter values of u and S w tended to be uniform in calcareous soils, but nonuniform in saline and non-saline clay soils.  相似文献   

16.
The individual effects of salinity and sodicity on organic matter dynamics are well known but less is known about their interactive effects. We conducted a laboratory incubation experiment to assess soil respiration and dissolved organic matter (DOM) dynamics in response to salinity and sodicity in two soils of different texture. Two non-saline non-sodic soils (a sand and a sandy clay loam) were leached 3–4 times with solutions containing different concentrations of NaCl and CaCl2 to reach almost identical electrical conductivity (EC1:5) in both soils (EC1:5 0.5, 1.3, 2.5 and 4.0 dS m?1 in the sand and EC1:5 0.7, 1.4, 2.5 and 4.0 dS m?1 in the sandy clay loam) combined with two sodium absorption ratios: SAR < 3 and 20. Finely ground wheat straw residue was added (20 g kg?1) as substrate to stimulate microbial activity. Cumulative respiration was more strongly affected by EC than by SAR. It decreased by 8% at EC 1.3 and by 60% at EC 4.0 in the sand, whereas EC had no effect on respiration in the sandy clay loam. The apparent differential sensitivity to EC in the two soils can be explained by their different water content and therefore, different osmotic potential at the same EC. At almost similar osmotic potential: ?2.92 MPa in sand (at EC 1.3) and ?2.76 MPa in the sandy clay loam (at EC 4.0) the relative decrease in respiration was similar (8–9%). Sodicity had little effect on cumulative respiration in the soils, but DOC, DON and specific ultra-violet absorbance (SUVA) were significantly higher at SAR 20 than at SAR < 3 in combination with low EC in both soils (EC 0.5 in the sand and EC 0.7 and 1.4 in the sandy clay loam). Therefore, high SAR in combination with low EC is likely to increase the risk of DOC and DON leaching in the salt-affected soils, which may lead to further soil degradation.  相似文献   

17.
Soil compaction and related changes of soil physical parameters are of growing importance in agricultural production. Different stresses (70, 230, 500, and 1000 kPa) were applied to undisturbed soil core samples of eight typical soils of a Saalean moraine landscape in N Germany by means of a confined compression device to determine the effect on (1) total porosity/pore‐size distribution, (2) saturated hydraulic conductivity, and (3) air conductivity to assess the susceptibility towards compaction. Different deformation behaviors after exceeding the mechanical strength particularly resulted from a combination of soil characteristics like texture and initial bulk density. The saturated hydraulic conductivity, as an indicator for pore continuity, was largely affected by the volume of coarse pores (r² = 0.82), whereas there was no relationship between bulk density and saturated hydraulic conductivity. Since coarsely textured soils primarily possess a higher coarse‐pore fraction compared to more finely textured soils, which remains at a high level even after compaction, only minor decreases of saturated hydraulic conductivity were evident. The declines in air conductivity exceeded those in hydraulic conductivity, as gas exchange in soils is, besides the connectivity of coarse pores, a function of water content, which increases after loading in dependence of susceptibility to compaction. A soil‐protection strategy should be focused on more finely textured soils, as stresses of 70 kPa may already lead to a harmful compaction regarding critical values of pore functions such as saturated hydraulic conductivity or air capacity.  相似文献   

