首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Monosaccharides released by acid hydrolysis from paddy field soil, from the light and the heavy fraction of soil, front some plant fragment were determined using automated anio-exchange chromatography.

Between 5 and 12 per cent of the organic carbon was present as saccharides.

The monosaccharide composition of the different soils was very similar, in spite of differences in the absolute amount of saccharides present. The amount of the various monosaccharide in the whole soil was found to be in the order glucose»xylose galactose, mannose, arabinose rhamnose ribose.

The monoccharide composition of the soils showed a marked contrast to that of the rice ra8ment, and partially decomposed plant remains taken from the soil. Glucose, xylose, arabi-the predominant saccharides in the rice fragments and the plant remains, while the amounts of galactose, mannose, rhamnose were negligibly small.

It was found that the proportion of galactose, mannose, rhamnose and ribose in the heavy fraction Of soil was greater than that of glucose, xylose, and arabinose

The present observation was in agreement with the view that soil sauharides comprised Pentoses originates in plant materials.

The molar ratio of xylose to mannose was calculated to show the characteristics of the mono-saccharide composition of soils and some plant muerials.  相似文献   

2.
To investigate the relationship between age and the sugar composition in hydrolysates of the surface horizon and buried humic horizons with age up to 28,000 years B.P., the neutral sugars and amino sugars in soil hydrolysates were determined.

The ratios of total sugar carbon content to total carbon content of soil ranged from 2.68 to 4.13 percent. These values showed no distinct relationship with age.

Rhamnose, fucose, arabinose, xylose, mannose, galactose, glucose, g1ucosamine and galactosamine were present in the hydrolysates of all soil samples.

The polysaccharides of soil samples which have been buried for shorter periods were dominated by glucose, while those of soil samples buried for longer periods were dominated by mannose.

The proportion of hexoses showed a tendency to increase with age, while that of pentoses showed a tendency to decrease with age.  相似文献   

3.
Incubation of soil with monosaccharide for 224 days resulted in the evolution of about 80 per cent of the substrate carbon as CO2 and the transformation of 3 per cent to soil sugars whether the substrate was 14C-glucose or xylose and whether the soil was pH 7.4 or pH 5.0. There was no detectable change in the total amounts of individual sugars in the soil during incubation. 14C-glucose and xylose gave the same distribution of radioactivity among the soil sugars : hexoses and 6-deoxy-hexoses were initially well labelled, with glucose having twice the specific activity of the other sugars. As the incubation progressed some activity appeared in the pentoses (the activity in xylose became very low within the first 14 days of the 14C-xylose incubation) and that in the hexoses slowly declined, with glucose no longer predominant. Nevertheless after 448 days the hexoses were still 3–4 times more radioactive than the pentoses. The activity in rhamnose did not decline with time so that eventually it became the most strongly labelled sugar. Incubation of soil with glucose and 14C-acetate showed very little transformation of the acetate to sugars indicating that glucose is not metabolized to C2 compounds before it is transformed to other sugars. Ammo-acids in soil incubated for 7 days with 14C-glucose had much lower levels of radioactivity than hexoses or 6-deoxy-hexoses. It is concluded that if soil pentose originates by microbial synthesis it must accumulate slowly by a long process of selective decomposition of a mixture of polysaccharides.  相似文献   

4.
ABSTRACT

The neutral monosaccharide composition of forest soils differs from that of non-forest soils suggesting there is an accumulation of microbial saccharides. Ectomycorrhizal (ECM) fungi can be responsible as the fungi are typical in forest soils. We investigated neutral saccharides of ECM fungal sclerotia to determine what part it might play in the origin of forest soil polysaccarides. Sclerotial grain (SG) was collected from the O, A1 and A2 horizons of a soil of subalpine forest of Mt. Ontake, central Japan. Neutral saccharides in soil and SG were analyzed by two step hydrolysis with sulfuric acid and gas-chromatography of alditol acetate derivatives. Saccharides accounted for 6.0?16% of the SG by carbon content. The SG contained predominantly easily hydrolysable (EH)-glucose, which accounted for 75–85% of the composition depending on grain size and the soil horizon, followed by mannose (7.7?15%), galactose (2.2?4.8%) and non-easily hydrolysable (NEH)-glucose (1.7?6.1%). The SG contained all of these sugars irrespective of its size. The SG collected from the A1 and A2 horizons contained all sugar components found in that from the O horizon, except for fucose in that from A2 horizon. The monosaccharide composition of SG indicates that accumulation of ECM fungal sclerotial polysaccharides might have been responsible for enlarging the molar ratios of (galactose + mannose) /(arabinose + xylose) and EH-glucose/NEH-glucose of forest soils. The proportions of SG saccharides relative to soil saccharides were 3.6, 1.2, and 0.83% for the O, A1 and A2 horizons, respectively. These levels of the proportion are considerable as ECM fugal sclerotia are the products of a limited species among hundreds and thousands of microbial species inhabiting forest soils. The sclerotia forming ECM fungal species such as Cenococcum geophilum may be key sources of forest soil polysaccharides.  相似文献   

