首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review summarises current knowledge on root interactions in agroforestry systems, discussing cases from temperate and tropical ecosystems and drawing on experiences from natural plant communities where data from agroforestry systems are lacking. There is an inherent conflict in agroforestry between expected favourable effects of tree root systems, e.g. on soil fertility and nutrient cycling, and competition between tree and crop roots. Root management attempts to optimise root functions and to stimulate facilitative and complementary interactions. It makes use of the plasticity of root systems to respond to environmental factors, including other root systems, with altered growth and physiology. Root management tools include species selection, spacing, nutrient distribution, and shoot pruning, among others. Root distribution determines potential zones of root interactions in the soil, but are also a result of such interactions. Plants tend to avoid excessive root competition both at the root system level and at the single-root level by spatial segregation. As a consequence, associated plant species develop vertically stratified root systems under certain conditions, leading to complementarity in the use of soil resources. Parameters of root competitiveness, such as root length density, mycorrhization and flexibility in response to water and nutrient patches in the soil, have to be considered for predicting the outcome of interspecific root interactions. The patterns of root activity around individual plants differ between species; knowing these may help to avoid excessive competition and unproductive nutrient losses in agroforestry systems through suitable spacing and fertiliser placement. The possibility of alleviating root competition by supplying limiting growth factors is critically assessed. A wide range of physical, chemical and biological interactions occurs not only in spatial agroforestry, but also in rotational systems. In a final part, the reviewed information is applied to different types of agroforestry systems: associations of trees with annual crops; associations of trees with grasses or perennial fodder and cover crops; associations of different tree and shrub species; and improved fallows. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
In the Philippines, smallholder farmers have become major timber producers. But the systems of timber production practiced have several limitations. In intercropping systems, the practice of severe branch and/or root pruning reduces tree-crop competition and increases annual crop yields, but is detrimental to tree growth and incompatible with commercial timber production. In even-aged woodlots, lack of regular income and poor tree growth, resulting from farmers’ reluctance to thin their plantations, are major constraints to adoption and profitable tree farming. In the municipality of Claveria, Misamis Oriental, the recent practice of planting trees on widely spaced (6–8 m) contour grass strips established for soil conservation suggests ways to improve the adoptability (i.e., profitability, feasibility and acceptability) of timber-based agroforestry systems. Assuming that financial benefits are the main objective of timber tree farmers, we develop a simple linear programming (LP) model for the optimal allocation of land to monocropping and tree intercropping that maximizes the net present value of an infinite number of rotations and satisfies farmers’ resource constraints and regular income requirements. The application of the LP model to an average farmer in Claveria showed that cumulative additions of widely spaced tree hedgerows provides higher returns to land, and reduce the risk of agroforestry adoption by spreading over the years labour and capital investment costs and the economic benefits accruing to farmers from trees. Therefore, incremental planting of widely spaced tree hedgerows can make farm forestry more adoptable and thus benefit a larger number of resource-constrained farmers in their evolution towards more diverse and productive agroforestry systems.  相似文献   

3.
Nutrient competition between interplanted species is investigated using mechanistic modelling. Though tree and crop plant roots may occupy the same soil volume, nutrient competition is seen to be dependent on soil supply mechanisms. Model simulations illustrate the effects of nutrient diffusion rate, mobility/soil interaction, root diameter, soil moisture content, and rooting density on nutrient concentration gradients governing uptake adjacent to plant roots. These factors, unique for each nutrient and soil, combine to determine the potential for competition in agroforestry plantings. Nutrient competition is most likely for the more mobile nutrients and mechanistic modelling can be used to select tree and crop species with superior rooting and physiological characteristics for interplantings to better manage below-ground competition.  相似文献   

