首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W-C. Zhou    F. L. Kolb    G-H. Bai    L. L. Domier    L. K. Boze  N. J. Smith 《Plant Breeding》2003,122(1):40-46
The objectives of this study were to validate the major quantitative trait locus (QTL) for scab resistance on the short arm of chromosome 3B in bread wheat and to isolate near‐isogenic lines for this QTL using marker‐assisted selection (MAS). Two resistant by susceptible populations, both using ‘Ning7840’ as the source of resistance, were developed to examine the effect of the 3BS QTL in different genetic backgrounds. Data for scab resistance and simple sequence repeat (SSR) markers linked to the resistance QTL were analyzed in the F2:3 lines of one population and in the F3:4 lines of the other. Markers linked to the major QTL on chromosome 3BS in the original mapping population (‘Ning7840’/‘Clark’) were closely associated with scab resistance in both validation populations. Marker‐assisted selection for the QTL with the SSR markers combined with phenotypic selection was more effective than selection based solely on phenotypic evaluation in early generations. Marker‐assisted selection of the major QTL during the seedling stage plus phenotypic selection after flowering effectively identified scab resistant lines in this experiment. Near‐isogenic lines for this 3BS QTL were isolated from the F6 generation of the cross ‘Ning7840’/‘IL89‐7978’ based on two flanking SSR markers, Xgwm389 and Xbarc147. Based on these results, MAS for the major scab resistance QTL can improve selection efficiency and may facilitate stacking of scab resistance genes from different sources.  相似文献   

2.
Wheat grain protein content (GPC) is a primary end-use quality determinant for hard spring wheat (Triticum aestivum L.), and marker-assisted selection (MAS) could help plant breeders to develop high GPC cultivars. Two experiments were conducted using two populations developed by crossing low GPC cultivars (Ember) and (McVey) with (Glupro), which contains a high GPC QTL from Triticum dicoccoides (DIC). In one experiment, MAS and phenotypic selection (PS) were employed to select high GPC genotypes, and the selected genotypes were grown in six North Dakota (ND), USA environments. In a second experiment, molecular markers were used to select BC2F2 plants from each marker class for the DIC allele from each population. These plants were twice self-pollinated to produce BC2F4 plants, which were grown in single ND and Minnesota (MN) environments. Mean GPC was highest among lines using PS at two environments and not significantly different between MAS and PS in the other four environments. Lines presumably homozygous for DIC alleles had significantly higher GPC than their respective low GPC parents. The phenotypic GPC variation explained by the markers (r 2) was 30% at the ND and 15% at the MN environment. The use of PS was as effective as MAS in selecting for high GPC genotypes and more effective in some environments. This likely can be attributed to PS enabling selection for both the major QTL and other genes contributing to GPC. The use of molecular markers might be more advantageous for transferring the high GPC DIC QTL in a backcrossing program during parent development.  相似文献   

3.
A doubled haploid population of Brassica juncea, developed from a cross between two parental lines differing for days to maturity, was used to study the efficiency of indirect selection for a primary trait through selection of secondary trait(s) over direct selection for the primary trait when quantitative trait loci information is available for both primary and secondary traits, and applied. Days to maturity was considered as primary trait, while days to first flowering, days to end of flowering, flowering period and plant height were considered as secondary traits. An RFLP linkage map was employed for QTL analysis of maturity and maturity-determinant traits, and a stable QTL B6 simultaneously affecting these two types of traits was identified. This linked QTL explained 11.7% phenotypic variation for days to maturity, 20.7% variation for days to first flowering, 24.3% variation for days to end of flowering and 14.4% variation for plant height. Phenotypic evaluation of maturity and/or maturity-determinant traits, viz. days to first flowering, days to end of flowering and plant height revealed that limited genetic advance for early maturity can be achieved through phenotypic selection of the primary and/or the secondary trait(s). However, the estimates of genetic advance for early maturity based on combined phenotypic evaluation and linked QTL data was found to be, at least, three times higher compared to genetic advance based on phenotypic evaluation only, demonstrating the potential of marker-assisted selection in breeding for early maturity in B. juncea.  相似文献   

