首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Abstract

Properties of sesquioxides, clay mineralogical composition, and charge characteristics of the soils developed under broad-leaved evergreen forests in Okinawa Prefecture (subtropical climate) and the Kinki District (warm temperate climate) were studied with special reference to their pedogenetic processes in order to reexamine the corresponding parameters of Brown Forest soils and related soils in Japan.

The soils in Okinawa Prefecture were characterized by a higher degree of weathering as compared to the soils in the Kinki District. Major differences involved the values of the Fed/Fet ratio for the soil samples throughout the profile, and those of the ratios of (Fed-Feo)/Fet, CEC/clay, and (Feo + Alo)/ clay and the content of CaO plus Na2O for the B horizon. The soils in the Kinki District did not show andic soil properties, nor Al translocation in the profile and, both of which were characteristic of Brown Forest soils developed under cool temperate climatic conditions at high altitudes in the same District.

The difference in the degree of weathering were reflected on the charge characteristics at the very surface of the soils, i.e., the surface of the particles of the soils in Okinawa Prefecture exhibited a lower reactivity as compared with those of the soils in the Kinki District.  相似文献   

2.
Abstract

Morphological and chemical properties of brown forest soils and podzolic soils developed on paleozoic shale under beech and/or cryptomeria have been studied with special reference to the eluviation-illuviation characteristics of Fe and Al.

Mobilization of Al was observed even in brown forest soils and its pattern was similar to that in podzolic soils. Its intensity was higher in the brown forest soils developed on the ridge under cryptomeria than in those on the slope under beech. Hence, podzolization is considered to be one of the genetic processes involved in the brown forest soils in question.

Furthermore, the value of (Fep+Alp)/clay that is employed to define a podzolic B or spodic horizon indicated the presence of a podzolic B horizon even in the brown forest soils studied, while no spodic horizon was found even in the podzolic soils with a clearly recognizable albic horizon. Moreover, the examination of the degree of podzolization showed that the brown forest soils almost corresponded to Ochreous brown earths.  相似文献   

3.
Abstract

This study aimed to clarify pedogenetic processes and classification of yellowish Brown Forest Soils according to the Classification of Forest Soils in Japan and the Yellow Brown Forest soils according to the Unified Soil Classification System of Japan in the warm and cool temperate forest of Kyushu district, Japan. In addition, the study aimed to clarify a problem with the Unified Soil Classification System of Japan. Thirty-six soil profiles of Brown Forest Soils, including 13 yellowish Brown Forest Soils and 15 Yellow Brown Forest soils, were compared with regard to their chemical properties and the relationship with climatic conditions was assessed. The yellowish Brown Forest Soils had thin A horizons, low pH and low levels of free oxides in the B horizons, and a low amount of silica and a high aluminum and iron to silica ratio. These features were related to the paleo reddish weathering. The immaturely developed A horizon of the yellowish Brown Forest Soils was caused by these weathered, low-activity substances. The Yellow Brown Forest soils had low levels of active iron oxides and a low activity ratio of free iron oxides compared with the Haplic Brown Forest soils in the same thermal climatic conditions. The activity ratio of free iron oxides was correlated to mean annual air temperature with the carbon stocks and with many other chemical properties. Accordingly, classification of Brown Forest Soils was clearer according to thermal climatic conditions. The activity ratio of free iron oxides can become an effective index that distinguishes Yellow Brown Forest soils under warm temperate lucidophyllous forest and Haplic Brown Forest soils under cool temperate broad-leaved deciduous forest with considerable vertical soil zonality.  相似文献   

4.
5.
Abstract

The advanced classification of brown forest soils (BFS) is based on the specific properties of these soils, including the acid ammonium oxalate extractable aluminum (Alox) and lithic fragment contents, as well as their vertical distributions in the soil profile. In the present study, these properties were used to classify BFS, resulting in four types: (1) H-Alox-NGv BFS, (2) H-Alox-Gv BFS, (3) M-Alox BFS, (4) L-Alox BFS. H-Alox-NGv BFS is derived from volcanic ash characterized by a high Alox content and no lithic fragment, whereas L-Alox BFS is derived from weathered bedrock and has a low Alox content. H-Alox-Gv BFS and M-Alox BFS are derived from mixtures of volcanic ash and weathered bedrock. H-Alox-Gv BFS is characterized by high Alox content and many lithic fragments, whereas M-Alox BFS has moderate Alox content. H-Alox-NGv BFS and black soils (BLS) develop from accumulated volcanic ash, as indicated by declining Alox and clay content with decreasing depth in the surface horizons, as a result of successive additions of less-weathered volcanic ash to the soil surface.  相似文献   

6.
7.
Abstract

To evaluate labile selenium (Se) content in agricultural soils in Japan and to investigate its determining factors, 178 soil samples were collected from the surface layer of paddy or upland fields in Japan and their soluble Se contents were determined. Two grams of soil was extracted with 20 mL of 0.1 mol L?1 sodium sulfate (Na2SO4) solution for 30 min in boiling water, and the released Se was reduced to Se (IV) after organic matter decomposition. The concentration of Se (IV) was then determined by high performance liquid chromatography (HPLC) with a fluorescence detector after treatment with 2,3-diaminonaphthalene (DAN) and extraction with cyclohexane. Soluble Se content ranged from 2.5 to 44.5 μg kg?1 with geometric and arithmetic means of 11.4 and 12.8 μg kg?1, respectively, and corresponded to 3.2% of the total Se on average. The overall data showed log-normal distribution. In terms of soil type, Non-allophanic Andosols and Volcanogenous Regosols had relatively high soluble Se content, and Wet Andosols and Lowland Paddy soils had relatively low soluble Se content. In terms of land use, upland soils had significantly higher soluble Se content than paddy soils (p < 0.01). The soluble Se content had significant positive correlation with total organic carbon (TOC) content of the extract, soil pH and total Se content (p < 0.01). In conclusion, total Se content in combination with soil pH was the main determining factor of the soluble Se content of agricultural soils in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号