4.
Indices of shallow rootedness and fractal methods of root system study were combined with sapflow monitoring to determine whether these ‘short-cut’ methods could be used to predict tree competition with crops and complementarity of below ground resource use in an agroforestry trial in semi-arid Kenya. These methods were applied to Grevillea robusta Cunn., Gliricidia sepium (Jacq.) Walp., Melia volkensii Gürke and Senna spectabilis syn. Cassia spectabilis aged two and four years which were grown in simultaneous linear agroforestry plots with maize as the crop species. Indices of competition (shallow rootedness) differed substantially according to tree age and did not accurately predict tree:crop competition in plots containing trees aged four years. Predicted competition by trees on crops was improved by multiplying the sum of proximal diameters squared for shallow roots by diameter at breast height2, thus taking tree size into account. Fractal methods for the quantification of total length of tree root systems worked well with the permanent structural root system of trees but seriously underestimated the length of fine roots (less than 2 mm diameter). Sap flow measurements of individual roots showed that as expected, deep tap roots provided most of the water used by the trees during the dry season. Following rainfall, substantial water uptake by shallow lateral roots occurred more or less immediately, suggesting that existing roots were functioning in the recently wetted soil and that there was no need for new fine roots to be produced to enable water uptake following rainfall. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Desirable root architecture for trees differs between sequential and simultaneous agroforestry systems. In sequential systems extensive tree root development may enhance nutrient capture and transfer to subsequent crops via organic pools. In simultaneous systems tree root development in the crop root zone leads to competition for resources.Fractal branching models provide relationships between proximal root diameter, close to the tree stem, and total root length or surface area. The main assumption is that a root branching proportionality factor is independent of root diameter. This was tested in a survey of 18 multipurpose trees growing on an acid soil in Lampung (Indonesia). The assumption appeared valid for all trees tested, for stems as well as roots. The proportionality factor showed a larger variability in roots than in stems and the effects of this variabilily should be further investigated. A simple index of tree root shallowness is proposed as indicator of tree root competitiveness, based on superficial roots and stem diameter.Pruning trees is a major way to benefit from tree products and at the same time reduce above-ground competition between trees and crops. It may have negative effects, however, on root distribution and enhance below-ground competition. In an experiment with five tree species, a lower height of stem pruning led to a larger number of superficial roots of smaller diameter, but had no effect on shoot:root ratios or the relative importance of the tap root.  相似文献   

6.
Plant-soil interactions in multistrata agroforestry in the humid tropicsa   总被引:1,自引:0,他引:1  
Multistrata agroforestry systems with tree crops comprise a variety of land use systems ranging from plantations of coffee, cacao or tea with shade trees to highly diversified homegardens and multi-storey tree gardens. Research on plant-soil interactions has concentrated on the former. Tree crop-based land use systems are more efficient in maintaining soil fertility than annual cropping systems. Certain tree crop plantations have remained productive for many decades, whereas homegardens have existed in the same place for centuries. However, cases of fertility decline under tree crops, including multistrata agroforestry systems, have also been reported, and research on the causal factors (both socioeconomic and biophysical) is needed. Plantation establishment is a critical phase, during which the tree crops require inputs but do not provide economic outputs. In larger plantations, tree crops are often established together with a leguminous cover crop, whereas in smallholder agriculture, the initial association with food crops and short-lived cash crops can have both socioeconomic and biological advantages. Fertilizers applied to, and financed by, such crops can help to `recapitalize' soil fertility and improve the development conditions of the young tree crops. Favorable effects on soil fertility and crop nutrition have been observed in associations of tree crops with N2-fixing legume trees, especially under N-deficient conditions. Depending on site conditions, the substitution of legume `service' trees with fast-growing timber trees may lead to problems of competition for nutrients and water, which may be alleviated through appropriate planting designs. The reduction of nutrient leaching and the recycling of subsoil nutrients are ways to increase the availability of nutrients in multistrata systems, and at the same time, reduce negative environmental impacts. These processes are optimized through fuller occupation of the soil volume by roots, allowing a limited amount of competition between associated species. The analysis of temporal and spatial patterns of water and nutrient availability within a system helps to optimize the use of soil resources, e.g., by showing where more plants can be added or fertilizer rates reduced. Important research topics in multistrata agroforestry include plantation establishment, plant arrangement and management for maximum complementarity of resource use in space and time, and the optimization of soil biological processes, such as soil organic matter build-up and the stabilization and improvement of soil structure by roots, fauna and microflora. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
This review presents information about root systems of crops and trees and describes approaches that have been used to model uptake of water and nutrients in crops that may have application to agroforestry systems. Only a few measurements of the distribution of tree roots in agroforestry systems have been published and these are predominantly in alley cropping systems with young trees. Therefore, a major limitation to developing water and nutrient uptake models for trees is the lack of adequate measurements and conceptual models for describing the distribution of roots spatially and temporally. Most process-based modelling approaches to water and nutrient uptake integrate the activities of a single root over the whole root system. Several difficulties can be foreseen with applying these approaches to roots of older trees including the presence of mycorrhizal associations so that the root surface is not the site of uptake, the uncertainty as to whether all tree roots are active in taking up water and nutrients, and the fact that, unlike annual crops, trees have substantial reserves of nutrients that can be mobilised to support growth so that the notion of a plant demand regulating uptake may prove difficult to define. The review concludes that a programme of experimental measurements is required together with modelling using approaches both in which roots are implicit, and in which process-based models with roots allow competitive ability to be assessed.  相似文献   

