首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Color change of city refuse during composting process was investigated according to the methods of measurement for color of materials based on the CIE 1931 Standard Colorimetric System. Stimulus value Y (the degree of lightness) and chromaticity coordinates (x, y) were determined with Color Analyzer by measuring relative spectral reflectance. Stimulus value Y of city refuse decreased during composting process, but chromaticity coordinates (x, y) scarcely changed.

Color of various composts, which were produced from city refuse, straw, hog fecal wastes, tree bark, and tree bark mixed with activated sludge, were also investigated by measuring relative spectral reflectance. The shapes of the reflection spectra of city refuse were different from those of the other composts. Colors of the various composts were similar to each other when specified according to their three attributes: value, hue, and chroma (Munsell renotation).

While city refuse was rotting and maturing, stimulus value Yand C/N ratio equally decreased. A positive correlation was found between stimulus value Y and C/N ratio. It was concluded that stimulus value Y can be used as a criterion for determining the degree of maturity of city refuse compost.

The correlation between stimulus value Y and C/N ratio of various composts was also investigated. According to the position on the two coordinates having stimulus value Y and C/N ratio as axe s, various composts were classified into three groups: (i) city refuse compost group, (ii) straw compost group, and (iii) tree bark compost group.  相似文献   

2.
Abstract

The humus composition was analyzed and the humic acid characterized by UV and visible absorption spectroscopy in order to investigate the rotting and maturing process of city refuse compost according to the method of Kumada et al. During the composting process, the following findings were obtained: (1) the HT value was almost constant, but the HE/HT ratio varied somewhat, (2) HA increased with decrease in FA, and the PQ value so increased clearly, (3) the shoulder-like absorption at a wavelength near 270 nm weakened, and (4) the RF value of humic acid increased, whereas the Δ log K value seldom varied.

The IR spectrum of humic acid gradually changed as follows: (1) the absorption band in the 1700-1600 cm-1 region and in the 1550-1500 cm-1 region increased slightly, (2) the band in the 1100-1000 cm-1 region decreased, and (3) the bands at 835 and 710 cm-1 com pletely disappeared. On the whole, the shape of the IR spectrum of the city refuse compost became featureless. These changes were probably due to the oxidation which occurred in the composting process.  相似文献   

3.
Abstract

Changes in different chemical parameters of the mixtures of several organic residues during composting were studied in order to establish simple parameters that can be useful as indices of compost maturity. Circular chromatography test and the study of the colour in solid samples of compost cannot be considered sufficiently reliable for determining the degree of maturity in composts. Similarly, parameters such as ash, C/N ratio, CEC, total organic carbon (TOC), and total nitrogen (TN) must be ruled out. Other parameters such as water soluble carbon (WSC), water soluble carbohydrates, the C/N ratio of the water soluble extract, and the ratios WSC/TN and CEC/TOC, can be used as indices of compost maturity.  相似文献   

4.
This study highlights the effects of composts of olive mill wastes and organic household refuse with a pH range of 7 to 7.98 and a C/N ratio between 14.9 and 22, to improve the growth and the mineral nutrition of the date palm (Phoenix dactylifera L.). After 7 months of cultivation, plants amended with composts showed higher biomass production than the controls. Compost C1, i.e., the basic compost with no additives phosphate, at 100% and 45% doubled the production of dry matter in comparison with control plants. The rise of root biomass was considerably greater for plants grown with compost C1 without phosphate. In contrast, the shoot biomass was highly significant for composts C2 and C3 enriched with phosphate. The control plants, grown without amendment, showed significantly higher specific root length (SRL) and specific leaf length (SLL). The efficiency of compost application was reflected by the biomass rise, the number of emerged leaves (2.6–4), and the rise in leaf area (3.3 to 6.7 cm2) by improving the mineral nutrition of the date palm. The composts of olive mill waste and organic household refuse supplemented with natural rock phosphate, or not, generated a notable agronomic added value.  相似文献   

5.
The aim of this study was to determine the effects of initial C/N ratio (16.3, 19.1, 24.1, and 29.6) on decomposition rate and nitrogen loss during the composting of pig manure and edible fungus residue with rice bran. The results showed that all composting piles reached a temperature greater than 55°C for at least 7 days (which meets the requirements for destroying pathogens), and the maturity times of composts with low initial C/N ratios were shorter than in composts with high initial C/N ratios. The nitrogen loss in the composting pile with initial C/N of 16.3 was significantly higher than the other treatments. Furthermore, the statistics analysis showed that the initial C/N ratios of the composts, which varied from 16.3 to 29.6, had a significant negative linear correlation with the loss of total organic matter (R = ?0.9661) and loss of total nitrogen (R = ?0.9365). Therefore, for treating more agricultural wastes and achieving high-quality final product as well as the reduction of nitrogen losses, this study recommends that initial C/N ratios ranging from 20 to 25 are suitable for composting pig manure and edible fungus residue.