4.
Variability for desirable alleles within elite breeding populations is a requirement for long-term genetic improvement. Changes in genetic diversity were evaluated in a recurrent selection programme for enhanced grain yield in oat, Avena sativa L., using coefficient of parentage (rp) and restriction fragment length polymorphism (RFLP) based genetic similarity (S) estimates. Both rp and s increased during seven cycles of recurrent selection, indicating a reduction in the level of genetic diversity within the population. The relationship between genetic diversity and agronomic performance was also examined. Genetic similarity measures were poor predictors of the near-homozygous progeny performance and general and specific combining ability effects for three agronomic traits in the recurrent selection programme. In addition, there was no apparent trend for preferential selection of progeny from either more similar or more diverse parents within a given cycle of selection. The overall reduction in genetic diversity in this population has not affected selection response for grain yield. Variability remaining at important loci or de novo variation are possible explanations for the continued selection progress.  相似文献   

5.
Aluminium (Al) toxicity is a major constraint to crop productivity in acidic soils. A quantitative trait locus (QTL) analysis was performed to identify the genetic basis of Al tolerance in the wheat cultivar ‘Chinese Spring’. A nutrient solution culture approach was undertaken with the root tolerance index (RTI) and hematoxylin staining method as parameters to assess the Al tolerance. Using a set of D genome introgression lines, a major Al tolerance QTL was located on chromosome arm 4DL, explaining 31% of the phenotypic variance present in the population. A doubled haploid population was used to map a second major Al tolerance QTL to chromosome arm 3BL. This major QTL (Qalt CS .ipk-3B) in ‘Chinese Spring’ accounted for 49% of the phenotypic variation. Linkage of this latter QTL to SSR markers opens the possibility to apply marker-assisted selection (MAS) and pyramiding of this new QTL to improve the Al tolerance of wheat cultivars in breeding programmes.  相似文献   

6.
Root traits are key components of plant adaptation to drought environment. By using a 120 recombined inbred lines (RILs) rice population derived from a cross between IRAT109, a japonica upland rice cultivar and Yuefu, a japonica lowland rice cultivar, a complete genetic linkage map with 201 molecular markers covering 1,833.8 cM was constructed and quantitative trait loci (QTLs) associated with basal root thickness (BRT) were identified. A major QTL, conferring thicker BRT, located on chromosome 4, designated brt4, explained phenotypic variance of 20.6%, was selected as target QTL to study the effects of marker-assisted selection (MAS) using two early segregating populations derived from crosses between IRAT109 and two lowland rice cultivars. The results showed that the flanking markers of brt4 were genetically stable in populations with different genetic backgrounds. In the two populations under upland conditions, the difference between the means of BRT of plants carrying positive and negative favorable alleles at brt4 flanking markers loci was significant. Phenotypic effects of BRT QTL brt4 were 5.05–8.16%. When selected plants for two generations were planted at Beijing and Hainan locations under upland conditions, MAS effects for BRT QTL brt4 were 4.56–18.56% and 15.46–26.52% respectively. The means of BRT for the homozygous plants were greater than that of heterozygous plants. This major QTL might be useful for rice drought tolerance breeding. L. Liu and P. Mu are contributed equally to this work.  相似文献   

7.
Grain size is a main component of rice appearance quality. In this study, we performed the SSR mapping of quantitative trait loci (QTLs) controlling grain size (grain length and breadth) and shape (length/breadth ratio) using an F2 population of a cross between two Iranian cultivars, Domsephid and Gerdeh, comprising of 192 individuals. A linkage map with 88 markers was constructed, which covered 1367.9 cM of the rice genome with an average distance of 18 cM between markers. Interval mapping procedure was used to identify the QTLs controlling three grain traits, and QTLs detected were further confirmed using composite interval mapping. A total of 11 intervals carrying 18 QTLs for three traits were identifed, that included five QTLs for grain length, seven QTLs for grain breadth, and six QTLs for grain shape. A major QTL for grain length was detected on chromosome 3, that explained 19.3% of the phenotypic variation. Two major QTLs for grain breadth were mapped on chromosomes 3 and 8, which explained 34.1% and 20% of the phenotypic variation, respectively. Another two major QTLs were identified for grain shape on chromosomes 3 and 8, which accounted for 27.1% and 20.5% of the phenotypic variance, respectively. The two QTLs that were mapped for grain shape coincided with the major QTLs detected for grain length and grain breadth. Intrestingly, gs2 QTL specific to grain shape was detected on chromosome 2 that explained 15% of the phenotypic variation.  相似文献   

