首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine boundary effects on leaching, we investigated (1) how filter materials affect the concentrations of dissolved organic carbon (DOC) and nitrate (NO3‐N) in soil percolates and (2) whether ion exchange resins and suction plates are equally suited to capture NO3‐N. DOC leaching was higher with PE suction plates and plate material did not affect NO3‐N leachate concentrations. Cumulative NO3‐N leaching was similar for glass suction plates and ion exchange resins.  相似文献   

2.
Land use change (LUC) is known to have a large impact on soil organic carbon (SOC) stocks. However, at a regional scale, our ability to explain SOC dynamics is limited due to the variability generated by inconsistent initial conditions between sample points, poor spatial information on previous land use/land management history and scarce SOC inventories. This study combines the resampling in 2003–2006 of an extensive soil survey in 1950–1960 with exhaustive historical data on LUC (1868–2006) to explain observed changes in the SOC stocks of temperate forest soils in the Belgian Ardennes. Results from resampling showed a significant loss of SOC between the two surveys, associated with a decrease in variability. The mean carbon content decreased from 40.4 to 34.5 g C kg?1 (10.6 to 9.6 kg C m?2), with a mean rate of C change (ΔSOC) of ?0.15 g C kg?1 year?1 (?0.023 kg C m?2 year?1). Soils with high SOC content tended to loose carbon while conversely soils with low SOC tended to gain carbon. Land use change history explained a significant part of past and current SOC stocks as well as ΔSOC during the last 50 years. We show that the use of spatially explicit historical data can help to quantitatively explain changes in SOC content at the regional scale.  相似文献   

3.
基于GIS的土壤有机碳储量核算及其对土地利用变化的响应   总被引:9,自引:3,他引:6  
土地利用变化是影响土壤有机碳储量变化的重要驱动因素,为了进一步探讨土地利用变化对土壤碳储量的影响,该文根据土壤样点数据、土壤类型图、土地利用类型图,分析了江苏省1985年和2005年表层土壤有机碳密度的变化以及土地利用变化对表层土壤有机碳密度的影响,主要结论如下:1)江苏省表层土壤有机密度的空间变化趋势为:黄淮平原生态区南北差异明显,北部的沂沭泗平原丘岗以增加为主,南部的淮河下游平原以减少为主;沿海滩涂与海洋生态区持平为主;而长江三角洲平原生态区表现不一:沿江平原丘岗生态亚区以增加为主,而茅山宜溧低山丘陵生态亚区和太湖水网生态亚区均表现为有机碳密度的减少;2)各地类表层土壤有机碳密度均有所增加;耕地-林地、草地;草地-林地、建设用地;建设用地-耕地、草地、林地;水域的转出以及未利用地的转出等转换类型有利于土壤碳储量的增加、其他地类间的转换会造成一定的碳排放。  相似文献   

4.
适宜超高压处理条件脱除大蒜臭味保持抗氧化和抑菌能力   总被引:2,自引:2,他引:2  
为了提升大蒜头产品的品质,该研究将超高压技术应用于大蒜头产品处理中,探究了在200、300、400、500 MPa压力条件下处理10 min,大蒜风味物质,尤其是含硫挥发性化合物的变化,同时考察超高压对大蒜主要活性成分大蒜素含量、抗氧化和抑菌能力的影响.试验结果表明,超高压处理较于在95℃下60 s的蒸汽漂烫处理,不仅具有良好的杀菌作用,同时还可以去除大蒜中的刺激性风味,起到脱臭作用.大蒜经500 MPa处理后,主要蒜臭味嗅感物质二烯丙基二硫化物含量降低至30.69%,经过热处理的大蒜,二烯丙基二硫醚化合物则降低至54.68%,与超高压处理后的大蒜具有显著性差异(P<0.05).500 MPa处理后的大蒜中大蒜素浓度上升至0.079 mmol/L,高出热处理组具有显著性差异(P<0.05);铁离子还原能力较热处理组高出64.24%,具有显著性差异(P<0.05),1,1-二苯基-2-三硝基苯肼清除率高出热处理组28.68%,具有显著性差异(P<0.05);经热处理后的大蒜均丧失全部抑菌能力,而超高压处理后的大蒜对不同种的细菌仍具有一定的抑菌能力,对黑曲霉的抑菌能力与无处理组无显著差异.相关性分析结果显示,大蒜的抑菌能力与硫醚类化合物显著相关(r>0.884),与二烯丙基二硫醚、总酚含量未呈现显著相关,抗氧化能力未与硫醚类化合物含量、二烯丙基二硫醚、总酚呈显著相关趋势.研究结果为大蒜头产品的品质改良提供参考.  相似文献   

