首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】试验旨在克隆努比亚山羊解偶联蛋白-1(uncoupling protein-1,UCP1)基因并进行生物信息学分析,检测其在努比亚山羊不同组织中的表达差异,为研究努比亚山羊UCP1基因功能及进一步解析其在脂肪代谢中的调节作用提供数据。【方法】以努比亚山羊皮下脂肪组织cDNA为模板,采用PCR扩增并克隆UCP1基因CDS区序列后,与其他物种进行相似性比对及系统进化树构建,并对UCP1蛋白进行生物信息学分析;利用实时荧光定量PCR方法检测UCP1基因在努比亚山羊心脏、肝脏、脾脏、肾脏、背最长肌、皮下脂肪、腹脂中的相对表达量。【结果】努比亚山羊UCP1基因CDS区全长918 bp,编码305个氨基酸。相似性比对发现,努比亚山羊UCP1基因氨基酸序列与绵羊、瘤牛×普通牛、水牛、羚羊、马鹿、双峰驼、驴、大熊猫、人的相似性分别为98.1%、97.0%、96.5%、96.1%、95.8%、91.0%、87.0%、86.5%和83.8%。系统进化树表明,努比亚山羊与绵羊亲缘关系最近,与人的亲缘关系最远。生物信息学分析表明,努比亚山羊UCP1蛋白的分子质量为32.97 ku,等电点为9.29,属...  相似文献   

2.
试验旨在了解陆川猪丙酮酸脱氢激酶4(pyruvate dehydrogenase kinase 4,PDK4)基因CDS区序列信息及其所编码蛋白的结构和功能,构建PDK4基因的真核表达载体,分析PDK4基因在陆川猪不同组织中的表达情况,以期为阐明PDK4基因在陆川猪生长发育过程中的分子机制奠定基础。采用RT-PCR技术扩增陆川猪皮下脂肪PDK4基因CDS区,利用生物信息学软件预测分析其结构与功能,并利用常规分子克隆技术将其插入真核表达载体中获得pEGFP-N1-PDK4,用脂质体法将重组质粒转染3T3-L1细胞并观察荧光,用实时荧光定量PCR检测PDK4基因mRNA在陆川猪心脏、肝脏、脾脏、肺脏、肾脏、背最长肌、皮下脂肪中的表达情况。结果显示,陆川猪PDK4基因CDS区全长1 224 bp,编码407个氨基酸,与NCBI上公布的野猪PDK4基因CDS区同源性达99.8%。对陆川猪PDK4基因所编码的蛋白进行生物信息学分析发现,其分子质量约为46.144 ku,原子总数为6 509个,理论等电点(pI)为7.21,带正电荷和负电荷的氨基酸数均为42个。PDK4蛋白可能有2个N-糖基化位点、33个磷酸化位点。亚细胞定位结果发现,PDK4蛋白有34.8%存在于线粒体,30.4%存在于细胞质,26.1%存在于细胞核,质膜和液泡膜各占4.3%。细胞试验发现,对照组和试验组均发出荧光,相较于对照组,试验组中PDK4表达量极显著升高(P0.01),PDK4基因在皮下脂肪中表达丰度最高,随之为肝脏、肺脏、心脏、脾脏和肾脏,在背最长肌中表达量最低,而且在皮下脂肪中的表达量极显著高于背最长肌(P0.01)。本试验成功扩增出PDK4基因CDS区并构建了真核表达载体,成功对其结构和功能进行预测分析,为研究陆川猪皮下脂肪沉积的遗传改良提供了参考依据。  相似文献   