8.
Breeding efforts to improve grain yield, seed protein concentration and early maturity in pea (Pisum sativum L.) have proven to be difficult. The use of molecular markers will improve our understanding of the genetic factors conditioning these traits and is expected to assist in selection of superior genotypes. This study was conducted to identify genetic loci associated with grain yield, seed protein concentration and early maturity in pea. A population of 88 recombinant inbred lines (RILs) that was developed from a cross between 'Carneval' and 'MP1401' was evaluated at 13 environments across the provinces of Alberta, Manitoba and Saskatchewan, Canada in 1998, 1999 and 2000. A linkage map consisting of 193 AFLPs (amplified fragment length polymorphism), 13 RAPDs (random amplified polymorphic DNA) and one STS (sequence tagged site) marker was used to identify putative quantitative trait loci (QTL) for grain yield, seed protein concentration and early maturity. Four QTL were identified each for grain yield and days to maturity, and three QTL were identified for seed protein concentration. A multiple QTL model for each trait showed that these genomic regions accounted for 39%, 45% and 35% of the total phenotypic variation for grain yield, seed protein concentration and days to maturity, respectively. The consistency of these QTL across environments and their potential for marker-assisted selection are discussed in this report.  相似文献   

9.
To manipulate the composition of the maize kernel to meet future needs, an understanding of the molecular regulation of kernel quality‐related traits is required. In this study, the quantitative trait loci (QTL) for the concentrations of grain protein, starch and oil were identified using three sets of RIL populations in three environments. The genetic maps and the initial QTL were integrated using meta‐analyses. A total of 38 QTL were identified, including 15 in population 1, 12 in population 2 and 11 in population 3. The individual effects ranged from 2.87% to 13.11% of the phenotypic variation, with seven QTL each contributing over 10%. One common QTL was found for the concentrations of grain protein and starch in bin 3.09 in the three environments and the three RIL populations. Of the 38 initial QTL, 22 were integrated into eight mQTL by meta‐analysis. mQTL3 and mQTL8 of the key mQTL in which the initial QTL displayed R2 > 10% included six and three initial QTL for grain protein and starch concentrations from two or three populations, respectively. These results will provide useful information for marker‐assisted selection to improve the quality of the maize kernel.  相似文献   

10.
A population of 112 F1-derived doubled haploid lines was produced from a reciprocal cross of Brassica juncea. The parents differed for seed quality, seed color and many agronomic traits. A detailed RFLP linkage map of this population, comprising 316 loci, had been constructed, and was used to map quantitative trait loci (QTL) for seed yield and yield components, viz. siliqua length, number of seeds per siliqua, number of siliques per main raceme and 1000-seed weight. Stable and significant QTLs were identified for all these yield components except seed yield. For yield components, a selection index based on combined phenotypic and molecular data (QTL effects) could double up the efficiency of selection compared to the expected genetic advance by phenotypic selection. Selection indices for high seed yield, based on the phenotypic data of yield and yield components, could only improve the efficiency of selection by 4% of the genetic advance that can be expected from direct phenotypic selection for yield alone. Inclusion of molecular data together with the phenotypic data of yield components in the selection indices did not improve the efficiency of selection for higher seed yield. This is probably due to often negative relationships among the yield components. Most of the QTLs for yield components were compensating each other, probably due to linkage, pleiotropy or developmentally induced relationships among them. The breeding strategy for B. juncea and challenges to marker assisted selection are discussed.  相似文献   

11.
A genetic map was constructed using DNA‐based markers in a barley mapping population derived from the cross ‘Tankard’בLivet’, that was developed to explore the genetic control over grain damage in spring barley cultivars. Quantitative trait loci (QTL) were located for husk skinning, gape between the lemma and palea and splitting of the fused pericarp/testa/aleurone tissues. The QTL accounted for 70% of the genetic variation in Split and 60% of the genetic variation in Gape and Skinning. The QTL were clustered on chromosomes 1H, 4H, 5H, 6H and 7H. QTL analysis indicates the possibility of transgressive segregation for grain splitting and so the breeding of lines with more extreme splitting. This is of concern to the malting industry as, without extensive phenotypic assessment, such lines could be commercialized, as was the case of Landlord, and put malting barley supplies at risk. These findings are discussed in relation to the genetic control over traits including grain length and width.  相似文献   

12.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:1,自引:0,他引:1  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