Highlight:

Various agricultural wastes can be successfully composted with initial C/N ratios 16:1–30:1.

Nitrogen loss had a significant linear negative correlation with the initial C/N ratio.

Compost with a low C/N ratio was beneficial to dispose of more pig manure since reducing the addition of carbon materials.  相似文献   

6.
Abstract

A field experiment was conducted to examine the effects of two organic materials (Bark and Tenporon composts) on the growth, nodulation and nitrogen fixation (measured as acetylene-reducing activity) of soybean plants (Glycine max L.) under acid and saline conditions. These organic materials were incorporated into acid and saline (induced by irrigating the soil with a NaCl solution) soils at 4% rate of application.

These composts tended to improve nodule formation in soybean under acid and saline conditions, especially in the plants treated with Bark compost. Acetylene-reducing activity was significantly (P<0.05) increased by these composts under acid condition.

These composts also tended to improve shoot growth under acid and saline conditions, presumably due to the improvement of the soil moisture status of the soils and nutrient uptake. These results suggest that the growth of soybean could be improved by the application of organic matter under acid and saline conditions.  相似文献   

7.
Abstract

The effect of organic amendment with sewage sludge composts of varying heavy metal content on the organic matter content and enzymatic activity of an agricultural soil supporting barley (Hordeum vulgare L.) or lettuce (Lactuca sativa L.) crops was studied. The organic amendments did not improved lettuce growth, the contaminated composts having a negative effect on yield. However, all organic amendments improved barley straw yields although they did not affect grain yields. The addition of the organic materials increased the total carbohydrate content of the soil although this content decreased with cultivation. There was a clearly observed effect of crop type and the degree of heavy metal contamination of the amendment on the most labile carbon (C) fractions (water‐soluble C, carbohydrates, and polyphenolics). In general, soil enzymatic activities were stimulated by addition of sewage sludge compost with low heavy metal content. The compost containing high level of cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) inhibited protease‐BAA activity with respect to the other composts. After cultivation, urease activity increased in soil amended with the high dose of composts, regardless their degree of metallic contamination. Both crop type and metallic contamination contained in the organic materials added influenced phosphatase and ß‐glucosidase activity.  相似文献   

8.
Two composts were obtained by cocomposting a concentrated depotassified beet vinasse and grape marc using an aerated static pile and a windrow system. The composting mixtures comprised grape marc (83%) and vinasse (17%) for the aerated static pile system and grape marc (77%), vinasse (20%) and phosphate rock (3%) for the windrow. Changes in temperature followed a similar path for both mixtures, however the thermophilic phase was longer in the aerated static pile (25 days) than in the windrow (10 days). This fact caused differences in both organic matter degradation, weight losses (21% for static pile and 10% for windrow) and gas losses during the process. Nevertheless, the composts obtained by the two systems had a high fertilizer nutrient value (18.2 g kg?1 N; 3.1 g kg?1 P; 13.6 g kg?1 K, C/N 16.1 for compost obtained in static pile and 20.6 g kg?1 N; 13.7 g kg?1 P; 13.1 g kg?1 K; C/N 18 for compost obtained in windrow). A high degree of stability was reached in both composting systems (124 cmolc kg?1 CEC for static pile and 153 cmolc kg?1 CEC for windrow at 80 days of composting). The chemical and physical properties of both vinasse composts suggest their possible use as soil conditioner.  相似文献   