5.
Determination of cellulosic and noncellulosic neutral sugars occurring in soil hydrolysates by means of high-performance thin-layer chromatography Analytical methods for soil samples are described, which allow the differentiation between monosaccharides bound in cellulosic and noncellulosic polysaccharides of the plant cell wall. The four step procedure includes hydrolysis of total polysaccharides (72 % H2SO4, 2N H2SO4), hydrolysis of the noncellulosic fraction (2N trifluoroacetic acid), separation of the monomers by high-performance thin-layer chromatography (HPTLC) and scanning of the plates for quantification. The amount of cellulose can be calculated by the difference of total glucose and glucose hydrolyzed by trifluoroacetic acid. Hydrolysis of soil samples by trifluoroacetic acid is a simple method for the determination of noncellulosic cell wall polysaccharides. Losses of sugars during the whole analytical procedure (hydrolysis, separation by HPTLC and quantification) are below 10 % for all sugars studied (galactose, glucose, mannose, arabinose, xylose). Standard deviations do not overstep this value, too. By HPTLC a large number of samples are chromatographed together; therefore, the total analysis time per sample is very short. As example the depth functions of hydrolyzed sugars in a Lithic Borofolist are discussed.  相似文献   

6.
Summary The adherence of soil particles into stable aggregates increases with the addition of monosaccharides or polysaccharde polymers to soil, either as plant residues, microbial metabolites, or as simple carbohydrates. Microbial polysaccharides are one of the most effective organic agents that promote soil aggregate stability, but the effectiveness of these polymers in stabilizing soil particles varies dramatically between microbial strains, the amount present and the prevailing environmental conditions. We conducted glasshouse and laboratory studies to determine the effectiveness of selected microbial polymers in stabilizing soil aggregates. The addition and thorough mixing of 1.0 mg microbial polymer C g–1 soil of seven bacteria strains (Arthrobacter viscocus, Azotobacter indicus, Bacillus subtilus, Chromobacterium violaceum, Pseudomonas aeruginosa, Pseudomonas strain I, and Pseudomonas strain II), three deuteromycete strains (Cryptococcus laurentii, Hansenula holstii, and Mucor rouxii), and two reference compounds (hydroxyethyl guar and glucose) to an Arlington coarse-loamy soil resulted in stimulated soil respiration, increased aggregate stability, and decreased soil bulk density and modulus of rupture when incubated from 1 to 12 weeks. The monosaccharides present in the added polymers were rapidly decomposed and the sacchride content of the polymer-treated soil returned to the level of the soil control (with no polymer addition) after 2 weeks of incubation, while the maximum increase in soil aggregate stability was noted during the 3rd and 4th weeks of incubation. Statistical analyses showed that the glucose content of the polymers added was significantly correlated with soil aggregation [weeks 1 (r=0.78***) and 2 (r=0.61*)], but the extractable soil saccharides were not significantly correlated with increased aggregate stability or decreased soil bulk density during this study. When microbial extracellular polymers were added to soil only a transient increase in soil stability was measured upon decomposition of the added saccharides. This finding suggests that the stabilization of soil aggregates is a result of other microbial processes or metabolites rather than the direct binding effects of the added polysaccharides.  相似文献   