5.
采用野外采样和室内分析的方法研究了林地、园地、耕地3种利用方式对典型棕壤总有机碳(TOC)、颗粒有机碳(POC)及重组有机碳(HFOC)在0~20 cm、20~40 cm、40~60 cm 3层次中垂直分布的影响。结果表明,与林地相比,园地和耕地各层次的TOC含量和储量均显著下降;其分布份额和分布比则为园地中、下层略向上层转移,耕地则明显向中、下层转移。3种利用方式下POC的相对数量均随土层加深而递减,林地开垦为园地和耕地后,POC的相对数量仅在园地上、中层显著降低,分别减少6.67和1.70个百分点,而耕地则各层次均显著降低,其相对数量分别减少13.65、5.43和3.03个百分点;HFOC的相对数量随干预强度和土层深度增加而增大,耕地和园地比林地分别高出:上层5.77和4.00个百分点、中层10.44和6.40个百分点、下层7.35和3.92个百分点,且差异均显著。因此,将林地棕壤开垦为园地或耕地后应注重有机物料的投入,以减缓因开垦对有机碳所造成的损失和不尽合理的分布状况。  相似文献   

6.
Soil organic carbon (SOC) has a high impact on the sustainability of ecosystems, global environmental processes, soil quality and agriculture. Long-term tillage usually leads to SOC depletion. The purpose of this study was to determine the impact of different land uses on water extractable organic carbon (WEOC) fractions and to evaluate the interaction between the WEOC fractions and other soil properties. Using an extraction procedure at 20°C and 80°C, two fractions were obtained: a cold water extractable organic carbon (CWEOC) and a hot water extractable organic carbon (HWEOC). The results suggest that there is a significant impact from different land uses on WEOC. A lower relative contribution of WEOC in SOC and a lower concentration of labile WEOC fractions are contained in arable soil compared to forestlands. Chernozem soil was characterized by a lower relative contribution of WEOC to the SOC and thus higher SOC stability in contrast to Solonetz and Vertisol soils. Both CWEOC and HWEOC are highly associated with SOC in the silt and clay fraction (<53 µm) and were slightly associated with SOC in the macroaggregate classes. The WEOC fractions were highly and positively correlated with the SOC and mean weight diameter.  相似文献   

7.
土地整理对农田土壤碳含量的影响   总被引:8,自引:4,他引:8  
土地整理对土壤的强扰动会影响土壤的碳循环平衡,为了研究土地整理对农田土壤碳含量的影响,通过间接采样和随机采样方法,采集了江苏3个土地整理区土地整理前后土样进行有机质测定,初步分析了不同土地整理区土地整理后的土壤碳含量变化及其变化差异原因。主要结论有:1)通过土地整理,3个土地整理区土壤碳含量都有得到提高。其中,苏南丹阳土地整理区碳质量分数提高了26.05%,碳密度提高23.87%,提高幅度最大,碳密度变化方向与碳含量变化具有一致性,但提高幅度低于碳含量。这与各整理区原有土质、土地整理工程施工方式、施工时间等因素密切相关。2)水田碳质量分数显著高于旱地碳质量分数,但是经过土地整理旱地碳含量提高幅度大于水田,水田在整理前后碳含量变化幅度不大。3)在土地整理项目实施前应制定适宜的土地整理规划,实施有利于土壤固碳的土地整理工程。  相似文献   