9.
This study investigated the cocomposting of pine bark with goat manure or sewage sludge, with or without inoculated effective microorganisms (EM). Composting was done for 90 days and parameters monitored over this period included temperature, pH, electrical conductivity (EC), C/N ratio, inorganic N, as well as tannin content. Changes in temperature, pH and EC during composting were consistent with those generally observed with other composting systems. The parameters were influenced by the feedstock materials used but were not affected by inoculation with effective microorganisms. The highest temperature measured from pine bark-goat manure composts was 60°C but much lower maximum temperatures of 40°C and 30°C were observed for pine bark sewage sludge and pine bark alone composts, respectively. The C/N ratios of the composts decreased with composting time. Ammonium levels decreased while nitrate levels increased with composting time. Tannin levels generally decreased with composting time but the extent of decrease depended on the contents of the composting mixtures. The trends observed showed that temperature, pH, EC, C/N ratio, tannin levels, and inorganic NH4-N and NO3-N were reliable parameters for monitoring the co-composting of pine bark with goat manure or sewage sludge. The pine bark-goat manure compost had more desirable nutritional properties than the pine bark and pine bark-sewage sludge composts. It had high CEC, near neutral pH, low C/N ratio, and high amounts of inorganic N and bases (K, Ca, and Mg) while pine bark compost had the least amounts of nutrients, was acidic, and had high C/N ratio and low CEC. The final tannin content of the pine bark-goat manure compost was below the 20 g/kg upper threshold level for horticultural potting media, implying that its use as a growing medium would not cause toxicity to plants.  相似文献   

10.
Purpose

The majority of biochar studies use soils with only a narrow range of properties making generalizations about the effects of biochar on soils difficult. In this study, we aimed to identify soil properties that determine the performance of biochar produced at high temperature (700 °C) on soil pH, cation exchange capacity (CEC), and exchangeable base cation (Ca2+, K+, and Mg2+) content across a wide range of soil physicochemical properties.

Materials and methods

Ten distinct soils with varying physicochemical properties were incubated for 12 weeks with four rates of biochar application (0.5, 2, 4, and 8% w/w). Soil pH, CEC, and exchangeable base cations (Ca2+, K+, and Mg2+) were determined on the 7th and 84th day of incubation.

Results and discussion

Our results indicate that the highest biochar application rate (8%) was more effective at altering soil properties than lower biochar rates. Application of 8% biochar increased pH significantly in all incubated soils, with the increment ranging up to 1.17 pH unit. Biochar induced both an increment and a decline in soil CEC ranging up to 35.4 and 7.9%, respectively, at a biochar application rate of 8%. Similarly, biochar induced increments in exchangeable Ca2+ up to 38.6% and declines up to 11.4%, at an 8% biochar application rate. The increment in CEC and exchangeable Ca2+ content was found in soils with lower starting exchangeable Ca2+ contents than the biochar added, while decreases were observed in soils with higher exchangeable Ca2+ contents than the biochar. The original pH, CEC, exchangeable Ca2+, and texture of the soils represented the most crucial factors for determining the amount of change in soil pH, CEC, and exchangeable Ca2+ content.

Conclusions

Our findings clearly demonstrate that application of a uniform biochar to a range of soils under equivalent environmental conditions induced two contradicting effects on soil properties including soil CEC and exchangeable Ca2+ content. Therefore, knowledge of both biochar and soil properties will substantially improve prediction of biochar application efficiency to improve soil properties. Among important soil properties, soil exchangeable Ca2+ content is the primary factor controlling the direction of biochar-induced change in soil CEC and exchangeable Ca2+ content. Generally, biochar can induce changes in soil pH, CEC, and exchangeable Ca2+, K+, and Mg2+ with the effectiveness and magnitude of change closely related to the soil’s original properties.

  相似文献   

11.
Although the beneficial effects of compost on soil properties are well known, there are few systematic studies comparing the effects of composts on soils of different textures. The aim of this pot study was to assess the effects of a single application as mulch of two types of composts derived from different feedstocks, namely C1 (from garden waste) and C2 (from agricultural residues and manures) on three soils with different clay contents (46%, 22% and 13%, hereafter referred to as S46, S22 and S13) in terms of their physical, chemical and biological properties as well as on plant growth and nutrient uptake. The composts were placed as 2.5-cm-thick mulch layer on the soil surface, and wheat plants were grown for 35?days and to grain filling (70?days). The composts reduced the soil pH by 0.3–0.7 units, slightly increased total organic C, but increased soil electrical conductivity compared to unamended soil. Soil respiration was significantly higher in S13 than S46 in all treatments after 5?weeks. At grain filling, soil respiration was higher in S13 than in the other two soils and higher with C2 than with C1 and in the non-amended soil. The addition of compost significantly increased soil cation exchange capacity (CEC) in S22 and S46, but not in S13 which also had the lowest CEC among the soils. C2 increased the available P concentration and macro-aggregate stability in all soils compared to C1 and the unamended soil. Compost addition increased available N in S46 and S22 compared to the unamended soil with a stronger effect by C1. Both composts increased wheat growth and shoot P concentrations with the effect of C2 being greater than that of C1. It is concluded that the effect of composts varies with soil type as well as compost type and that this interaction needs to be taken into account when composts are applied to improve specific soil properties.  相似文献   