7.
Is the composition of soil organic matter changed by adding compost? To find out we incubated biowaste composts with agricultural soils and a humus‐free mineral substrate at 5°C and 14°C for 18 months and examined the products. Organic matter composition was characterized by CuO oxidation of lignin, hydrolysis of cellulosic and non‐cellulosic polysaccharides (CPS and NCPS) and 13C cross‐polarization magic angle spinning nuclear magnetic resonance (CPMAS 13C‐NMR) spectroscopy. The lignin contents in the compost‐amended soils increased because the composts contained more lignin, which altered little even after prolonged decomposition of the composts in soil. A pronounced decrease in lignin occurred in the soils amended with mature compost only. Polysaccharide C accounted for 14–20% of the organic carbon at the beginning of the experiment for both the compost‐amended soils and the controls. During the incubation, the relative contents of total polysaccharides decreased for 9–20% (controls) and for 20–49% (compost‐amended soils). They contributed preferentially to the decomposition as compared with the bulk soil organic matter, that decreased between < 2% and 20%. In the compost‐amended agricultural soils, cellulosic polysaccharides were decomposed in preference to non‐cellulosic ones. The NMR spectra of the compost‐amended soils had more intense signals of O–alkyl and aromatic C than did those of the controls. Incubation for 18 months resulted mainly in a decline of O–alkyl C for all soils. The composition of the soil organic matter after compost amendment changed mainly by increases in the lignin and aromatic C of the composts, and compost‐derived polysaccharides were mineralized preferentially. The results suggest that decomposition of the added composts in soil is as an ongoing humification process of the composts themselves. The different soil materials affected the changes in soil organic matter composition to only a minor degree.  相似文献   

8.
Several trials to obtain information on the living microorganisms at micro-sites of the submerged soil by the novel utilization of the tetrazolium salts were described. Results are summarized as follows:

(1) The air-dried soil was incubated with TIC (triphenyl tetrazolium chloride) under submerged condition according to the modified double layer plate method. The red formazan (the reduced product of TIC) was precipitated at the biologically active sites by the dehy. drogenase activity. Using a binocular microscope, most of the biologically active sites were found to be localized on and around the organic debris.

(2) The amount of nitrogen mineralized by incubating the soil under submerged condi. tion correlated well not only with the amount of formazan formed biologically in the submerged soil but also with the amount of formazan formed non-biologically by heating the soil with TIC in Ba(OH). solution. In addition, the pattern of precipitation of the nonbiologically formed formazan was very similar to that of the biologically formed formazan. Accordingly, the substances which reduced TIC non-biologically were considered to be closely associated with the substrates for the microorganisms.

(3) The plant debris stained with the red formazan could be mounted on a slide glass and observed at high magnification for the detailed study on the process of decomposition. Addition of lactophenol cotton blue to the plant debris could visualize the microorganisms responsible for the decomposition of the plant debris.

(4) NTB (nitro tetrazolium blue) was the most suitable for staining individual microorganisms growing on cellulosic materials or plant debris. The double staining with NTB and rosebengal made the discrimination between dead or resting cells and viable ones possible when this technique was applied to the decomposed filter paper.  相似文献   

9.
It is well known that the major neutral monosaccharide components released from soil by acid hydrolysis are glucose, galactose, mannose, arabinose, xylose, ribose, rhamnose and fucose. A colorimetric determination of the saccharide mixture released from soil is unsatisfactory for determining an accurate figure for soil saccharides. More precise information can be obtained by the determination of monosaccharides after separation by chromatography. Paper and thin-layer chromatography for quantitative analysis are rather time consuming and laborious. The gas chromatographic procedure was applied successfully for the analysis of sugars in soil hydrolysates by OADES et at. (7). Preparation of the various derivatives for gas chromatography still requires many steps, much handling of the sample, and considerable time, although final analysis of the product derivative is accomplished in an hour or two.  相似文献   

10.
Abstract

The decay of rice residue was investigated after incubation periods of from 1 to 24 months at 30°C under both flooded and upland soil conditions. Tops and roots of rice plants were cut into about 10-mm length, and separately incorporated in soil which had been passed through a 0.5-mm sieve. Plant debris were fractionated physically according to their sizes and divided into five groups (>4 mm, 4-2 mm, 2-1 mm, 1-0.5 mm, and 0.5-0.25 mm).