18.
Abstract

Although there is generally no physical problem with salt‐affected soils when irrigated with saline and sodic waters, physical deterioration of the soils often results when leached with good quality (low salt and low sodium) irrigation water or by rain. Two major mechanisms of swelling and dispersion of clay particles have been proposed to be responsible for reduction in hydraulic conductivity (HC). The type and amount of clay minerals are major factors influencing the swelling and dispersion properties of soil in the presence of saline‐sodic solutions. The study was initiated to improve the understanding of swelling and dispersion processes in response to saline‐sodic conditions, particularly the role of the type and amount of clay minerals of the tested soils and the concentration of the leaching solutions. The study was conducted in a series of two leaching experiments. In the first experimental soil samples were leached with solutions of different combinations of 100 meq (NaCl+CaCl2)L‐1 and sodium adsorption ratio (SARs) 5, 10, 15, and 20. In the second, 8 samples of them selected to be leached with solutions of the same SARs of 5, 10, 15, and 20, but the higher concentration of 1000 meq (NaCl+CaCl2)L‐1. The changes in the HCs were determined through the concept of “the Sensitivity Index‐SI values”;. In general, solutions with lower concentrations and higher SAR resulted in greater reductions in the soil HC (i.e, SI value), and the SI values and SAR level showed a negative linear relationship. With respect to the regression equations between the SI values and the swelling/dispersion processes, and the relatively coarse texture as well as the mineralogical composition of the tested soils which shows the dominant clay minerals in almost all tested soils is non‐expanding dispersive quartz, illite and chlorite, it may be concluded that the slaking of the soil structure is responsible for blockage of the conducting pores and reduction in the HCs of the tested soils.  相似文献   

19.
In Indian Punjab, rice–wheat is a dominant cropping system in four agro‐ecosystems, namely undulating subregion (zone 1), Piedmont alluvial plains (zone 2), central alluvial plains (zone 3), and southwestern alluvial plains (zone 4), varying in rainfall and temperature. Static and temporal variabilities in soil physical and chemical properties prevail because of alluvial parent material, management/tillage operations, and duration of rice–wheat rotation. A detailed survey was undertaken to study the long‐term effect of rice–wheat rotation on soil physical (soil separates, bulk density, modulus of rupture, saturated and unsaturated hydraulic conductivities, soil water content, and suction relations) and chemical (organic carbon, pH, electrical conductivity) properties of different textured soils (sandy clay loam, loam, clay loam, and silty clay loam) in these four zones of Punjab. Soil samples (of 0‐ to 30‐cm depth) from 45 sites were collected during 2006 and were analyzed for physical and chemical properties. The results showed that sand content and pH increased whereas silt and organic carbon decreased significantly from zones 1 to 4. Compared to other textures, significantly greater organic carbon, modulus of rupture, and pH in silty clay loam; greater bulk density in clay loam, and greater saturated hydraulic conductivity in sandy clay loam were observed. Irrespective of zone and soil texture, in the subsurface soil, there was a hard pan at 15–22.5 cm deep, which had high soil bulk density, modulus of rupture, more silt and clay contents (by 3–5%) and less organic carbon and hydraulic conductivity than the surface (0–15 cm) layer. These properties deteriorated with fineness of the soil texture and less organic carbon content. Continuous rice–wheat cropping had a deleterious effect on many soil properties. Many of these soils would benefit from the addition of organic matter, and crop yields may also be affected by the distinct hardpan that exists between 15 and 22.5 cm deep.  相似文献   

20.
In order to determine if soil hydraulic properties present a direction‐dependent behavior, undisturbed samples were collected at different horizons and orientations (vertical, diagonal [45°], and horizontal) in structured soils in the Weichselian moraine region in northern Germany. The water‐retention curve (WRC), the saturated hydraulic conductivity (kf), and the air permeability (ka) were measured. The air‐filled porosity (?a) was determined, and pore‐continuity indices (ka/?a, ka/?a2, N) and blocked porosities (?b) were derived from the relationship between ka and ?a. The development of soil structures with defined forms and dimensions (e.g., platy by soil compaction or prismatic up to subangular‐blocky by swelling–shrinkage processes) and the presence of biopores can induce a direction‐dependent behavior of pore functions. Although the pore volume as a scalar is isotropic, the saturated hydraulic conductivity and air permeability (as a function of air‐filled porosity) can be anisotropic. This behavior was observed in pore‐continuity indices showing that the identification of soil structure can be used as a first parameter to estimate if hydraulic properties present a direction‐dependent behavior at the scale of the soil horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号