首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments under laboratory and greenhouse conditions were conducted to study the response of maize (Zea mays L.) to Zn fertilizer applications (Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-heptagluconate) in an Aquic Haploxeralf soil. The application of Zn complexes significantly increased Zn uptake by the plant compared with that in the control soil. The highest enhancements were obtained in soil treated with Zn-EDTA, Zn-lignosulfonate, and Zn-EDDHA. The highest percentages of Zn taken up by the plants occurred when 20 mg x kg(-1) Zn was applied as Zn-EDTA fertilizer and 10 mg x kg(-1) as Zn-lignosulfonate fertilizer. In the greenhouse experiment, Zn speciation in soil after harvesting showed that almost all Zn was found in the residual fraction followed by metal in the water-soluble plus exchangeable fraction and metal bound to organic matter. The most effective fertilizers maintaining Zn in the most labile fractions were Zn-phenolate, Zn-EDTA, and Zn-lignosulfonate. Conversely, in the incubation experiment, only a small percentage of Zn was found in the water-soluble plus exchangeable fraction and no differences in the Zn distribution were observed between the different fertilizer treatments. The micronutrient content in maize was positively correlated with the water-soluble plus exchangeable Zn as well as with the available Zn determined by the diethylenetriaminepentaacetic acid and Mehlich-3 methods, in the greenhouse experiment. Results of this study showed that the incubation experiment in acidic soil is not a suitable tool to establish the different effectiveness of Zn chelates in plants.  相似文献   

2.
The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate.  相似文献   

3.
The effect of six Zn sources (Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-glucoheptonate) was studied by applying different Zn levels to a representative Calcic Haploxeralf neutral soil (the predominant clay is montmorillonite) in incubation and greenhouse experiments. Zinc soil behavior was evaluated by sequential DTPA and Mehlich-3 extraction procedures. In the incubation experiment, the highest percentage recovery values of Zn applied to soil occurred in the water-soluble plus exchangeable fraction (29%) in fertilization with 20 mg of Zn kg(-1) of Zn-EDTA fertilizer. In the greenhouse experiment with maize (Zea mays L.), a comparison of different Zn carriers showed that the application of six fertilizers did not significantly increase the plant dry matter yield among fertilizer treatments. The highest yield occurred when 20 mg of Zn kg(-1) was applied as Zn-EDDHA fertilizer (79.4 g per pot). The relative effectiveness of the Zn sources in increasing Zn concentration in plants was in the following order: Zn-EDTA (20 mg kg(-1)) > Zn-EDDHA (20 mg kg(-1)) approximately Zn-EDTA (10 mg kg(-1)) > Zn-EDDHA (10 mg kg(-1)) approximately Zn-phenolate (both rates) approximately Zn-polyflavonoid (both rates) approximately Zn-lignosulfonate (both rates) approximately Zn-glucoheptonate (both rates) > untreated Zn. The highest amounts of Zn taken up by the plants occurred when Zn was applied as Zn-EDTA fertilizer (20 mg kg(-1), 7.44 mg of Zn per pot; 10 mg kg(-1) Zn rate, 3.93 mg of Zn per pot) and when Zn was applied as Zn-EDDHA fertilizer (20 mg kg(-1) Zn rate, 4.66 mg Zn per pot). After the maize crop was harvested, sufficient quantities of available Zn remained in the soil (DTPA- or Mehlich-3-extractable Zn) for another harvest.  相似文献   

4.
Zinc contamination of groundwater from fertilizers applied to pulse crops is a potential problem, but the use of different types of organic chelates can minimize the contamination potential while still adequately feeding the crops. The objective of this study was to compare the leaching, distribution in fractions and availability, and relative effectiveness of Zn from six organic Zn fertilizers (zinc-ethylenediaminetetraacetate- N-2-hydroxyethylethylenediaminetriacetate (Zn-EDTA-HEDTA), Zn-HEDTA, zinc- S, S'-ethylenediaminedisuccinate (Zn- S, S-EDDS), zinc-polyhydroxyphenylcarboxylate, Zn-EDTA, and zinc-ethylenediaminedi(2-hydroxy-5-sulfophenylacetate) (Zn-EDDHSA)) applied to a navy bean ( Phaseolus vulgaris, L.) crop cultivated by applying different Zn levels, in a weakly acidic soil under greenhouse conditions. Zinc soil behavior was evaluated by diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), DTPA-ammonium bicarbonate (DTPA-AB), Mehlich-3, and BaCl 2 extractions and sequential fractionation. In all the fertilizer treatments, the percentage of labile Zn that remained in the soil was high with respect to the quantity of Zn applied, with values respectively ranging from 42 to 80% for Zn-EDDHSA and Zn-EDTA sources. A positive correlation with a high level of significance existed between the micronutrient concentration in the navy bean crop (total and soluble) and labile Zn fractions, available Zn, and easily leachable Zn ( r ranged from 0.89 to 0.95, P < 0.0001). The relatively high quantity of total Zn leached by applying Zn-EDTA and Zn-S,S-EDDS sources (11.9 and 6.0%, respectively, for the rate 10 mg of Zn kg(-1) of soil) poses a potential pollution risk for neighboring waters. It would seem recommendable to apply Zn-HEDTA or Zn-EDDHSA sources, even applied at the low rate (5 mg of Zn kg(-1) of soil), because they produced available Zn concentrations in the soil that were above the critical concentration and also produced high Zn concentrations in plants (139 and 106 mg of Zn kg(-1) of dry matter, respectively).  相似文献   