Carbon loss from the soils amended with rice residues and decrease in the weight of total plant debris proceeded at a rapid speed in the early periods (around 4 months) and then at a slow speed in the subsequent periods under both flooded and uplana soil conditions. The distribution of the plant debris in the decomposition processes differed under flooded and upland conditions. Under flooded conditions, 2–4 mm-sized plant debris were retained for a long period with slow transformation into the smaller fractions. In contrast, under upland conditions, change of plant debris from large to small size fractions proceeded gradually. This continuous change could be attributed to the high decomposing activities of fungi under upland conditions.  相似文献   

11.
Greenhouse experiments using the tracer technique showed that about 20 per cent of the fertilizer nitrogen added as basal to the Maahas clay soil wa11 immobilized in submerged soils to which no organic material was added. The addition of organic matter to the soil increases the amount of nitrogen immobilized and the magnitude depends on the carbon to nitrogen ratio of the materials added. More fertilizer nitrogen waa immobilized in the soils under upland and alternate wet-and-dry conditions than under submerged soil conditions.

The uptake of fertilizer nitrogen by rice plants growing under submerged soil conditions ceased at the vegetative stage of growth because only a small amou11t of available nitrogen remains in the soil at this time, but the rice plant continued to absorb gradually untagged nitrogen from the soil throughout the reproductive etages of growth.

Losses of fertilizer nitrogen were great under the alternate wet-and-dry conditions (submerged-upland). The loss of nitrogen from the soli-plant system was reduced by the addition of dee straw, which also reduced the uptake of fertilizer nitrogen but not the total dry matter production under the experimental conditions. Fertilizer nitrogen immobilized during the first crop remained mostly in the soil throughout the full period of the second crop.

The total nitrogen uptake by rice plants was not affected by the soil moisture tension under the upland conaltlons used in the study but the movement of nitrogen from the leaves to the panicles during the reproductive etage seemed to decrease as the soil moisture tension increased.  相似文献   

12.
A model experiment was carried out at 15, 25, and 35°C to investigate the changes in microbial biomass and the pattern of mineralization in upland soil during 8 weeks following the addition of 8 organic materials including 6 tropical plant residues, ipil ipil (Leucaena leucocephala), azolla (Azolla pinnata), water hyacinth (Eichhornia crassipes), dhaincha (Sesbania rostrata), cowpea (Vigna unguiculata), and sunhemp (Crotalaria juncea). The amounts of CO2-C evolved and inorganic N produced at 35°C were about 2 times larger than those at 15°C. At any temperature, the flush decomposition of C was observed within the first week and thereafter the rate of mineralization became relatively slow. A negative correlation was observed between inorganic N and C/N ratios of the added organic materials. The relationships between the amounts of cellulose or cellulose plus hemicellulose and the amount of mineralized N of the added organic materials were also negative.

The changes in the microbial biomass were affected by temperatures. The amount of biomass C and N was maximum after 42 d of incubation at 15°C, and after 7 d at 25 and 35°C, and thereafter decreased. The rate of biomass decline was slower at 15°C and faster at 35°C than at 25°C. Regardless of the temperatures, the addition of organic materials enhanced microbial biomass formation throughout the incubation periods.  相似文献   

13.
Earthworms are recognized to play an important role in the decomposition of organic materials. To test the use of earthworms as an indicator of plant litter decomposition, we examined the abundance and biomass of earthworms in relation to plant litter decomposition in a tropical wet forest of Puerto Rico. We collected earthworms at 0–0.1 m and 0.1–0.25 m soil depths from upland and riparian sites that represent the natural variation in soils and decomposition rates within the forest. Earthworms were hand-sorted and weighed for both fresh and dry biomass. Earthworms were dominated by the exotic endogeic species Pontoscolex corethrurus Müller; they were more abundant, and had higher biomasses in the upland than in riparian sites of the forest. Plant leaf litter decomposed faster in the upland than riparian sites. We found that earthworm abundance in the upper 0.1 m of the soil profile positively correlated with decomposition rate of plant leaf litter. Ground litter removal had no effect on the abundance or biomass of endogeic earthworms. Our data suggest that earthworms can be used to predict decomposition rates of plant litter in the tropical wet forest, and that the decomposition of aboveground plant litter has little influence on the abundance and biomass of endogeic earthworms.  相似文献   