3.
试验旨在克隆获得PDK4、FGF10基因,并研究大白猪与从江香猪不同组织中PDK4、FGF10基因mRNA的表达差异。采用RT-PCR分别克隆从江香猪PDK4、FGF10基因并进行生物信息学分析,利用实时荧光定量PCR技术检测PDK4、FGF10基因在大白猪和从江香猪不同组织中mRNA的相对表达量。结果显示,从江香猪PDK4基因的编码区全长1 224 bp,编码407个氨基酸;FGF10基因的编码区全长636 bp,编码211个氨基酸。经BLAST软件进行同源性比对,发现从江香猪PDK4基因与羊、马、人的核苷酸序列同源性分别为93%、92%和91%;FGF10基因与羊、牛、人、鼠的核苷酸序列同源性分别为94%、93%、93%和90%。由PDK4基因系统进化树可知,从江香猪与牛、绵羊亲缘关系较近;由FGF10基因系统进化树可知,从江香猪与绵羊、牛、人、猕猴亲缘关系较近,与小鼠和鸡亲缘关系较远。实时荧光定量PCR结果显示,在从江香猪不同组织中,PDK4基因在肾脏中的表达量最高,在胃和脂肪中表达量较高,FGF10基因在胃中表达量最高,在肾脏和脂肪中表达量较高,两个基因在背最长肌中的表达量均最低;在大白猪的不同组织中,PDK4、FGF10基因在脂肪中的表达量均最高,PDK4基因在背最长肌中的表达量最低,而FGF10基因在心脏中表达量最低。本试验成功克隆了从江香猪PDK4、FGF10基因,并检测了其在大白猪与从江香猪不同组织中的表达,为进一步研究PDK4、FGF10基因在脂质代谢及脂肪沉积等方面的调控作用提供科学依据。  相似文献   

4.
研究旨在对努比亚山羊脂肪和肥胖相关蛋白(fat mass and obesityassociated protein,FTO)基因进行克隆和分析,并构建其真核表达载体。取努比亚山羊背最长肌组织作为试验材料,采用RT-PCR扩增出FTO基因的编码区,测序鉴定后对得到的序列用相应的分析软件进行生物信息学分析,然后将FTO基因片段与pMD19-T载体连接后转化大肠杆菌DH5α感受态细胞,构建pMD19-T-FTO载体,测序正确的重组质粒双酶切后,连接pEGFP-N1载体构建pEGFP-N1-FTO真核表达载体,然后转染3T3-L1细胞,培养48 h后,在荧光显微镜下观察细胞表达荧光的情况。结果表明,试验成功克隆了努比亚山羊FTO基因的编码区,序列长度为1 518 bp,编码505个氨基酸,分子质量为57 142.24 u。努比亚山羊FTO基因编码区序列与NCBI上公布的山羊、牛、绵羊、猪、原鸡、小鼠的相似性分别为98.7%、96.4%、98.3%、87.2%、64.3%、81.7%,该基因系统进化树分析显示,努比亚山羊与山羊遗传距离最近,与原鸡遗传距离最远,在不同物种中具有高度保守性。努比亚山羊FTO蛋白二级和三级结构以α-螺旋和无规则卷曲为主。构建的真核表达载体pEGFP-N1-FTO转染3T3-L1细胞48 h后,在显微镜下观察到绿色荧光的表达,说明FTO基因真核表达载体构建成功。本试验构建努比亚山羊FTO基因真核表达载体,其在3T3-L1细胞中成功表达,为以后研究FTO基因与山羊脂肪代谢的相关性奠定基础。  相似文献   

