首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial wilt of tomato (Lycopersicon esculentum Mill.) caused by Ralstonia solanacearum Smith is a serious disease in Japan. We previously reported that calcium (Ca) nutrition in tomato significantly affected the resistance to the disease, and that highly resistant cultivars were characterized by a high Ca uptake. We examined the relationship between the Ca uptake and resistance using mutually grafted seedlings of tomato cultivars differing in their resistance. A susceptible (‘Ponderosa’) or moderately resistant (‘Zuiei’) cultivar (scion) was grafted on the rootstock of a susceptible, moderately resistant, or highly resistant cultivar (‘Hawaii 7998’). Roots or petioles of the grafted seedlings were inoculated with the pathogen, and the development of bacterial wilt was observed. Although Ca uptake by shoot increased by grafting on the rootstock of a highly resistant cultivar, the development of the disease was not influenced by the difference in Ca uptake, and depended on the resistance of the cultivar to which the inoculated part of the graft belonged. It was concluded that the differences in Ca uptake of the shoot of the grafted tomato seedlings might not be related to the expression of the resistance to bacterial wilt.  相似文献   

2.
ABSTRACT

The objective of this study was to determine how the responses of two tomato cultivars to Ralstonia solanacearum relate to their leaf infrared temperature and acquiring of nutrients from soil. Tomato (Solanum lycopersicum L.) cultivars of disease susceptible-‘FL 47’ and resistant-‘H 7998’ were grown in soil inoculated with R. solanacearum. Bacterial wilt incidence, leaf infrared temperatures, and uptake of nutrients were measured for 28 d. In bacterial wilt-resistant cultivar ‘H 7998’, concentration of sulfur (S; +77%), calcium (Ca; +66%), boron (B; +60%) were found higher and nitrogen (N; ?26%) were found lower, compared with susceptible ‘FL 47’. Infrared temperatures were correlated with wilt percentage at 14 d, but not at 7 d. These results provide evidence that there is a correlation between bacterial wilt resistance and translocation of some nutrients in the shoots. Additionally, data indicates that the infrared thermometer could only detect wilting after obvious symptoms were visibly incited by R. solanacearum in tomato.  相似文献   

3.
Abstract

Five tomato (Lycopersicon esculentum Mill) cultivars were grown in sand nutrient culture experiment in a greenhouse to investigate the effects of salinity on growth and yield. Nutrient solutions were made saline with 50 mM NaCl (EC = 5.5 mS/cm or supplemented with 2 mM KNO3 (EC = 6.8), 20 mM Ca(NO3)2 (EC = 7.5), and combination of potassium (K) and calcium (Ca) (EC = 8.0). Seedlings were irrigated with saline treatments commencing two weeks after transplanting. Determination of sodium (Na) and K in tomato leaves and fruits were by flame photometry. Accumulation of Na in tomato fruits was higher than in leaves under control or saline conditions for all tomato cultivars. The amount of K in the tomato leaves was higher in control than in saline‐grown plants. Addition of K and Ca to the nutrient solution resulted in a 3 to 7 fold increase in K accumulation in all cultivars tested. Stem and leaf growth were significantly reduced with salinity but growth was enhanced following irrigation when K was added to the nutrient solution. Flowering and fruit set were adversely affected by NaCl stress. Reduction of flower number was 44% relative to the control plants. Fresh fruit yield decreased by 78% when plants received 50 mM NaCl. Growth and development of tomatoes under saline conditions was enhanced in this study following the application of K to the saline nutrient solution. Amelioration in growth was also achieved when Ca was used but to a lesser extent. Our results suggest that ion accumulation and regulation of K and Ca contribute to salt tolerance and growth enhancement.  相似文献   