8.
We evaluated the contents of organic carbon (Corg) of Ap horizons from 11 North German study areas along a Southeast to Northwest precipitation gradient with respect to their general levels and as related to C : N ratio, soil texture (clay content), bulk soil density, climate, and historical land‐use since 1780. The focus was on sandy soils, with the largest group of samples originating from 308 km2 of the Fuhrberg catchment north of Hannover/Lower Saxony. Data from loess areas were used for comparisons. Major aims were (1) to quantify current Corg stocks, (2) to provide data on site‐specific, steady‐state Corg levels in old arable soils, and (3) to identify the main controls of Corg levels in the studied sands. The mean Corg content in sandy, well‐drained, old Ap horizons (uplands, > 200 years under cultivation, near steady‐state) increased with precipitation from < 8 g kg—1 in the dry eastern parts of the study area (530 mm year—1, 8.3°C) to 25 g kg—1 in the moist Northwest (825 mm year—1, 8.4°C). The Corg levels in lowlands which have been drained for more than 40 years were approximately 3 g kg—1 higher than those of uplands under a similar climate. The factor clay content had no predictive value because low contents were associated with high Corg levels. Large proportions of refractory organic matter in sands resulting from specific features of historical land‐use and soil development (calluna heathland, heath plaggen fertilization, podzolization) appeared to be the most probable reason for such high Corg levels. However, the high Corg levels of these old arable sites were still exceeded by those of younger arable areas formerly under continuos grassland. A chrono‐sequence suggested that a period of about 100 years is necessary until a new steady‐state Corg level is established after conversion of grassland into arable land. Elevated Corg levels in current Ap horizons were also found for former woodland and heathland soils. The main conclusion is that sands can contain a lot of stable organic matter, sometimes more than finer textured soils.  相似文献   

9.
Soil organic carbon (SOC) and selected soil properties were measured in fringe and ditch marshes and cropland of old and young reclaimed areas in a subtropical estuary in China in order to investigate the effects of land use and reclamation history on SOC. The results show that after the conversion of wetlands to cropland, a longer reclamation history (>20 yr) resulted in greater soil bulk density, salinity, clay and silt, and lower soil moisture, SOC and sand content, whereas a shorter reclamation history (<20 yr) induced smaller values for soil pH, moisture and sand. Ditch marshes had greater average SOC in the top 50 cm than fringe marshes and cropland. SOC decreased generally down soil profiles from 0 to 50 cm in depth, except for the obvious accumulation of SOC in deeper soils from old fringe and young ditch marshes. Ditch marshes had the greatest SOC densities in the top 50 cm in both regions compared to the other land uses. SOC densities in the top 50 cm were less in croplands than in fringe marshes in the young region, while there were no significant differences between them in the older one. Except for cropland, SOC densities in the top 50 cm of the fringe or ditch marshes in the old region were not significantly different from those in the young region. SOC in both regions was reduced by 13.53 × 104 t (12.98%) in the top 50 cm of the marshes after conversion to cropland, whereas the regional SOC storage increased by 29.25 t when ditch marshes were included. The results from regression analysis show that bulk density and soil moisture significantly influenced SOC. The total SOC stored in both ditch marshes and croplands was higher compared to fringe marshes. The regional SOC storage in the top 50 cm was not reduced after reclamation due to C accumulation in the ditch marshes. The regional effects of cultural practices should be taken into account in devising strategies for managing soils in coastal wetlands, particularly in the developing world.  相似文献   

10.
X. Y. WANG  Y. ZHAO  R. HORN 《土壤圈》2010,20(1):43-54
Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettability was evaluated by contact angle with the Wilhelmy plate method. Water repellency was likely to be present under permanently vegetated land, but less common on tilled agricultural land. It was mostly prevalent in the topsoil, especially in coarse-textured soils, and decreased in the subsoil. However, the depth dependency of wettability could not be derived from the investigated wide range of soils. The correlation and multiple regression analysis revealed that the wettability in repellent soils was affected more by soil organic carbon (SOC) than by soil texture and pH, whereas in wettable soils, soil texture and pH were more effective than SOC. Furthermore, the quality of SOC seemed to be more important in determining wettability than its quantity, as proofed by stronger hydrophobicity under coniferous than under deciduous forestland. Soil management had a minor effect on wettability if conventional and conservation tillage or different grazing intensities were considered.  相似文献   