5.
为考察山羊多羔性的遗传基础,以不同繁殖力的河北中部本地固有山羊为研究对象,在发情期卵巢组织用差异表达PCR方法筛查到4条基因差异片段作为山羊繁殖力性状候选基因。对这些候选基因进行同源性和转录因子结合位点分析,发现4个差异片段中2条为新发现的表达片段。1条与野猪中获得的克隆片段THY010003E05的同源性为81%,但功能未知。另1条差异片段的序列与牛pcnp的mRNA序列的同源性为94%,并据此对山羊pcnp基因进行PCR扩增、克隆及序列测定。应用生物信息学的相关软件和方法,对山羊PC-NP蛋白的理化性质、二级结构、信号肽、核定位序列、磷酸化位点、跨膜区域以及蛋白质功能域等进行预测。结果,山羊pcnp基因完整CDS序列与牛的pcnp基因完整CDS序列同源性为100%,编码区为537bp,编码179个氨基酸;推测与其他已报道的物种一样,山羊PCNP蛋白也是主要位于细胞核中的亲水蛋白,二级结构以无规则卷曲和α螺旋为主,局部为延伸链和β转角;预测出与PCNP蛋白相互作用的5种蛋白,另外还发现了3个LCR(Lowcomplexity region)区域。由此推测,PCNP在物种间相对保守,而且其最可能在细胞核中行使功能,对细胞周期或某些基因的表达产生影响,进而影响山羊繁殖力。  相似文献   

6.
【目的】 扩增努比亚山羊LIM结构域基因1(LIM domain gene 1,LMCD1)并进行生物信息学分析,构建真核表达载体并检测LMCD1基因的表达情况,为研究努比亚山羊LMCD1基因功能及探究LMCD1基因在山羊骨骼肌肉发育中的作用提供依据。【方法】 从努比亚山羊背最长肌组织中提取总RNA,应用RT-PCR方法扩增LMCD1基因CDS区序列,并进行生物信息学分析;将LMCD1基因以同源重组的方式连接pEGFP-N1载体,经酶切、测序鉴定后重组阳性质粒命名为pEGFP-N1-LMCD1;将pEGFP-N1-LMCD1重组质粒转染至山羊骨骼肌卫星细胞,通过实时荧光定量PCR检测努比亚山羊LMCD1基因的表达情况。【结果】 努比亚山羊LMCD1基因CDS区序列全长1 092 bp,编码363个氨基酸。LMCD1蛋白分子式为C1775H2818N508O533S29,分子质量为40.73 ku。努比亚山羊LMCD1基因CDS区序列与山羊相似性最高(99.8%),与斑马鱼相似性最低(55.4%),与其他物种的相似性在87.0%~98.8%之间。LMCD1蛋白无信号肽,不存在跨膜结构域,为亲水性蛋白。通过构建努比亚山羊pEGFP-N1-LMCD1真核表达载体并转染至骨骼肌卫星细胞,过表达LMCD1基因,产生绿色荧光信号。【结论】 试验成功扩增LMCD1基因CDS区序列,构建了pEGFP-N1-LMCD1真核表达载体,并分析了生物学功能,为后续开展LMCD1基因在山羊骨骼肌肉发育中的机制研究提供了理论基础。  相似文献   

7.
试验旨在了解陆川猪丙酮酸脱氢激酶4(pyruvate dehydrogenase kinase 4,PDK4)基因CDS区序列信息及其所编码蛋白的结构和功能,构建PDK4基因的真核表达载体,分析PDK4基因在陆川猪不同组织中的表达情况,以期为阐明PDK4基因在陆川猪生长发育过程中的分子机制奠定基础。采用RT-PCR技术扩增陆川猪皮下脂肪PDK4基因CDS区,利用生物信息学软件预测分析其结构与功能,并利用常规分子克隆技术将其插入真核表达载体中获得pEGFP-N1-PDK4,用脂质体法将重组质粒转染3T3-L1细胞并观察荧光,用实时荧光定量PCR检测PDK4基因mRNA在陆川猪心脏、肝脏、脾脏、肺脏、肾脏、背最长肌、皮下脂肪中的表达情况。结果显示,陆川猪PDK4基因CDS区全长1 224 bp,编码407个氨基酸,与NCBI上公布的野猪PDK4基因CDS区同源性达99.8%。对陆川猪PDK4基因所编码的蛋白进行生物信息学分析发现,其分子质量约为46.144 ku,原子总数为6 509个,理论等电点(pI)为7.21,带正电荷和负电荷的氨基酸数均为42个。PDK4蛋白可能有2个N-糖基化位点、33个磷酸化位点。亚细胞定位结果发现,PDK4蛋白有34.8%存在于线粒体,30.4%存在于细胞质,26.1%存在于细胞核,质膜和液泡膜各占4.3%。细胞试验发现,对照组和试验组均发出荧光,相较于对照组,试验组中PDK4表达量极显著升高(P<0.01),PDK4基因在皮下脂肪中表达丰度最高,随之为肝脏、肺脏、心脏、脾脏和肾脏,在背最长肌中表达量最低,而且在皮下脂肪中的表达量极显著高于背最长肌(P<0.01)。本试验成功扩增出PDK4基因CDS区并构建了真核表达载体,成功对其结构和功能进行预测分析,为研究陆川猪皮下脂肪沉积的遗传改良提供了参考依据。  相似文献   