13.
Fusarium head blight (FHB), or head scab, is an economically important disease of wheat (Triticum aestivum L.). In developing FHB-resistant soft winter wheat cultivars, breeders have relied on phenotypic selection, marker assisted selection (MAS), or a combination of the two. The objectives of this study were to estimate heritability of resistance in a resistant × susceptible cross and to simulate selection in order to determine the optimal combination of phenotypic and genotypic selection. F2 derived lines from the cross of KY93C-1238-17-2 (high yielding, susceptible) × VA01W-476 (resistant line with two exotic quantitative trait loci (QTL) and additional resistance) were grown under artificial inoculation in scab nurseries at Lexington (2007 and 2008) and Princeton (2008), KY. Visual symptoms were estimated on a 1–3 scale; percentage Fusarium damaged kernels (FDK), and deoxynivalenol (DON) concentration were measured. VA01W-476 contributed resistance alleles at two major QTL: Fhb1 and a QTL on chromosome 2DL, QFhs.nau-2DL. In this genetic background, the effect of QFhs.nau-2DL was more pronounced than that of Fhb1: 55 vs. 25% DON reduction and 40 vs. 32% FDK reduction. Genotypic selection based on both QTL was equivalent to phenotypic selection of the most resistant 28% of the population for DON and the most resistant 24% of the population for FDK. We propose that an initial round of phenotypic selection at moderate selection intensity will enrich the population with major QTL resistance alleles while maintaining variation at minor scab resistance loci and for other traits in general. Genotyping can then be used to extract lines whose phenotypic worth has been demonstrated and which are homozygous for resistance alleles at the major QTL.  相似文献   

14.
A procedure was developed for marker-assisted selection of complex traits for common bean (Phaseolus vulgarisL.) using an index based on QTL-linked markers and ultrametric genetic distances between lines and a target parent. A comparison of the mean seed yields of the top five lines selected by different schemes demonstrated that the highest yielding group was selected on the basis of a combination of phenotypic performance and a high QTL-based index,followed by groups identified by a high QTL-based-index, conventional selection,and a low QTL-based-index. This study demonstrated a simple way to use information obtained from QTL studies to make selection decisions. The study also showed that the use of the QTL-based-index in conjunction with the ultrametric genetic distance to the target parent would enablea plant breeder to select lines that retain important QTL in a desirable genetic background. Therefore, this type of MAS would be expected to be superior to the phenotypic selection. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Summary A doubled haploid (DH) wheat population derived from the cross Wangshuibai/Alondra‘s’ was developed through chromosome doubling of haploids generated by anther culture of hybrids. Fusarium head blight (FHB) was evaluated for three years from 2001 to 2003 in Jianyang, Fujian Province, China, where epidemics of FHB have been consistently severe. After 307 pairs of simple sequence repeat (SSR) primers were screened, 110 pairs were polymorphic between Wangshuibai and Alondra`s’, and used to construct a genetic linkage map for detection of quantitative trait loci (QTLs). A stable QTL for low FHB severity was detected on chromosomes 3B over all three years, and QTLs on chromosomes 5B, 2D, and 7A were detected over two years. Additional QTLs on chromosomes 3A, 3D, 4B, 5A, 5D, 6B and 7B showed marginal significance in only one year. Six QTLs were detected when phenotypic data from three years were combined. In addition, significant additive-by-additive epistasis was detected for a QTL on 6A although its additive effect was not significant. Additive effects (A) and additive-by-additive epistasis (AA) explained a major portion of the phenotypic variation (76.5%) for FHB response. Xgwm533-3B and Xgwm335-5B were the closest markers to QTLs, and have potential to be used as selectable markers for marker-assisted selection (MAS) in wheat breeding programs.  相似文献   

16.
Y. Li  Y. Song  R. Zhou  G. Branlard  J. Jia 《Plant Breeding》2009,128(3):235-243
Whereas gluten fraction accounts for 30–60% of the variation in wheat bread‐making quality, there remains substantial variation determined by non‐gluten factors. The objective of this study was to detect new loci for wheat quality. The genetics of sodium dodecyl sulphate‐sedimentation volume (Ssd), grain hardness (GH), grain protein content, wet gluten content (WGC) and water absorption (Abs) in a set of 198 recombinant inbred lines derived from two commercial varieties was studied by quantitative trait loci (QTL) analysis. A genetic map based on 255 marker loci, consisting of 250 simple sequence repeat markers and five glutenin loci, Glu‐A1, Glu‐B1, Glu‐D1, Glu‐B3 and Glu‐D3, was constructed. A total of 73 QTLs were detected for all traits. A major QTL for GH was detected on chromosome 1B and its relative contribution to phenotypic variation was 27.7%. A major QTL for Abs on chromosome 5D explained more than 30% of the phenotypic variation. Variations in Ssd were explained by four kinds of genes. Some QTLs for correlated traits mapped to the same regions forming QTL clusters or indicated pleiotropic effects.  相似文献   