11.
The effects of land use on soil chemical properties were evaluated, and earthworm communities and the decomposition rate of three typical land use systems in tropical Mexico, namely banana plantations (B), agroforestry systems (AF) and a successional forest (S) were compared.The study was carried out from November 2005 to April 2006. A completely randomized sampling design was established in six sites (B1, B2, AF1, AF2, S1 and S2). Soil properties and chemical characteristics (texture, pH, organic carbon (Corg), nutrients, and available Zn and Mn), earthworm communities and the decomposition of Bravaisia integerrima and Musa acuminata litter were analyzed over a period of 8 weeks.All soils were loamy clays with a medium to high content of nutrients. Three principal clusters were generated with the soil chemical properties: a first cluster for forest soils with high Corg and Ntot and low available Zn content, a second cluster for AF1 and a third cluster for B1, B2 and A2.The decomposition of B. integerrima litter was significantly faster (half-life time: 1.8 (AF2)–3.1 (B1) weeks) than that of M. acuminata (4.1 (AF2)–5.8 (S2) weeks). However, the decomposition rates did not differ significantly among the different sites.The greatest earthworm diversities were observed in AF2 and B1. Native species were dominant in the forest soils, whereas exotic species dominated in AF and in the banana plantations. The abundance and biomass of certain earthworm species were correlated to physical and chemical soil parameters. However, litter decomposition rates were not correlated with any of the soil physical–chemical parameters.While none of the land use systems studied led to a decrease in nutrient status, earthworm biodiversity and abundance, or in litter decomposition rate, they did result in a change in earthworm species composition.  相似文献   

12.
This paper explores the influence of spatial scale on modelled projections of soil organic carbon (SOC) content. The effect of land use change (LUC) on future SOC stocks was estimated using the Rothamsted Carbon model for a small area of southern Belgium. The study assumed no management change and used a single climate change scenario. Three model experiments were used to identify how data scale affects predicted SOC stocks: (i) using European LUC datasets at a resolution of 10′ and assuming equal distribution of change within the study area, (ii) using more accurate regional data aggregated to the 10’ resolution, and (iii) using the regional data at a spatial resolution of 250 m. The results show that using coarse resolution (10′) data is inappropriate when modelling SOC changes in the study area as only the methods using precise data predict a change in SOC stocks similar to those reported in the literature. This is largely because of differences in model parameterisation. However, precisely locating LUC does not significantly affect the results. The model, using either pan‐European or region‐specific precise data predicts an average SOC increase of 1 t C ha?1 (1990–2050), mainly resulting from afforestation of 13% of agricultural land.  相似文献   

13.
The decrease in nitrogen (N) use in agriculture led to improvement of upper groundwater quality in the Sand region of the Netherlands in the 1991–2009 period. However, still half of the farms exceeded the European nitrate standard for groundwater of 50 mg/l in the 2008–2011 period. To assure that farms will comply with the quality standard, an empirical model is used to derive environmentally sound N use standards for sandy soils for different crops and soil drainage conditions. Key parameters in this model are the nitrate-N leaching fractions (NLFs) for arable land and grassland on deep, well-drained sandy soils. NLFs quantify the fraction of the N surplus on the soil balance that leaches from the root zone to groundwater and this fraction represents N available for leaching and denitrification. The aim of this study was to develop a method for calculating these NLFs by using data from a random sample of commercial arable farms and dairy farms that were monitored in the 1991–2009 period. Only mean data per farm were available, which blocked a direct derivation of NLFs for unique combinations of crop type, soil type and natural soil drainage conditions. Results showed that N surplus leached almost completely from the root zone of arable land on the most vulnerable soils, that is, deep, well-drained sandy soils (95% confidence interval of NLF 0.80–0.99), while for grassland only half of the N surplus leached from the root zone of grassland (0.39–0.49). The NLF for grassland decreased with 0.015 units/year, which is postulated to be due to a decreased grazing and increased year-round housing of dairy cows. NLFs are positively correlated with precipitation surplus (0.05 units/100 mm for dairy farms and 0.10 units/100 mm for arable farms). Therefore, an increase in precipitation due to climate change may lead to an increase in leaching of nitrate.  相似文献   