12.
Abstract

Composts may be incorporated into container mixes for several purposes, including to supply nutrients, add organic matter, or suppress plant diseases. The objective of this research was to assess the nutritional benefits of two composts derived in common from composted chicken manure and used in formulation of container media for growth of tomato (Lycopersicon esculentum Mill.). The composts differed in extractable and total plant nutrients so that one of the composts was considered a nutrient‐rich material and the other a nutrient‐poor material. Media were formulated from soil or peat with the composts added in a progressive array of concentrations from a medium with no compost addition to a medium that was all compost. Half of the media were treated with a water‐soluble, complete fertilizer and half were left unfertilized. Optimum growth occurred in media in which compost did not exceed 25% of the volume. The beneficial effects of the composts on plant growth were associated with increased supply of nutrients for the plants. The suppressive effects were attributed to restricted accumulation of nutrients with the nutrient‐poor compost and to excessive potassium supply and accumulation with the nutrient‐rich compost. Fertilization was beneficial in increasing plant growth with the nutrient‐rich compost and was essential for plant growth with the nutrient‐poor compost. The research demonstrated that composts can be used in formulation of media for container growth of plants.  相似文献   

13.
Abstract

Cation exchange capacity (CEC) of the 0–5 cm depth of forest soils increased with the square root of solution ionic strength over the experimental range of 6 to 96 mM. Percentage increases in CEC were positively correlated with percentage organic carbon; for mixed hardwood forest soils, increases were 38% for soils with 3.3% carbon, and 105% for soils with 7.4% carbon when ionic strength was varied over the full experimental range. When analyzing soils with constant‐potential surfaces, both pH and ionic strength must be controlled, preferably at or near levels found in the field, in order to provide interpretable measures of CEC.  相似文献   

14.
Abstract

The effect of drying on the cation (CEC) and anion (AEC) exchange capacity, and on potassium (K) and magnesium (Mg) adsorption by three New Zealand soils was investigated. Air‐drying resulted in no significant changes in these properties compared with the field‐moist samples. Oven‐drying at 105°C significantly decreased the CEC and increased the AEC of most soils compared with air‐dried samples. The decrease in CEC was related to increased solubility of organic matter and a decrease in surface area on which charge could be developed. The increase in AEC was attributed to a decrease in soil pH.

Potassium and Mg adsorption by two soils decreased following oven‐drying. This was consistent with the effect of drying on CEC. For the remaining soil, K adsorption increased following oven‐drying. This was attributed to K fixation.  相似文献   

15.
Abstract

A pot trial was conducted in order to relate the increase in the cation exchange capacity (CEC) of an acid soil (Quartspsament) to the CEC of several organic materials which were added to it. Peat, sugarcane bagasse and filter cake from sugar industry, worm compost, poultry and cattle manure, compost, and papermill sludge were incubated in natural and limed soil under controlled soil water content. Soil CEC was measured at soil pH after 30 and 90 days of incubation and results were strongly affected by pH of the incubated soil. About 32% of the soil CEC would be predicted by the CEC of the organic material measured at pH 7.0. This proportion increased to 78% when soil pH was included in the regression.  相似文献   

16.
Purpose

In the humid Caribbean region characterized by high-intensity tropical rainfall, soil aggregate breakdown and pore blocking due to slaking pressures are major land degradation mechanisms. In this research, we investigated the susceptibility of soils to slaking pressures under rapid wetting as influenced by soil properties and the depositional origin from which the soil is formed using water-stable aggregates (WSAr) and percolation stability (PSc) as indices of the strength of aggregate inter-particle cohesion.

Materials and methods

Wet sieving and percolation stability analyses were employed to investigate WSAr and pore blocking, respectively. The combined effect of soil properties of clay, organic matter (OM), cation exchange capacity (CEC), and exchangeable sodium percentage (ESP) was used to determine the slaking sensitivity score (SSc) of 14 physiogeographically important soils in Trinidad, comprising of nine alluvial and five residual soils.