8.
Alley cropping would be acceptable to farmers in West Africa, if the amount of tree-crop competition could be reduced and crop yields increased and stabilized. The importance of overall tree-crop competition in alley cropping was therefore quantified at three locations in the Republic of Bénin, by comparing the performance of a maize-cassava intercrop and mixed hedges of Gliricidia sepium and Flemingia macrophylla in an alley cropping system, where the tree-crop interaction was high, and in a cut and carry system with block plantings, where the interface was restricted to one face. The establishment and productivity of trees in both agroforestry systems depended strongly on the natural soil fertility of the site, K and Ca being critical for both species. Alley hedges produced progressively more cut dry matter with higher leaf proportions than tree blocks and hence yielded significantly higher nutrient masses. Overall, the cut dry matter from five cuttings per cropping season ranged among locations from 855 to 1651 kg ha–1 yr–1 for alley hedges and from 777 to 869 kg ha–1 yr–1 for tree blocks. Differences in yields of maize and cassava between both systems were insignificant in all three environments and all cropping years under observation. The results of this study suggest that the overall effect of tree-crop competition was unimportant, but that tree-tree competition was the decisive factor in determining the total system productivity.  相似文献   

9.
The fact that the shelter created by windbreaks can have a significant, positive effect on crop production is supported by eight decades of research from many countries around the world. Although the concept of planting windbreaks to enhance crop production has general currency in Australia, the practice is not as wide as it could be. This review of the last decade of windbreak literature defines the research needed to encourage wider utilisation of windbreak technology. After outlining the principal mechanisms behind the effect of shelter on temperate crops, the review discusses relevant literature of the past decade especially that from Australia. The main mechanisms discussed are: the protection of crops from physical damage; soil conservation; the direct augmentation of soil moisture; and the alteration of the crop energy balance and plant water relations. Also discussed are the elusiveness of the shelter effect, competition from windbreak trees, and the modelling of windbreak systems. Suggestions for future research in Australia include: quantifying the competition of various windbreak species and the effect of root pruning on both crop and tree; a model of crop energy and water relations at the tree-crop interface; an economic model and a farmer-oriented decision support tool. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
In order to assess the possibility of root competition in agroforestry, the vertical distribution of fine roots (< 2 mm in diameter) of five tree species in pure two-year-old stands was compared to that of mature maize.Cassia siamea, Eucalyptus tereticornis, Leucaena leucocephala andProsopis chilensis had a rooting pattern similar to that of maize, i.e. a slow decline in fine root mass from 0–100 cm soil depth.Eucalyptus camaldulensis had its roots evenly distributed down to 100 cm. On an average, the fine root biomass of the tree species was roughly twice as that of the maize. We conclude that the studied tree species are likely to compete with maize and other crops with a similar rooting pattern for nutrients and water.  相似文献   

11.
In order to assess the possibility of root competition in agroforestry, the vertical distribution of fine roots (< 2 mm in diameter) of five tree species in pure two-year-old stands was compared to that of mature maize.Cassia siamea, Eucalyptus tereticornis, Leucaena leucocephala andProsopis chilensis had a rooting pattern similar to that of maize, i.e. a slow decline in fine root mass from 0–100 cm soil depth.Eucalyptus camaldulensis had its roots evenly distributed down to 100 cm. On an average, the fine root biomass of the tree species was roughly twice as that of the maize. We conclude that the studied tree species are likely to compete with maize and other crops with a similar rooting pattern for nutrients and water.  相似文献   

12.
A major tenet of agroforestry, that trees maintain soil fertility, is based primarily on observations of higher crop yields near trees or where trees were previously grown. Recently objective analyses and controlled experiments have addressed this topic. This paper examines the issues of tree prunings containing sufficient nutrients to meet crop demands, the timing of nutrient transfer from decomposition to intercrops, the percent of nutrients released that are taken up by the crop, and the fate of nutrients not taken up by the crop.The amount of nutrients provided by prunings are determined by the production rate and nutrient concentrations, both depending on climate, soil type, tree species, plant part, tree density and tree pruning regime. A large number of screening and alley cropping trials in different climate-soil environments indicate that prunings of several tree species contain sufficient nutrients to meet crop demand, with the notable exception of phosphorus. Specific recommendations for the appropriate trees in a given environment await synthesis of existing data, currently only general guidelines can be provided.Tree biomass containing sufficient nutrients to meet crop demand is not enough, the nutrients must be supplied in synchrony to crop needs. Nutrient release patterns from organic materials are, in part, determined by their chemical composition, or quality. Leguminous materials release nitrogen immediately, unless they contain high levels of lignin or polyphenols. Nonlegumes and litter of both legumes and nonlegumes generally immobilize N initially. There is little data on release patterns of other nutrients. Indices that predict nutrient release patterns will assist in the selection of species for synchronizing with crop demand and improve nutrient use-efficiency.Field trials with agroforestry species ranging in quality show that as much as 80% of the nutrients are released during the course of annual crop growth but less than 20% is captured by the crop, a low nutrient-use efficiency. There are insufficient data to determine how much of the N not captured by the crop is captured by the trees or is in the soil organic matter, the availability of that N to subsequent crops, or how much of that N is lost through leaching, volatilization or denitrification. Longer term trials are needed.  相似文献   