8.
为了探究山羊糖基化酶N-乙酰氨基葡萄糖转移酶(N-acetylglucosaminyl transferase, MGAT) 5基因序列信息及其在不同组织和成肌细胞分化过程中的表达变化,试验以罕山白绒山羊为研究对象,利用PCR技术克隆了山羊MGAT5基因编码序列(coding sequence, CDS),并对其进行了生物信息学分析,同时利用反转录荧光定量PCR(quantitative real-time PCR,qRT-PCR)与Western-blot技术检测MGAT5基因在山羊不同组织(心脏、肺脏、脾脏、肺脏、肾脏、背最长肌)及成肌细胞分化过程中的表达情况。结果表明:山羊MGAT5基因CDS全长为2 220 bp,编码739个氨基酸,与绵羊MGAT5基因亲缘性较高,与小鼠亲缘性较远;MGAT5蛋白的等电点为8.49,为稳定蛋白;MGAT5基因在罕山白绒山羊在心脏、肝脏、脾脏、肺脏、肾脏、背最长肌均有表达,在肾脏中表达量最高,其次为脾脏、肺脏、心脏、肝脏,在背最长肌中表达量最低;MGAT5基因的mRNA和蛋白表达量在山羊成肌细胞分化过程中均呈逐渐降低趋势。说明MGAT5基因的表达...  相似文献   

9.
龚静  曾献春 《黑龙江畜牧兽医》2022,(15):58-63+136-137
为了探讨山羊体内铁蛋白轻链(ferritin light chain, FTL)的结构及生物学功能,试验利用RT-PCR技术克隆得到山羊FTL基因序列,通过在线软件分析其生物学特性,构建物种进化树揭示物种间亲缘关系;根据克隆获得的FTL基因序列,通过实时荧光定量PCR技术检测山羊FTL基因在不同组织中表达水平;复苏前期保存的山羊肌内前体脂肪细胞,利用实时荧光定量PCR技术检测FTL基因在诱导分化各时间点的相对表达量。结果表明:克隆获得的山羊FTL基因编码区(CDS)序列全长为745 bp,其中包括完整的大小为528 bp的ORF,共编码173个氨基酸;FTL蛋白有6个丝氨酸磷酸化位点,4个苏氨酸磷酸化位点,有23个带正电荷的赖氨酸和精氨酸残基,26个带负电荷的谷氨酸和天冬氨酸残基,无跨膜结构域;山羊FTL基因与牛进化亲缘关系最近;FTL基因在山羊体内各器官/组织中均有不同程度的表达,其中在肝脏中的相对表达量最高;FTL基因在24小时时相对表达量最高,24 h后的表达量呈不断下降的趋势。说明山羊FTL蛋白与脂肪代谢具有一定直接或间接关系。  相似文献   