14.
利用土20年长期肥料定位试验研究了不同土地利用方式和施肥对土壤有机碳和无机碳储量变化的影响。试验包括休闲(Fallow, FL)、 撂荒(Setaside, SL)、 不施肥(CK)、 单施氮(N)、 氮钾(NK)、 磷钾(PK)、 氮磷(NP)、 氮磷钾(NPK)、 氮磷钾配合秸秆还田(SNPK)、 氮磷钾配合低量有机肥(M1NPK)和氮磷钾配合高量有机肥(M2NPK)11个处理。结果表明,CK和 FL 处理等质量耕层土壤有机碳储量仍维持在试验前水平,NP和 SL 处理显著提高了耕层土壤有机碳储量,年均增加分别达到 347 kg/hm2 和518 kg/hm2, 此4个处理等质量耕层土壤无机碳储量均较试验开始前(Initial soil, IniS)显著下降,尤其是NP处理显著低于其它3个处理。与IniS和CK相比,除NK处理外的所有施肥处理均显著地提高了等质量耕层土壤有机碳储量,其大小顺序为 M2NPKM1NPKSNPKNPKNPPKN,最大年均增加量为M2NPK 944 kg/hm2,最小为N 127 kg/hm2。施肥处理除PK和M2NPK处理外,其它处理等质量耕层土壤无机碳储量均较试验前明显降低,可能是由于土壤酸化所致。PK和M2NPK处理无机碳储量能够维持不下降,表明土壤无机碳和有机碳在适合条件下可能有某种关系。试验结果还显示,长期试验20年除M1NPK和M2NPK处理外,其它处理耕层土壤容重均明显高于试验开始前,表明等质量土壤碳储量与等深度碳储量相比可以更好地反映土壤碳的变化。  相似文献   

15.
Phospholipid ester-linked fatty acid (PLFA) profiles were used to evaluate soil microbial community composition for 9 land use types in two coastal valleys in California. These included irrigated and non-irrigated agricultural sites, non-native annual grasslands and relict, never-tilled or old field perennial grasslands. All 42 sites were on loams or sandy loams of similar soil taxa derived from granitic and alluvial material. We hypothesized that land use history and its associated management inputs and practices may produce a unique soil environment, for which microbes with specific environmental requirements may be selected and supported. We investigated the relationship between soil physical and chemical characteristics, management factors, and vegetation type with microbial community composition. Higher values of total soil C, N, and microbial biomass (total PLFA) and lower values of soil pH occurred in the grassland than cultivated soils. The correspondence analysis (CA) of the PLFA profiles and the canonical correspondence analysis (CCA) of PLFA profiles, soil characteristics, and site and management factors showed distinct groupings for land use types. A given land use type could thus be identified by soil microbial community composition as well as similar soil characteristics and management factors. Differences in soil microbial community composition were highly associated with total PLFA, a measure of soil microbial biomass, suggesting that labile soil organic matter affects microbial composition. Management inputs, such as fertilizer, herbicide, and irrigation, also were associated with the distinctive microbial community composition of the different cultivated land use types.  相似文献   

16.
Abstract. Land evaluation is the prediction of land performance over time under specific uses, to guide strategic land use decisions. Modern land evaluation has a 30 year history, yet the results have often been disappointing. Land users and planners have been reported to ignore land evaluations, perhaps reflecting poor quality, low relevance, or poor communication. To test the success of a large land evaluation exercise undertaken as part of micro-catchment project in Santa Catarina State, southern Brazil, we queried agricultural extensionists, considered as the primary land evaluation clients. We used a questionnaire with both structured and open questions, to determine their experiences with, and attitudes to, the current land evaluation method. The soil resource inventory and associated land evaluation had some usefulness, but were not in general used for their intended purpose, namely farm planning. This was mainly because they did not contain crucial information necessary to such planning in the actual context of the farmer taking decisions. The primary deficiencies were identified as:
  • (1)

    no estimate of environmental degradation risk;