13.
国外混农林业系统中林木与农作物的相互关系研究进展   总被引:16,自引:1,他引:15  
总结了近年国外混农林业系统中林木和农作物在地上和地下部分的相互作用关系的研究进展。其中林木根系分布与管理研究内容是通过对林木根系类型的筛选,选择与农作物根系矛盾较小的树种;水分关系研究中探讨了林木与农作物的水分矛盾;养分关系中主要说明林木枝叶对农作物的有利作用和它们对养分的竞争作用;他感作用研究指出某些树种的枝叶虽然有一定的毒性,但对农作物生长影响不大;地上部分的研究说明,林木对作物的遮荫作用是主要的,而作物对林木的影响是次要的。  相似文献   

14.
Fine root distribution and structural root characteristics of four-years-old multipurpose woody species with potential for use in agroforestry systems were investigated on an Alfisol in the forest savanna transition zone of south-western Nigeria. Rooting patterns of woody species studied differed considerably. Lonchocarpus sericeus had the lowest percentage (21%) of total fine roots confined to the upper (0 to 30 cm) soil layer, compared to 84% with Tetrapleura tetraptera. Despite the superior tap root system of Enterolobium cyclocarpum and the fine root form of Nauchlea latifolia however, their extensive distribution and very large lateral woody root volume density may pose a major problem for seedbed preparation and tillage operations in simultaneous agroforestry systems. Lonchocarpus sericeus appears to have the most desirable structural and fine root architecture among the species studied for simultaneous agroforestry systems. The total root density below the underlying distal soil layers was linearly related to the sum of square of tap root diameter and the corresponding soil depths. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Modelling the root zone water dynamics in a tree crop agroforestry system is a useful approach to understanding small-scale effects in tree crop systems and may be helpful for optimizing tree spacing in agroforestry system planning. The agroforestry system in this study consists of the species Theobroma grandiflorum (Willd ex Spreng) Schum (Cupuaçu), Bactris gasipaes H.B.K. (peach palm) and the cover crop Pueraria phaseoloides (Roxb.) Benth (Pueraria). The soiltype is an oxisol. Calibration was conducted for each of the three species separately. Calibration results show good conformity between simulated and measured data. Simulated scenarios examine the influence of different spacing between trees on root water uptake, evaporation and drainage. Mean interception and crop factors of the whole flow region vary with spacing or are held constant to examine below-ground effects only. Also a fictitious scenario of an older agroforestry system with deeper roots is calculated. In order to overcome restrictions of the computer program Hydrus-2D, correction factors in the root zone were introduced and a calculation scheme for root water uptake of a flow subregion was developped. Below-ground effects of spacing between trees are not or almost not present, but the depth of the tree roots has a significant influence on root water uptake, evaporation and drainage. When mean interception and crop factor vary, drainage increases and root water uptake decreases slightly with spacing. The modelling approach has been found promising for optimizing agroforestry systems although it can only be seen as a first beginning. In an agroforestry systems under drier conditions differences in results will probably be larger.  相似文献   