17.
Soybean (Glycine max [L.] Merr.) is cultivated primarily for its protein and oil in the seed. In addition, soybean seeds contain nutraceutical compounds such as tocopherols (vitamin E), which are powerful antioxidants with health benefits. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) that affect accumulation of soybean seed tocopherols. A recombinant inbred line (RIL) population derived from the cross ‘OAC Bayfield’ × ‘OAC Shire’ was grown in three locations over 2 years. A total of 151 SSR markers were polymorphic of which a one‐way analysis of variance identified 42 markers whereas composite interval mapping identified 26 markers linked to tocopherol QTL across 17 chromosomes. Individual QTL explained from 7% to 42% of the total phenotypic variation. Significant two‐locus epistatic interactions were identified for a total of 122 combinations in 2009 and 152 in 2010. The multiple‐locus models explained 18.4–72.2% of the total phenotypic variation. The reported QTL may be used in marker‐assisted selection (MAS) to develop high tocopherol soybean cultivars.  相似文献   

18.
B. Kjær  J. Jensen 《Euphytica》1996,90(1):39-48
Summary The positions of quantitative trait loci (QTL) for yield and yield components were estimated using a 85-point linkage map and phenotype data from a F1-derived doubled haploid (DH) population of barley. Yield and its components were recorded in two growing seasons. Highly significant QTL effects were found for all traits at several sites in the genome. A major portion of the QTL was found on chromosome 2. The effect of the alleles in locus v on thousand grain weight and kernels per ear explained 70–80% of the genetic variation in the traits. QTL × year interaction was found for grain yield. Several different QTL were found within the two-rowed DH lines compared to those found in the six-rowed DH lines. Epistasis between locus v and several loci for yield and yield components indicates that genes are expressed differently in the two ear types. This may explain the difficulties of selecting high yielding lines from crosses between two-rowed and six-rowed barley.Abbreviations DH doubled haploid - QTL quantitative trait locus/loci - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism - T. Prentice Tystofte Prentice - V. Gold Vogelsanger Gold  相似文献   

19.
Grain yield and its component trait thousand kernel weight are important traits in triticale breeding programmes. Here, we used a large mapping population of 647 doubled haploid lines derived from four families to dissect the genetic architecture underlying grain yield and thousand kernel weight by multiple‐line cross QTL mapping. We identified 3 QTL for grain yield and 13 for thousand kernel weight which cross‐validated explained 5.2% and 48.2% of the genotypic variance, respectively. Both traits showed a positive phenotypic correlation, and we found two QTL overlapping between them. Full two‐dimensional epistasis scans revealed epistatic QTL for both traits, suggesting that epistatic interactions contribute to their genetic architecture. Based on QTL identified in our results, we conclude that the potential for marker‐assisted selection is limited for grain yield but more promising for thousand kernel weight.  相似文献   

20.
Many studies already investigated marker-assisted selection (MAS) efficiency but mainly in biparental populations. Connected multiparental populations address a broader diversity and confer a gain of power for QTL detection which must be beneficial for MAS. Our objective was to compare multiparental connected designs to biparental populations taken separately for MAS and phenotypic selection. We first detected QTL for flowering time and grain yield in an experimental maize design involving four parental inbred lines crossed to produce six different biparental populations and confirmed the advantage of multiparental connected designs over biparental populations for QTL detection. Based on these results we performed stochastic simulations to evaluate the expected efficiency of four generations of MAS and phenotypic selection. Different parameters were considered: trait heritability, genetic architecture and whether QTL were assumed to be known or have to be detected. Genetic gains were higher in the multiparental design than on average over the biparental populations considered separately, especially when favourable alleles were equally distributed among parental lines. When QTL detection was included in the simulation process, we found that type I error risk considered for declaring QTL as significant should be adapted to the design. Type I error risks leading to the best response were higher for the biparental populations than for the multiparental design. Besides addressing a broader diversity, multiparental designs increase the power of QTL detection, which reinforces their superiority over biparental designs for MAS. Application of MAS to multiparental designs therefore appears promising to accelerate genetic gain in plant breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号