10.
试验旨在构建山羊昼夜运动输出周期蛋白(circadian locomotor output cycles kaput,CLOCK)基因真核表达载体,系统分析山羊CLOCK蛋白的生物学特性。从山羊卵巢组织中提取总RNA,反转录成cDNA后经PCR扩增山羊CLOCK基因CDS区序列,并以同源重组的方式将其连接至pcDNA3.1-Puro-N-3HA载体;经PCR、酶切和测序鉴定后,将阳性质粒命名为pcDNA3.1-3HA-gCLOCK;将pcDNA3.1-Puro-N-3HA和pcDNA3.1-3HA-gCLOCK质粒分别转染至HEK293T细胞中,通过实时荧光定量PCR和Western blotting检测山羊CLOCK基因的表达效果,并对山羊CLOCK基因进行系统的生物信息学分析。结果显示,山羊CLOCK基因CDS区片段长2 538 bp,将其与线性化的pcDNA3.1-Puro-N-3HA载体重组连接并通过酶切和测序鉴定后,成功构建了pcDNA3.1-3HA-gCLOCK真核表达载体;实时荧光定量PCR和Western blotting检测结果显示,pcDNA3.1-3HA-gCLOCK转染组CLOCK基因在mRNA和蛋白水平的表达量均极显著高于pcDNA3.1-Puro-N-3HA对照组(P<0.01)。生物信息学分析结果表明,山羊CLOCK基因CDS区序列与绵羊、牛和马的相似性分别为99.4%、98.7%和95.6%。山羊CLOCK蛋白是一种不稳定蛋白,具有一定的亲水性,无跨膜区和信号肽。二级结构由α-螺旋、延伸链、β-转角和无规则卷曲组成;三级结构与小鼠和人的CLOCK蛋白相比具有极高的相似性。本研究成功构建了山羊生物钟基因CLOCK真核表达载体,并进行了生物信息学分析,为进一步研究山羊CLOCK基因的生物学功能及山羊生物钟的转录调控机制提供了材料。  相似文献   

11.
试验旨在克隆山羊过氧化物酶体增殖物激活受体α(peroxisome proliferators-activated receptors-alpha,PPARα)基因的CDS区序列,分析其编码蛋白的结构与功能,并探讨其在山羊不同组织中的表达模式。采用RT-PCR方法扩增并克隆PPARα基因CDS编码区;通过在线软件对其一级结构、二级结构和三级结构进行生物信息学分析;利用基因序列和编码蛋白构建系统发育树,进行系统发育进化分析;采用实时荧光定量PCR方法检测PPARα基因在简州大耳羊心脏、肺脏、肝脏、肾脏、脾脏和网膜6个组织中的相对表达情况。结果表明,山羊PPARα基因CDS区全长1 413 bp,结构稳定,共编码470个氨基酸。生物信息学分析发现,PPARα蛋白是一种结构较为稳定的带负电的亲水性蛋白,以α-螺旋和无规则卷曲为主,无信号肽和跨膜蛋白,属于膜内蛋白。蛋白序列中总共有49个磷酸化位点,9个糖基化位点。保守结构域中含有明显的DBD区域和LBD区域,蛋白结构高度保守。三级结构预测发现其蛋白结构主要为通过长链卷曲连接的2个明显不同的结构区域,结构均以helix螺旋为主。序列比对结果表明,山羊PPARα氨基酸序列与绵羊和牛的同源性最高。实时荧光定量检测结果表明,PPARα基因在肾脏和肝脏中表达量较高,显著高于其他组织(P < 0.05);在网膜组织和心脏中中度表达,显著高于肺脏和脾脏(P < 0.05);在肺脏和脾脏中相对低表达;说明山羊PPARα基因可能与体内脂肪氧化、脂质代谢和抗氧化应激等调控功能有关。试验结果为深入研究PPARα基因在山羊中的生理功能和调控机制奠定了理论基础。  相似文献   