4.
Abstract

Four ryegrass (Lolium multiflorumLam.) cultivars were grown in 1/5 Steinberg nutrient solution supplemented with six Al levels (0, 37, 74, 148, 296, or 592 umol L‐1) at pH initially adjusted to 4.2. Average net Fe influx was stimulated at low nutrient solution Al levels. This stimulation was larger for more Al‐tolerant cultivars Marshall and Gulf. Decreases in average net Mn and Zn influxes were brought about by increasing Al levels in the nutrient solution. The average net influx of Fe, Mn, and Zn was positively correlated with the root tolerance index (relative root yield of plants grown with and without Al added to the nutrient solution). For more Al‐tolerant cultivars, increased total uptake of Fe and Cu was brought about by increased nutrient solution Al levels up to 74 umol L‐1. Decreases in total uptake of Mn and Zn were generally noted with increased nutrient solution Al levels. Percentage inhibition of total Fe, Mn, Zn, and Cu uptake was negatively correlated with the mean pH of the Al‐containing nutrient solutions. The higher average net influx and the smaller percentage inhibition of total Fe uptake at nutrient solution Al levels up to 74 umol L‐1can be used as indicators in ranking ryegrass cultivars as more Al‐tolerant  相似文献   

5.
Abstract

Soybean (Glycine max L. Merr.) cultivars differ in their root morphology and their nutrient uptake capabilities. The relation between root growth, P and K uptake, and grain yield was investigated using eight cultivars grown in the field on Raub (Aquic Argiudoll) silt loam which received 49 kg P/ha and 93 kg K/ha. Hobbit (maturity group III, determinate) was among the highest in grain yield, P and K uptakes, and root system length. However, this cultivar was intermediate in its relative efficiency to utilize P and K to produce grain yield; among the most efficient cultivars were Asgrow 3127 (maturity group II) and Williams‐79 (maturity group III). The hay cultivar, Wilson‐6, was the least efficient. It was concluded that even though grain yield was correlated with nutrient uptake, selection for higher yields was not necessarily a selection for higher efficiency in utilization of fertilizer for grain production.  相似文献   

6.
Abstract

The effect of salinity on the growth and yield of tomato plants and mineral composition of tomato leaves was studied. Five tomato (Lycopersicon esculentum Mill) cultivars, Pearson, Strain B, Montecarlo, Tropic, and Marikit, were grown in sand nutrient culture. The nutrient solutions applied consisted of a modified half‐strength Hoagland solution with 50 mM sodium chloride (NaCl), 3 mM potassium sulphate (K2SO4), 1.5 mM orthophosphoric acid (H3PO4), and 10 mM calcium sulphate (CaSO4). Stem height and number of leaves of tomato plants were not found to be significantly different but leaf and stem dry weight were reduced significantly in plants irrigated with saline nutrient solution in contrast with control plants. The total yield was reduced in plants that received saline treatments, but there was no significant difference in fruit number and fruit set percentage. The fruit electrical conductivity and total soluble solids were increased in plants irrigated with saline nutrient solution. Fruit pH was not found to be significantly different among salinity treatments. Mineral composition of tomato leaves were increased by addition of potassium (K), phosphorus (P), and calcium (Ca) to the saline nutrient solution. The addition of K to the solution resulted in an increase in sodium (Na) leaf content. The amounts of K and magnesium (Mg) were not significantly different among salinity treatments. Calcium content was increased when CaSO4 was added. Application of H3PO4 resulted in the highest amount of P in tomato leaves under saline conditions. The present study revealed that application of K, P, and Ca under saline conditions improved fruit electrical conductivity and total soluble solids. Sufficiency levels of the mineral nutrients K and P were obtained in tomato leaves when the appropriate nutrient was used in the saline solution.  相似文献   

7.
Abstract

Poor flavor in tomato fruit is a serious consumer concern. It could be said that tomato flavor has declined as variety selection and tomato production has placed emphasis on yield, fruit size, firmness, disease resistance, and processing performance and not on aspects of organoleptic fruit quality. Consumers frequently associate recent varieties with a lack of flavor, although such an association has not been proven. We have reviewed the scarce available literature on the influence of recent genetic improvement on quality attributes of tomato. As a case study, we have analyzed several parameters related to fruit quality in some traditional Spanish cultivars and commercial F1 hybrids of tomato. Organic acids and sugars were determined by high performance liquid chromatography (HPLC). Sodium (Na), potassium (P), and phosphorus (K) were analyzed by atomic absorption spectroscopy. Levels of respiration and ethylene production were measured, and fruit firmness was determined using a texture analyzer. All determinations were performed at two maturity stages, representing two frequent consumption stages. Differences between traditional cultivars and hybrids were found for respiration rates, ethylene production, P and K fruit contents. We also found important differences between “old” and “modern” cultivars for their organic acids profile. All cultivars showed similar levels of malic and succinic acids, but the modern hybrids showed a ~75% higher content of citric acid. This could be due to the F1 hybrids carrying chromosomal segments recently introgressed from wild Lycopersicon species. The influence of recent genetic improvement on quality attributes of tomato fruit is discussed.  相似文献   