      相似文献   

17.
Abstract

The objective of the paper was to analyse the implications of the origin of peat (muck) soil substrate, the current type of land use and the state of anthropogenic soil development for the topsoil properties of fens. Chemical and biological properties of peat soils of the Rhin-Havelluch lowland and the Uckermark rural landscape were analyzed. The unit water content according to Ohde and the ash content were utilized to characterize the anthropogenic development status of peat topsoils. Several chemical properties were significantly influenced by soil substrate, in particular by the proportion and kind of the mineral component. The substrate was associated with the hydrological type of mire and the soil development state. TOC/N ratio and microbial activity were increased in cases of high lime spring mires and moorshified low ash peat. The proportion of easily soluble organic carbon increased, whereas the sulphur content decreased with the soil development state. The nitrogen content and the proportions of oxalate soluble iron and aluminium reached maxima in the moorshified state. The type of land use (grassland, forest) significantly influenced the topsoil pH and the proportion of oxalate soluble phosphorus. Soils under forest were clearly determined by topsoil acidification.  相似文献   

18.
The effect of soil management and land use change are of interest to the sustainable land management for improving the environment and advancing food security in developing countries. Both anthropogenic changes and natural processes affect agriculture primarily by altering soil quality. This paper reviews and synthesizes the available literatures related to the influence of soil management and land use changes on soil carbon (C) stock in Ethiopia. The review shows that topsoil C stock declines approximately 0–63%, 0–23%, and 17–83% upon land use conversion from forest to crop land, to open grazing, and to plantation, respectively. An increase of 1–3% in soil C stock was observed within 10 years of converting open grazed land to protected enclosures. However, there was a little change in soil C stock below 20 cm depth. There is a large potential of increasing SOC pool with adoption of land restorative measures. Total potential of soil C sequestration with the adoption of restoration measures ranges 0·066–2·2 Tg C y−1 on rain‐fed cropland and 4·2–10·5 Tg C y−1 on rangeland. Given large area and diverse ecological conditions in Ethiopia, research data available in published literature are rather scanty. Therefore, researchable priorities identified in this review are important. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
科尔沁沙地土地利用变化对大型土壤节肢动物群落影响   总被引:1,自引:0,他引:1  
土地利用类型是地球表层系统最突出的景观标志,不仅可以客观地展示地球表面特征空间格局的活动,还反映着地球表面景观的时空动态过程[1-2].由于土地利用变化与人类活动和全球气候变化密切相关,对生物多样性消长、生态环境演变、生态安全水平以及人类可持续性发展有着重要影响,因而其研究已成为当今全球变化研究的前沿和热点课题[1,3].  相似文献   

20.
Soil particulate organic carbon under different land use and management   总被引:11,自引:0,他引:11  
Abstract. Changes in particulate organic carbon (POC) relative to total organic carbon (TOC) were measured in soils from five agronomic trial sites in New South Wales, Australia. These sites covered a wide range of different land use and management practices. POC made up 42–74% of TOC and tended to be greater under pasture and more conservative management than traditional cropping regimes. It was the form of organic carbon preferentially lost when soils under long-term pasture were brought under cultivation. It was also the dominant form of organic carbon accumulating under more conservative management practices (direct drilling, stubble retained and organic farming). Across all sites, changes in POC accounted for 81.2% (range 69–94%) of the changes in total organic carbon caused by differences in land use and management. Significant differences were found between pasture and cropped soils in the carbon content in the <53 μm fraction, particularly for hardsetting soils. However, even with these, POC was a more sensitive indicator of change caused by land use and management practices than TOC. The current method for measuring POC involves dispersion using sodium hexametaphosphate. The dispersing agent was found to extract 4–19 % of the TOC, leading to a significant under-estimation of POC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号