12.
为了探究HSL及FAS基因在苏太猪不同组织器官中的相对表达水平,试验运用实时荧光定量PCR法检测HSL及FAS基因在苏太猪心脏、肝脏、脾脏、肺脏、肾脏、胃、皮下脂肪和背最长肌8个不同组织器官中的相对表达量。结果表明:HSL与FAS基因在苏太猪各组织器官中均有一定的表达。HSL基因在皮下脂肪中的表达水平最高,在背最长肌中的表达水平最低,表达水平顺序依次为皮下脂肪肺脏心脏脾脏肾脏肝脏胃背最长肌。FAS基因在皮下脂肪中的表达水平最高,在背最长肌的表达水平最低,表达水平顺序依次为皮下脂肪脾脏肺脏胃肝脏肾脏心脏背最长肌。  相似文献   

13.
本研究旨在探究信号素蛋白4G(SEMA4G)基因序列特征及其在山羊性腺组织中的表达特性。以云上黑山羊为研究对象,利用PCR技术克隆山羊SEMA4G基因CDS区,并对其结构和功能进行生物信息学分析,结果显示:山羊SEMA4G基因CDS区全长2 535 bp,共编码844个氨基酸;核苷酸序列同源性比对发现,山羊与绵羊同源性最高,为97.1%,与其他物种的同源性均在82%以上,说明SEMA4G基因在进化过程中表现出高度保守性;生物信息学分析结果显示SEMA4G为亲水性蛋白,存在O-糖基化潜在位点22个、潜在的磷酸化位点83个、N-糖基化潜在位点4个以及二硫键位点10个,且该蛋白存在信号肽。预测SEMA4G蛋白高级结构发现其为混合型蛋白,主要由α-螺旋、延伸链、β-转角和无规卷曲组成,其中以无规卷曲为主。利用实时荧光定量PCR(RT-qPCR)技术检测SEMA4G基因在山羊不同性腺组织中的表达特征。性腺轴组织表达谱分析显示,山羊SEMA4G基因在卵巢中的表达量最高。高低产云上黑山羊卵巢组织定量分析则显示,SEMA4G在高产卵巢表达量显著高于低产卵巢。综上所述,山羊SEMA4G基因在不同物种中高...  相似文献   

14.
为研究山羊核糖体蛋白L27A (ribosome protein L27A,RPL27A)基因结构及其相关的生物学功能,试验采集简州大耳羊的14种组织样品(心脏、肝脏、脾脏、背最长肌、皮下脂肪等),利用RT-PCR扩增并克隆获得山羊RPL27A基因序列,通过在线工具进行生物信息学分析;采用实时荧光定量PCR技术检测RPL27A基因在各个组织及不同分化阶段的皮下前体脂肪细胞中的表达水平。结果显示,山羊RPL27A基因CDS区长447 bp,可编码148个氨基酸。生物信息学分析表明,RPL27A基因在不同的物种间具有较高的保守性,RPL27A蛋白是不稳定的亲水碱性蛋白,其与脂代谢及脂肪沉积相关的RPS18、RPL26、RPL34、RPL32、RPL37A等核糖体蛋白存在相互作用,RPL27A蛋白没有跨膜结构域,且无信号肽,亚细胞定位表明其主要存在于细胞质中。实时荧光定量PCR结果显示,RPL27A基因在山羊心脏、肝脏、脾脏、肾脏、肺脏、背最长肌、皮下脂肪等14种组织中均有广泛表达,且在瘤胃中表达水平最高,在臂三头肌和股二头肌中也存在较高的表达水平,均显著高于其他组织(P<0.05);RPL27A基因在成脂诱导60 h的山羊皮下脂肪细胞中的表达水平显著高于分化前(P<0.05)。本研究成功克隆了山羊RPL27A基因CDS序列,并揭示了RPL27A基因在山羊14种组织中的表达特性,研究结果可为阐明RPL27A基因对山羊脂肪细胞分化的调控机制提供材料。  相似文献   