16.
Agroforestry trees are attacked by a wide spectrum of insects at all stages of their growth just like other annual and perennial crops. Pest management in agroforestry has not received much attention so far, but recent emphasis on producing high value tree products in agroforestry and using improved germplasm in traditional systems, and emergence of serious pest problems in some promising agroforestry systems have increased awareness on risks posed by pests. Insects may attack one or more species within a system and across systems in the landscape, so pest management strategies should depend on the nature of the insect and magnitude of its damage. Although greater plant diversity in agroforestry is expected to increase beneficial arthropods, diversity by itself may not reduce pests. Introduction of tree germplasm from a narrow genetic base and intensive use of trees may lead to pest outbreaks. In simultaneous agroforestry systems, a number of factors governing tree—crop—environment interactions, such as diversity of plant species, host range of the pests, microclimate, spatial arrangement and tree management modify pest infestations by affecting populations of both herbivores and natural enemies. Trees also affect pest infestations by acting as barriers to movement of insects, masking the odours emitted by other components of the system and sheltering herbivores and natural enemies. In sequential agroforestry systems, it is mostly the soil-borne and diapausing insects that cause and perpetuate damage to the common hosts in tree—crop rotations over seasons or years. An integrated approach combining host-plant resistance to pests, exploiting alternative tree species, measures that prevent pest build up but favour natural enemies and biological control is suggested for managing pests in agroforestry. Species substitution to avoid pests is feasible only if trees are grown for ecological services such as soil conservation and low value products such as fuelwood, but not for trees yielding specific and high value products. For exploiting biological control as a potent, low cost and environmentally safe tool for pest management in agroforestry, research should focus on understanding the influence of ecological and management factors on the dynamics of insect pest-natural enemy populations. Scientists and policy makers in national and international institutions, and donors are urged to pay more attention to pest problems in agroforestry to harness the potential benefits of agroforestry.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
A considerable amount of data is available about above-ground biomass production and turnover in tropical agroforestry systems, but quantitative information concerning root turnover is lacking. Above- and below-ground biomass dynamics were studied during one year in an alley cropping system withGliricidia sepium and a sole cropping system, on aPlinthic Lixisol in the semi-deciduous rainforest zone of the Côte d'Ivoire. Field crops were maize and groundnut. Live root mass was higher in agroforestry than in sole cropping during most of the study period. This was partly due to increased crop and weed root development and partly to the presence of the hedgerow roots. Fine root production was higher in the alleys and lower under the hedgerows compared to the sole cropping plots. Considering the whole plot area, root production in agroforestry and sole cropping systems was approximatly similar with 1000–1100 kg ha–1 (dry matter with 45% C) in 0–50 cm depth; about 55% of this root production occured in the top 10 cm. Potential sources of error of the calculation method are discussed on the basis of the compartment flow model. Above-ground biomass production was 11.1 Mg ha–1 in sole cropping and 13.6 Mg ha–1 in alley cropping, of which 4.3 Mg ha–1 were hedgerow prunings. The input of hedgerow root biomass into the soil was limited by the low root mass ofGliricidia as compared to other tree species, and by the decrease of live root mass of hedgerows and associated perennial weeds during the cropping season, presumably as a result of frequent shoot pruning.  相似文献   

18.
Biophysical interactions in tropical agroforestry systems   总被引:2,自引:0,他引:2  
The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interactions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offset the large competitive effect of hedgerows with crops for water and/or nutrients. Whereas improved soil fertility and microclimate positively influence crop yields underneath the canopies of scattered trees in semiarid climates, intense shading caused by large, evergreen trees negatively affects the yields. Trees in boundary plantings compete with crops for above- and belowground resources, with belowground competition of trees often extending beyond their crown areas. The major biophysical interactions in improved planted fallows are improvement of soil nitrogen status and reduction of weeds in the fallow phase, and increased crop yields in the subsequent cropping phase. In such systems, the negative effects of competition and micro-climate modification are avoided in the absence of direct tree–crop interactions. Future research on biophysical interactions should concentrate on (1) exploiting the diversity that exists within and between species of trees, (2) determining interactions between systems at different spatial (farm and landscape) and temporal scales, (3) improving understanding of belowground interactions, (4) assessing the environmental implications of agroforestry, particularly in the humid tropics, and (5) devising management schedules for agroforestry components in order to maximize benefits. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Farming Systems developed in Humid Tropical Zones are frequently characterized by a combination of perennial and annual plants, intermixed in complex tree-crop associations. The productive functioning, the agronomic and economic performances, and the sustainability of these crop associations remain poorly understood. To improve the management capacity of these complex agroforestry systems, adequate indicators must be developed and integrated in assessment systems. These may then be used to aid farmers, assisted by their extension agents, in making decisions regarding management practices. The present study focused on the agroforestry systems developed by 38 farmers in the South West Region of Cameroon, which were surveyed for a large set of variables, aiming at formulating a Traditional Agroforestry Performance Indicators System (TAPIS). Analyses of the relationships among indicators in TAPIS allowed an improved understanding of agro-ecological and agro-economic performances in the studied plots, revealed tradeoffs regarding plant stand, income generation, food production, input demands and work requirements; and may contribute to the sustainability assessment of agroforestry systems.  相似文献   

20.
Science in agroforestry   总被引:20,自引:10,他引:20  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号