Results and discussion

Results showed that irrespective of alluvial or residual depositional nature of the parent material, samples had high SSc with an average WSAr of 37.8% and PSc of 6.0 mm/10 min. The linear relationships between SSc with WSAr (r2?=???0.12) and SSc with PSc (r2?=???0.012) of all the 14 soils although negative were weak. Clay content accounted for 94.0% of the variation in CEC in alluvial soils and had strong negative relationships with WSAr (r2?=???0.74) and PSc (r2?=???0.79) in residual soils. Additionally, OM with WSAr (r2?=?0.52) and PSc (r2?=?0.24), and CEC with WSAr (r2?=?0.46) and PSc (r2?=?0.39) showed significant positive linear relationships in residual soil.

Conclusions

The predominantly micaceous and kaolinitic clay mineralogy of these soils, coupled with the low OM contents, increases the proneness of the soils to slaking. This suggests that clay mineralogy is responsible for the high slaking sensitivity rather than clay content or just the depositional origin of the soils. As CEC increases, an accompanying increase in OM is required to increase inter-particle cohesion and to impart partial hydrophobicity, which in turn decreases mineralogically induced susceptibility of individual aggregates to slaking.

  相似文献   

17.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

18.
Abstract

Composting olive oil pomace could solve the problem of disposal, by recycling this organic waste for agricultural purposes. Furthermore, application of composted organic waste could be a way to sustain both soil fertility and production, especially in organic farming. Therefore, the aim of this research was to evaluate the phytotoxicity and the effects of application of olive pomace composts on emmer performance and soil properties. Two types of olive pomace composts, with a different initial C/N ratio, were stopped at the active phase and processed until maturation. The obtained four olive pomace composts were compared with a commercial fertilizer in a two-year field experiment. Before the field trial, a bioassay was performed to assess phytotoxicity both for the raw pomace and the not-stabilized composts. Growing and yielding data for emmer were determined during the two-year period and soil characteristics were measured at the start and at the end of the experiment.

The composts were not phytotoxic (germination index was higher than 90%) and their total organic carbon content was always higher than the minimum values established by the Italian fertilizers legislation. The emmer protein content was significantly higher in the matured compost treatment with low C/N, than in the other compost treatments. Its value was comparable with that of the commercial fertilizer, suggesting a good performance on crop yield quality. Although not significant, this compost showed an increase of 9.8% in grain yield compared with commercial fertilizer treatment. On the whole, it can be suggested that repeated compost application might preserve the soil organic carbon content and supply macronutrients to a crop.  相似文献   

19.
Abstract

The cation exchange capacity (CEC) at pH 7 was measured for samples of 347 A horizons and 696 B horizons of New Zealand soils. The mean CEC was 22.1 cmolc/kg for the A horizons and 15.2 cmolc/kg for the B horizons. Multiple regressions were carried out for CEC against organic carbon (C), clay content, and the content of seven groups of clay minerals. The results, significant at p <0.001, were consistent with most of the CEC arising from soil organic matter. For the samples of A horizon, the calculated CEC was 221 cmolc/kg per unit C and for the B horizons was 330 cmolc/kg C. There was also a contribution from sites on clay minerals. Multiple regression indicated that smectite had a higher CEC (70 cmolc/kg) than other minerals but it was not as high as that of type smectites; kaolin minerals had the lowest CEC. There was a significant effect of interaction between organic matter and some clay minerals on the CEC. Samples from B horizons containing allophane had lower CEC than those not containing allophane which is consistent with allophane reacting with carboxyl groups on organic matter. For the samples from the A horizons, however the CEC was higher when allophane was present.  相似文献   

20.
Selected maturity indicators were monitored over a period of 335 days during the degradation of organic wastes subjected to four simple composting procedures, which varied in raw material (garden refuse with and without market refuse) and turning frequency (0×, 6×). All procedures produced mature composts. The inclusion of market refuse and frequent turning generally increased the cation exchange capacity of compost on an ash-free basis. Until day 118 of the composting process, compost samples which contained market refuse in their raw material mixture had the lowest redox potentials after anaerobic incubation. Cress grown on these composts also produced the lowest fresh mass. At a later stage of the composting process, the same composts displayed increased cellulolytic activity. Frequent turning of the compost heaps resulted in greater fluorescein diacetate hydrolysis, a greater occurrence of low-molecular-weight humic compounds and, occasionally, an inhibition of cellulolytic activity. The arginine ammonification assay gave information on the N-status of the composts, rather than on the compost maturity, and suggested that all the composts could be safely applied to soil with no risk of microbial immobilisation of soil N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号