14.
It has previously been shown that treatment of soil with periodate and tetraborate releases much of the carbohydrate and destroys an equivalent proportion of the soil aggregates. The residual carbohydrate is proportionately richer in glucose, arabinose and xylose, sugars characteristic of plant remains, than the whole soil. The effect of sodium periodate (0.02 M, 6–168 h) and sodium tetraborate (0.1 M, 6 h) treatment of soil on carbohydrates of different origin was examined using 14C-labelled soil in which the label was present in microbial products arising from 7 and 28 day incubations of 14C-glucose in soil, or in both plant and microbial materials resulting from 12 week incubations of 14C-labelled barley leaf and 1 year incubations of 14C-labelled ryegrass in soil. Arabinose and xylose were the sugars most resistant to periodate in the glucose incubated soil; in the ryegrass incubation arabinose, xylose and glucose were more persistent than galactose, mannose and rhamnose. In the barley leaf incubation arabinose was more persistent than galactose and rhamnose. Thus periodate oxidation did not distinguish between sugars of different origin in soil and it was concluded that in the case of arabinose and xylose the persistence related to differences in chemical structures rather than to physical factors such as particle size of the plant fragments. The composition of the more stable residue can therefore not be used as an indication of polysaccharide origin in any comparison of the relative effects of plant and microbially derived material as aggregating agents.  相似文献   

15.
Numerous experiments (1, 9, 13, 16, 20, 23) have been reported that drying causes a flush of decomposition of soil organic nitrogen. The magnitude of the flush depends on the pF value at which the soil was dried (9), and the higher the pF value, the larger the magnitude of the flush.  相似文献   

16.
A model experiment was conducted under tropical conditions with a view to evaluating the changes in microbial biomass and nutrient dynamics in upland soil through the continuous application of azolla and rice straw (2 g C kg-1 soil per each application). Flush decomposition of C was observed immediately after each application and the rate of mineralization did not change appreciably during this period. After flush decomposition, the rate of C mineralization from azolla was higher than that from rice straw until 9 to 13 weeks after each application and thereafter the mineralization rate was similar. The amount of inorganic N released from azolla increased following each application, whereas inorganic N in rice straw plot was immediately immobilized and the rate of immobilization increased until the 3rd application and did not increase further after the 4th application. The amounts of biomass C and N increased immediately after residue incorporation, reached the maximum level one week after each application and declined thereafter. Maximum biomass formation increased until the 2nd application and then the level remained constant. Maximum biomass N formation was higher in azolla than in rice straw after the 1st application, but after repeated applications, the difference became less pronounced: Continuous increase in biomass in a certain week after each application was observed, probably because of the cumulative effects of the previous applications. The increase suggests that continuous application of organic materials may enable to improve the amount of soil microbial biomass.  相似文献   

17.
Sugars are the most abundant organic compounds in the biosphere because they are monomers of all polysaccharides. We summarize the results of the last 40 years on the sources, content, composition and fate of sugars in soil and discuss their main functions. We especially focus on sugar uptake, utilization and recycling by microorganisms as this is by far the dominating process of sugar transformation in soil compared to sorption, leaching or plant uptake. Moreover, sugars are the most important carbon (C) and energy source for soil microorganisms.Two databases have been created. The 1st database focused on the contents of cellulose, non-cellulose, hot-water and cold-water extractable sugars in soils (348 data, 32 studies). This enabled determining the primary (plant-derived) and secondary (microbially and soil organic matter (SOM) derived) sources of carbohydrates in soil based on the galactose + mannose/arabinose + xylose (GM/AX) ratio. The 2nd database focused on the fate of sugar C in soils (734 data pairs, 32 studies using 13C or 14C labeled sugars). 13C and 14C dynamics enabled calculating the: 1) initial rate of sugar mineralization, 2) mean residence time (MRT) of C of the applied sugars, and 3) MRT of sugar C incorporated into 3a) microbial biomass and 3b) SOM.The content of hexoses was 3–4 times higher than pentoses, because hexoses originate from plants and microorganisms. The GM/AX ratio of non-cellulose sugars revealed a lower contribution of hexoses in cropland and grassland (ratio 0.7–1) compare to forest (ratio 1.5) soils.13C and 14C studies showed very high initial rate of glucose mineralization (1.1% min−1) and much higher rate of sugars uptake by microorganisms from the soil solution. Considering this rate along with the glucose input from plants and its content in soil solution, we estimate that only about 20% of all sugars in soil originate from the primary source – decomposition of plant litter and rhizodeposits. The remaining 80% originates from the secondary source – microorganisms and their residues. The estimated MRT of sugar C in microbial biomass was about 230 days, showing intense and efficient internal recycling within microorganisms. The assessed MRT of sugar C in SOM was about 360 days, reflecting the considerable accumulation of sugar C in microbial residues and its comparatively slow external recycling.The very rapid uptake of sugars by microorganisms and intensive recycling clearly demonstrate the importance of sugars for microbes in soil. We speculate that the most important functions of sugars in soil are to maintain and stimulate microbial activities in the rhizosphere and detritusphere leading to mobilization of nutrients by accelerated SOM decomposition – priming effects. We conclude that the actual contribution of sugar C (not only whole sugar molecules, which are usually determined) to SOM is much higher than the 10 ± 5% commonly measured based on their content.  相似文献   