8.
Abstract

Although sunflower (Helianthus annus L.) is an Fe efficient plant, tumorous crown gall tissue development and tissue ability to reduce Fe3+ to Fe2+ were both diminished by Fe‐deficiency stress. Crown gall also develops readily on Fe‐efficient and Fe‐inefficient tomato cultivars (Lycopersicon esculentum Mill.). The objective of this study was to determine if the effect of a limited Fe supply on the growth, nutrition and reduction of Fe3+ to Fe2+ by tumorous crown gall would differ between Fe‐efficient T3238FER and Fe‐inefficient T3238fer tomato. Healthy green 25‐day‐old plants were either stem‐inoculated with Agrobacterium tumefaciens to induce tumorous crown gall tissue development or were left uninoculated for comparison. Plants were grown in modified Hoagland nutrient solutions containing 0.0, 0.15, 0.6 and 2.0 mg Fe L?1. Yield of tumorous crown gall tissue was not diminished by low solution Fe in T3238FER, but was in T3238fer. This was attributed to inability of the T3238fer tomato to make Fe available to itself. Tumor tissue from both cultivars contained more Fe, Cu and P than normal stem tissues, which confirms a modified metabolism in these tissues previously observed in sunflower. An abundant supply of Fe enhances the development and growth of the tumorous crown gall tissue, but a deficient supply of Fe retards its growth.  相似文献   

9.
ABSTRACT

This study was conducted to evaluate the effect of nitrogen (N) and potassium (K) stress on nitrate (NO3 ?) and potassium ion (K+) uptake of two sugarcane (Saccharum officinarum L.) cultivars known to differ with regard to their resistance to drought and salinity stress. The plants were hydroponically grown in a greenhouse and subjected to varying levels of N and K. Nitrogen and K stress increased root affinity for NO3 ? and K+ absorption by increasing apparent maximum uptake rate (Vmax) and decreasing apparent affinity (Km) for NO3 ? and K+ uptake in both cultivars. In addition, dry-matter allocation to roots increased with decreasing N and K supply. The results suggest that the acclimation to long-term N starvation in sugarcane involves regulation of both nitrate-specific assimilatory steps and growth responses. The cultivar ‘H69-8235,’ which was drought and salinity resistant, showed greater adaptability to a low- nutrient environment due to its higher root allocation and affinity for NO3 ? and K+ under N and K stress, suggesting that the resistance of sugarcane to multiple stresses may involve a general stress-response system.  相似文献   

10.
Abstract

This paper presents a simple model for the changes in ion concentration and electrical conductivity (EC) of the recirculating nutrient solution in a closed-loop soilless culture of tomato (Lycopersicon esculentum Mill.). The model was designed on the basis of a balanced equation for plant nutrient uptake: for macrocations (K+, Mg2+ and Ca2+), a linear dependence of concentration on crop water uptake was assumed, while for non-essential ions, such as sodium (Na+), a non-linear function was used. The model was developed for closed-loop hydroponic systems in which crop water uptake (namely, transpiration) is compensated by refilling the mixing tank with complete nutrient solution. In these systems, EC gradually increases as a result of the accumulation of macro-elements and, principally, of non-essential ions, like Na+, for which the apparent uptake concentration (i.e., the ratio between nutrient and water uptake) is lower than their concentration in the irrigation water. For model calibration, data from both the literature and a previous work were used, while validation was performed with data from original experiments conducted with tomato plants in different seasons and using water with different sodium chloride (NaCl) concentrations (10 and 20 meq/L). The results of validation indicate that the model may be a useful tool for the management of closed-loop hydroponics, because it simulates rather well the salt accumulation that occurs in the recirculating nutrient solution when it is prepared with irrigation water of poor quality. Furthermore, the model is able to estimate the amount of crop evapotranspiration that leads to a value of EC at which flushing is necessary, thus enabling one to predict the water and nitrogen runoff of the semi-closed soilless culture.  相似文献   