15.
为研究脂联素(AdipoQ)基因在藏山羊中的表达模式及相关功能,本试验利用生物信息学和比较基因组学方法克隆得到藏山羊AdipoQ基因序列;半定量RT-PCR和qPCR方法检测AdipoQ基因在成年藏山羊11个不同组织中的表达模式及不同脂肪组织中AdipoQ基因的相对表达量。结果显示,藏山羊AdipoQ基因编码区与牛、猪、人等哺乳动物AdipoQ基因同源性较高;AdipoQ基因在脂肪组织中表达量最高,在肌肉组织和胃中表达量较低,而在其他各组织中未检测到表达;AdipoQ基因在肾周脂肪组织中的表达量高于肠系膜脂肪组织和皮下脂肪组织中的表达量,但差异不显著(P>0.05)。本研究得到藏山羊AdipoQ基因序列、组织表达模式及不同脂肪组织中的相对表达量,为进一步研究藏山羊AdipoQ基因的功能奠定基础。  相似文献   

16.
山羊高繁殖力相关基因的筛选与分析   总被引:2,自引:2,他引:0  
为查找与山羊繁殖力相关的基因,进一步研究繁殖力调控的遗传机制,本研究选用12只冀中山羊,按照其繁殖记录分为高产和低产2组,应用差异显示反转录PCR(DDRT-PCR)技术,分析了山羊在发情期卵巢组织基因表达的差异。经二次扩增、反式Northern以及半定量PCR验证分析,最终得到4个表达量差异的阳性片段。所得片段经克隆测序提交至GenBank,并进行BLAST分析。结果,4个差异片段中2条为新发现的表达片段,在NCBI中未发现高度同源序列。1条与野猪中获得的克隆片段THY010003E05同源性为81%,但功能未知。另1条差异片段的序列与牛PCNP的mRNA序列的同源性为94%。结果提示,该片段所属基因应属于PCNP基因,结合对其功能的分析结果,推测PCNP可能通过参与卵细胞生成过程中的细胞周期调控影响山羊繁殖力。  相似文献   

17.
本研究旨在对山羊乙酰辅酶A合成酶2(acetyl-CoA synthetase 2,ACSS2)基因进行克隆和生物信息学分析,并检测其在山羊不同泌乳时期乳腺组织中的表达量变化。以山羊乳腺组织RNA为模板,采用RT-PCR方法扩增并克隆山羊ACSS2基因完整CDS区序列,对测序结果进行生物信息学分析,并对ACSS2基因在山羊不同泌乳时期乳腺组织中的表达量进行分析。结果显示,山羊ACSS2基因CDS区序列长2 106 bp,编码701个氨基酸;山羊ACSS2基因与牛、马、人、犬、猪、小鼠和鸡的同源性分别为97.8%、92.0%、91.3%、91.3%、91.1%、88.1%和73.3%。蛋白理化性质分析结果表明,ACSS2蛋白分子质量为78.72 ku,理论等电点为6.03,属于酸性蛋白;跨膜结构和信号肽分析表明,ACSS2蛋白不含跨膜结构和信号肽;结构域分析表明,该蛋白含有1个乙酰辅酶A合成酶N端结构域。亚细胞定位分析结果表明,该蛋白主要分布在内质网(44.4%)、线粒体(33.3%)、细胞质(11.1%)和细胞核(11.1%)中。蛋白质结构预测发现ACSS2蛋白含有α-螺旋(29.10%)、延伸链(21.54%)、β-转角(9.84%)及无规则卷曲(39.52%)。实时荧光定量PCR分析结果表明,ACSS2基因在不同泌乳时期均有表达,其中在泌乳中期表达量最高,在干奶期表达量最低。本试验结果为进一步研究山羊ACSS2基因在脂质代谢过程中的功能及转录调控机制提供了参考。  相似文献   