18.
The influence of Cd on the decomposition of various types of organic materials in soil was studied. CdCl2 or CaCl2 (control) was added to a Gley soil at a level of 10 mmol kg-1 soil. Three days later, organic materials including glutamic acid, glucose, casein, starch, cellulose, lignin, rice straw, rice straw compost, or 3 kinds of sludges were mixed with the soil in a proportion of 1%, respectively. During an 8-week period of incubation at 28°C, CO2 evolution was measured periodically. At the end of the incubation period, the form of Cd in the soil was analyzed by successive extractions with water, CaCl2, CH3COOH, Na4P2O7, and with hot HCl after HNO3-HClO4 digestion.

The decomposition of all the organic materials was inhibited by the addition of Cd, but the degree of inhibition varied considerably among the types of organic materials. The decomposition of rice straw, rice straw compost, and sludges was markedly inhibited by Cd. The amount of water-soluble Cd was less in the soils treated with rice straw, rice straw compost, and sludges than in the soils treated with other types of organic materials, while the amounts of CaCI2-extractable Cd were much larger in the latter soils. In the case of rice straw, rice straw compost, and sludges Cd was easily adsorbed from the CdCl2 solution.

These results suggest that the inhibition of organic matter decomposition by Cd is caused by the adsorption of Cd onto organic matter.  相似文献   

19.
三种植物物料对两种茶园土壤酸度的改良效果   总被引:8,自引:4,他引:4  
王宁  李九玉  徐仁扣 《土壤》2009,41(5):764-771
用室内培养实验研究了稻草、花生秸秆和紫云英在 5、10 和 20 g/kg 的加入量水平下对茶园黄棕壤和茶园红壤酸度的改良效果.结果表明:除了黄棕壤加入紫云英处理会降低土壤的 pH 外,其余所有加入植物物料的处理均使土壤 pH 有不同程度的增加,使土壤交换性酸和交换性Al的数量减小,使土壤交换性盐基阳离子和盐基饱和度增加.有机物料对土壤酸度的改良效果与有机物料灰化碱和N含量有关,灰化碱和有机N的矿化使土壤 pH 升高,NH4+-N的硝化使土壤 pH 降低.3种植物物料中花生秸秆对土壤酸度的改良效果优于紫云英和稻草.加入植物物料使红壤中有毒形态Al的浓度显著减小,说明植物物料能够缓解红壤中Al对植物的毒害.  相似文献   

20.
Two different soils, either fresh, or dried and remoistened, were incubated with 1% labelled glucose for 28 days at about 20° or 5 °C and the transformation of the glucose to other sugars measured. Xylose formed a much greater proportion of the sugars synthesized at low temperature in pre-dried soil than in fresh soil, or at 20 °C in pre-dried or fresh soil. Numbers of bacteria, fungi (including actinomycetes) and yeasts were determined for each type of incubation. Because the combination of conditions leading to xylose synthesis by yeasts in predried soil are unlikely in the natural state it is concluded that most soil xylose originates in the residues of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号