11.
Three cultivars of tomato (Lycopersicon esculentum Mill., cvs. Sera, 898, Rohaba) were grown under different levels of NaCl in nutrient solution to determine effects of salt stress on shoot and root dry matter (DM), plant height, water use efficiency (WUE, g DM kg‐1 water evapotranspired), shoot sodium (Na) and potassium (K) concentrations, and K versus Na selectivity (SK,Na). Increasing NaCl concentration in nutrient solution adversely affected shoot and root DM, plant height, WUE, K concentration, and K/Na ratio of all cultivars. Shoot Na concentrations increased with increasing NaCl concentration in the nutrient solution. Although increasing salt concentration in the solution adversely affected growth of all cultivars, the cultivar Sera had the highest shoot and root DM than the other two cultivars (898 and Rohaba). Shoot and root DM of cultivar 898 was most affected by salt, while cultivar Rohaba had an intermediate salt sensitivity. The cultivar Sera generally had higher WUE values, shoot K concentrations, and SK,Na, but had lower shoot Na concentrations than the other two cultivars when plants were grown under different salt levels. Greater Na exclusion, higher K uptake and shoot SK,Na are suggested as being plant strategies for salt tolerance.  相似文献   

12.
Abstract

Dieldrin and endrin, a group of persistent organic pollutants (POPs), were used extensively on arable land in Japan from 1958 to 1971. Because of their extreme persistence in soils, dieldrin and endrin have been detected in cucumber fruits produced in some areas at concentrations exceeding the limit set by the Food Sanitation Law. Thus, we compared the uptake of dieldrin and endrin by 32 plant species of arable crops in 17 families and by 34 cultivars of Cucurbita sp. grown in contaminated soil to select a candidate cleaning crop for phytoremediation and substitute produce crops. Cucurbits took up more dieldrin and endrin than the other families, and uptake by zucchini was the highest. Apart from the cucurbits, only jute (Tiliaceae) took up any dieldrin and endrin, and uptake by the other 15 families was negligible. Among Cucurbita sp., a number of cultivars took up nearly as much dieldrin and endrin as zucchini, and some took up less than popular rootstock cultivars for graft cultivation of cucumber. These results suggest that cucurbits, especially zucchini, would make good candidates for phytoremediation, and non-cucurbits crops would make good substitute crops in dieldrin-contaminated and endrin-contaminated fields. Moreover, low-uptake Cucurbita sp. cultivars offer promise for breeding substitute rootstocks for grafting cucumber. To determine the uptake mechanism of dieldrin and endrin, a sand culture experiment was conducted. Komatsuna (Brassica campestris var. perviridis), soybean and tomato, which took up negligible chemicals from soil, took up significant quantities from sand culture mixed with dieldrin and endrin. Therefore, even non-cucurbits accumulate dieldrin and endrin under saturated conditions in the rhizospere. This result suggests that cucurbits are able to desorb or dissolve dieldrin and endrin that are strongly sorbed in soil.  相似文献   

13.
《Journal of plant nutrition》2013,36(10):2129-2142
ABSTRACT

Leaf chlorophyll content is closely related to leaf nitrogen (N) content, so it is reasonable to assume that NH4–N:NO3–N ratio in the nutrient solution used to grow tomatoes (Lycopersicon esculentum Mill.) hydroponically may affect leaf greenness, and consequently chlorophyll meter (SPAD) readings. It has also been shown that increasing nutrient solution strength (NSS) increases tomato productivity, but there are no reports regarding how NSS affects SPAD readings under greenhouse conditions. Genotype may also influence SPAD readings, and standardization for cultivar and sampling time may be needed. The objective of this study was to characterize SPAD readings for five tomato cultivars, and SPAD reading response to a combination of two nutrient solutions strength (NSS) (1X and 4X Steiner solution strength daily applied 18 days after transplanting at 7 p.m.) and two concentrations of NH4–N in solution (0 and 25%) in order to evaluate the potential of SPAD readings as a tomato yield predictor in greenhouse production systems. The SPAD readings were not uniform across tomato varieties tested, being consistently higher for “Max” and lower for the other varieties. Initially, SPAD readings for tomato varieties used in this study were low at the vegetative stage, and increased up to 40 days after transplant (DAT), but subsequently decreased at 49 DAT, or the fruit set of the first and second clusters. After this time, SPAD readings showed no variation. Chlorophyll meter readings for Max were higher in the top plant layers, but decreased in the top plant layer of the other tomato varieties. The SPAD readings were higher for plants supplied with 25% NH4–N than those without NH4–N in solution, but the use of a nighttime nutrient solution did not affect SPAD readings. None of the possible interactions among tomato variety, NH4–N:NO3–N ratio, and NSS were consistently significant. SAPD readings may be useful in monitoring low or high supply of N in greenhouse grown tomato plants.  相似文献   