18.
试验旨在克隆藏山羊SFRS18(splicing factor arginine/serine-rich 18)基因CDS序列,并进行生物信息学分析,同时分析其组织表达特征以及与肌内脂肪含量进行相关性分析,为深入研究该基因在山羊肌内脂肪沉积中的作用积累数据。采用RT-PCR技术获得藏山羊SFRS18基因序列,结合生物信息学分析蛋白的理化性质、结构和不同物种的同源性,实时荧光定量检测SFRS18 mRNA表达情况,并将表达量与肌内脂肪含量相关联。结果表明,藏山羊SFRS18基因cDNA序列长为1299 bp,开放阅读框(ORF)长为1272 bp,编码423个氨基酸,蛋白分子结构式为C2003H3424N760O696S4,分子质量为49.42 ku,等电点pI=11.20,SFRS18蛋白为不稳定的亲水性蛋白,无信号肽;有103个磷酸化位点,2个N-糖基化位点和39个O-糖基化位点;亚细胞定位于在细胞核(82.6%)、细胞质(8.7%)、细胞骨架(4.3%)和质膜(4.3%),属于非跨膜蛋白;预测二级结构由0.71% α-螺旋和99.29%无规则卷曲组成;藏山羊核苷酸序列和氨基酸序列与牛、绵羊和水牛的相似性最高(99%),系统进化树分析表明藏山羊与牛亲缘关系最近;实时荧光定量PCR结果显示,SFRS18基因在藏山羊的不同组织中都存在表达,其中在脾脏中表达水平最高,在背最长肌中表达水平最低;在藏山羊背最长肌和腿肌中SFRS18 mRNA表达与肌内脂肪含量均呈显著正相关(r=0.081,P<0.05;r=0.373,P<0.05)。SFRS18基因可以作为调节山羊脂肪沉积的候选基因。  相似文献   

19.
为了克隆RETN基因,并对RETN基因在4.5岁牦牛不同组织器官中的相对表达差异进行分析,提取类乌齐牦牛心脏、肝脏、肺脏、脾脏、臀肌、臀脂、乳腺、大脑组织总RNA,克隆得到RETN基因cDNA片段428 bp,利用RT-qPCR技术检测RETN基因在不同组织器官中的相对表达情况。结果表明:RETN基因开放阅读框长度为330 bp,编码109个氨基酸,与黄牛亲缘关系最近(相似性为99.7%),与小鼠亲缘关系最远(相似性为66.1%);RETN蛋白的理化性质稳定,整条肽链呈亲水性,无信号肽,无跨膜区,主要在线粒体中发挥作用;该蛋白质主要由α-螺旋和无规则卷曲组成;RETN基因在牦牛心脏、肝脏、肺脏、脾脏、臀肌、臀脂、乳腺、大脑组织器官中均有不同程度的表达,在肺脏、脾脏、乳腺组织器官中的相对表达量极显著高于其他组织器官(P0.01),在臀肌和大脑中的相对表达量较低。说明RETN基因可能在脾脏、肺脏和乳腺中具有调控作用。  相似文献   

20.
为了克隆猪胰岛素诱导2(INSIG2)基因,并对其进行序列特征分析和组织差异表达规律研究,试验提取猪总RNA,反转录c DNA后进行PCR反应,对克隆得到的INSIG2序列进行生物信息学分析,并用实时荧光定量PCR检测INSIG2在心脏、肝脏、脾脏、肺脏、胃、肾脏、肌肉7个器官/组织中的表达情况。结果表明:试验获得1段998 bp的序列,该片段编码区序列长度为678 bp,编码225个氨基酸。INSIG2蛋白分子质量为24.730 9 ku,理论等电点为8.64,不含信号肽;INSIG2蛋白有较强的疏水性,具有5个跨膜螺旋结构。与其他动物的INSIG2基因氨基酸序列一致性在92%以上。INSIG2基因在7个被检测器官/组织中均有表达,且肺脏中表达量最高,肝脏次之,再次是胃,心脏和肌肉的表达量最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号