14.
Abstract: There is no information regarding genotypic variation in essential and nonessential nutrient accumulation of sunflower grown under drought stress with the presence or absence of supplemental silicon (Si) despite the role of this element in improving growth of some cultivars under drought conditions. Accumulation of elements in sunflower cultivars might be important for the genetic improvement of the crop's response to drought. An experiment under controlled conditions was carried out to study the genotypic response of 12 sunflower (Helianthus annuus L.) cultivars to drought and Si and the relationship to the uptake of elements [phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), chloride (Cl), molybdenum (Mo), Si, sodium (Na), vanadium (V), aluminum (Al), strontium (Sr), rubidium (Rb), titanium (Ti), chromium (Cr), nickel (Ni), bromine (Br), and barium (Ba)]. This was determined by polarized energy‐dispersive X‐ray fluorescence (PEDXRF). It was observed that uptake of nutrient and nonessential elements by sunflower cultivars were differentiated in response to applied Si and drought stress. Drought stress decreased mineral uptake of all the cultivars, and generally, application of Si under drought stress significantly improved Si, K, S, Mg, Fe, Cu, Mn, Na, Cl, V, Al, Sr, Rb, Ti, Cr, and Ba uptake whereas Zn, Mo, Ni, and Br uptake were not affected.  相似文献   

15.
Abstract

Tomato cultivars were grown in a saline nutrient culture system to investigate growth and fruiting responses in relation to the application of 3 mM potassium (K), 1.5 mM phosphorus (P), and 10 mM calcium (Ca). The deleterious effects of salinity on tomato stem growth and fruit yield were ameliorated following the addition of K, P, and Ca to the nutrient solution. Potassium levels in tomato leaves were increased 4‐fold compared to control plants in the presence of applied K. The use of K resulted in an increase in Na content, however, a comparatively low level of sodium (Na) was obtained in treatments receiving K, Ca, and P. Calcium content was greater than sufficiency levels in all treatments, whereas magnesium (Mg) declined with the increase in salinity. The amount of P in tomato leaves was increased 4–5 fold when the nutrient solution was supplemented with 1.5 mM P. Correlation of vegetative parameters, such as stem height and leaf growth to salinity, revealed no significant responses, however commercial parameters such as total soluble solids and fruit weight correlated significantly with the saline nutrient treatments.  相似文献   

16.
Depleted soil fertility and high-yielding cultivars have been associated with low nutrient contents in vegetables. This study explored if elemental nutrient concentrations in tomato (Lycopersicon esculentum Mill.) can be increased through selection of cultivars and nutritional regimes. Cultivars with different phenotypes of heirloom and modern origins were studied in field experiments in two years. Chemical fertilizer (10-10-10), compost, and an organic fertility regime of soybean meal, bone meal, and potassium sulfate were assessed for their effects on growth and composition of fruits of the cultivars. Differences in nutrient concentrations between modern or heirloom cultivars or among fertility treatments were small or non-significant. Differences among individual cultivars for each element were large with some cultivars having nearly twice the concentrations of nutrients of others and with considerable uniformity in cultivar rankings among the elements. This work suggests that cultivars can be selected for production of nutrient-dense tomatoes.  相似文献   

17.
ABSTRACT

To assess if the nutrient supply through planted tree fallows meets crop nutrient uptake and export, N, P, K, Ca and Mg uptake and export by a groundnut/maize/cassava intercrop was compared with the nutrient uptake by three planted fallow systems (Senna spectabilis, Flemingia macrophylla, Dactyladenia barteri) and a no-tree control. Three cycles of two years fallow and one year cropping on Ultisol in southern Cameroon were studied. Fallows were slashed and burned. The fallow system had no consistent effect on nutrient uptake by individual crops. Crop nutrient uptake was most often highest in the S. spectabilis system. Nitrogen balances were generally negative due to N loss in the burn. Across three cropping cycles, the balance of fallow nutrient uptake versus total crop nutrient uptake was only in the S. spectabilis system positive for all nutrients. Nutrient export by all crops (mean of three years) was unaffected by fallow systems. The fallow nutrient uptake versus crop nutrient export balance was positive for all nutrients and systems. Planted fallows appear capable of acquiring sufficient nutrient stocks during fallow phases, covering the crops’ demand. Fallow N and K uptake and crop export declined with every fallow/cropping cycle.  相似文献   

18.
ABSTRACT

A pot experiment was conducted to examine the uptake of nutrients (K+ (potassium) and Ca2+ (calsium)) and heavy metal (Cu2+ (copper) and Pb2+ (lead)) ions by leaves, seeds, and roots of two black gram [Vigna mungo (L.) Hepper] cultivars, ‘Mash-95018’(V1) and ‘Mash-97’(V2) treated with copper (Cu) and lead (Pb) at 25mg L?1 and 50mg L?1. This study was conducted in a greenhouse in the Botanical Garden, University of Agriculture, Faisalabad, Pakistan, during the spring of 2003. Heavy-metal treatments were applied 30 d after germination, and nutrient and heavy-metal ion uptake data were collected 10 d after treatment application. Both heavy metals in both cultivars substantially reduced nutrient ion accumulation and its translocation to seeds. Leaves had proportionately more K+ and Ca2+ than that recorded for roots and seeds after heavy-metal treatments. Nevertheless, both heavy metal (Cu2+ and Pb2+) ions ware predominantly sequestered in the roots, rather than in leaves and seeds, under their respective treatments. As the external concentrations of heavy metals increased, their uptake by the respective treated plants also increased, but nutrient ion (K+ and Ca2+) uptake was gradually reduced. This result suggests a concentration-dependent phenomenon. Overall, lead (Pb2+) showed more toxic effects on the uptake of essential nutrients compared with Ca2+, while ‘Mash-97’proved more sensitive to heavy metals than ‘Mash-95018.'  相似文献   

19.
Abstract

Vegetative and reproductive growth were studied in five tomato (Lycopersicon esculentum Mill) cultivars under saline conditions imposed at the five‐leaf stage by addition of 50 mM NaCl to half strength Hoagland nutrient solution. The plants were raised in pots filled with washed quartz sand kept in a greenhouse. Stem height and number of leaves in tomato plants were significantly reduced when irrigated with saline regimes in contrast with control plants that received only the Hoagland solution. The highest number of flowers were obtained in the cultivar Pearson and the least in cultivar Strain B. Fruit set and yield were little affected by varietal differences and were not related to vegetative growth. Fruit weight was suppressed with NaCl stress, but improvement in weight was achieved when potassium (K) and calcium (Ca) were added to the saline water. The most detrimental effect of NaCl stress was the reduction of biomass yield in tomatoes. However, the relative dry weights of Pearson and Monte Carlo were increased to 60% and 54%, respectively, when NaCl was supplemented with Ca. Large varietal differences in biomass occurred among the NaCl‐treated and control plants. Tomato fruit quality (TSS) was improved by salinization.  相似文献   

20.
We previously reported that calcium (Ca) nutrition in tomato (Lycopersicon esculentum Mill.) significantly affected the resistance to bacterial wilt caused by Ralstonia solanacearum Smith. To elucidate the mechanisms underlying the Ca-dependent resistance, the effect of the Ca concentration in the nutrient solution applied before and after inoculation with the pathogen on the resistance of tomato seedlings to bacterial wilt was studied. One week before inoculation, seedlings were transferred to nutrient solutions containing Ca at concentrations of 0.4, 4.4, or 20.4 mM. Soon after inoculation, the seedlings that were treated with each concentration of Ca before inoculation were transferred to solutions containing the same three concentrations of Ca. Although the disease development was not affected by the concentration of Ca in the solution before inoculation, a higher concentration of Ca after inoculation reduced the disease severity. This result suggests that the concentration of Ca in the host, especially in the cell walls, before infection may not be directly involved in the Ca-dependent resistance of tomato seedlings to bacterial wilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号