5.
The objective of this study was to compare the mobility, leaching, availability, and relative effectiveness of Zn from Zn-polyhydroxyphenylcarboxilate (Zn-PHP), Zn-HEDTA (Zn-N-2-hydroxyethyl-ethylenediaminetriacetate), Zn-EDDHSA [Zn-ethylenediamine-di-(2-hydroxy-5-sulfophenylacetate)], Zn-EDTA (Zn-ethylenediaminetetraacetate), Zn-S,S-EDDS (Zn-ethylenediaminedisuccinate), and Zn-EDTA-HEDTA sources by applying different Zn rates (5 and 10 mg kg(-1)) to a calcareous soil under greenhouse conditions. A lysimeter experiment was carried out for 60 days and using navy bean (Phaseolus vulgaris L.) as an indicator plant. The Zn available to the plant and easily leachable Zn were determined in soil by different single extractions, while the distribution of Zn in the soil was assessed by sequential speciation. The utilization of applied Zn by the navy bean was greatest when the Zn treatments were Zn-EDTA, Zn-EDTA-HEDTA, Zn-HEDTA, and Zn-EDDHSA. Both total Zn in the plants and soluble Zn in the plant dry matter (extracted with 1 mM 2-morpholino-ethanesulfonic acid) were positive and significantly correlated with the following: the amounts of Zn extracted with the three single extractions used to estimate soil available Zn and the amounts of Zn in the water soluble plus exchangeable and organically complexed fractions. The Zn-HEDTA, Zn-EDDHSA, Zn-EDTA-HEDTA, Zn-S,S-EDDS, and Zn-EDTA sources significantly increased the mobility of micronutrients through the soil with respect to the control and Zn-PHP source. The maximum Zn concentration obtained in the leachate fractions was 65 mg L(-1) (13% of Zn applied) for the Zn-S,S-EDDS chelate applied at a rate of 10 mg Zn kg(-1) soil. In the course of the crop, the soil pH + pe parameter increased significantly with experimental time.  相似文献   

6.
【目的】在潜在缺锌石灰性土壤上,特别是种植小麦并以此为主粮的地区,缺锌问题日益受到人们的关注。提高小麦籽粒锌含量以满足人体锌需求,对于改善人体锌营养不良的现状具有重要意义。【方法】以ZnSO4和Zn-EDTA为锌源,布置了2个为期两年的田间定位试验。试验均采用裂区设计,即主因子为喷施锌肥,设喷施与不喷2个主处理;副因子为土施方法,设不施锌、均施、条施3个副处理。在第1季试验基础上,第2季不再土施锌肥,调查了小麦籽粒锌含量、土壤有效锌含量及锌组分含量,分析了第1季锌肥的后效。【结果】第2季单独喷施ZnSO4小麦籽粒Zn含量提高了11.13 mg/kg,提高幅度为33%,而喷Zn-EDTA无明显效果。不喷Zn时,第1季均施和条施的ZnSO4在第2季均表现出一定后效,小麦籽粒锌含量比对照分别提高了6.05、3.51 mg/kg,提高幅度为20%和11%;喷Zn时,第2季均施和条施ZnSO4处理的小麦籽粒锌含量增加了28.59和21.59 mg/kg,增幅100%和76%,表现出显著富锌作用,但增加幅度比单独喷施要小很多。第1季土施的两种锌肥在第2季小麦收获后DTPA-Zn仍维持在1 mg/kg以上,即不喷Zn时,均施和条施ZnSO4处理的土壤有效锌含量分别为1.99和1.65 mg/kg,均施和条施Zn-EDTA的有效锌含量分别为1.23和1.01 mg/kg;喷Zn时,均施和条施ZnSO4处理的土壤有效锌含量分别为1.44和2.22 mg/kg,均施和条施Zn-EDTA处理的有效锌含量分别为1.16和1.10 mg/kg。土壤各锌组分含量均表现为:松结有机态Zn > 碳酸盐结合态Zn > 氧化锰结合态Zn > 紧结有机态Zn > 交换态Zn。具体而言,第1季均施和条施ZnSO4,第2季结束后交换态Zn(Ex-Zn)、松结有机态Zn(Wbo-Zn)、碳酸盐结合态Zn(Car-Zn)含量均显著提高,其提高幅度分别为184%和116%;75%和85%;53%和43%。而均施和条施Zn-EDTA仅Ex-Zn、Wbo-Zn含量显著提高,其提高幅度分别为232%和132%;18%和10%。均施Zn-EDTA处理的锌肥利用率为0.27%,条施为0.70%,后者约为前者的3倍;而条施与均施ZnSO4无差异。【结论】在潜在缺锌石灰性土壤上,单独喷施ZnSO4显著提高了小麦籽粒锌含量,而喷施Zn-EDTA效果不显著;土施ZnSO4和Zn-EDTA,不论条施或均施,虽然会使有效锌(DTPA-Zn)及较高活性锌形态(Ex-Zn、Wbo-Zn)长时间维持较高含量,但对第2季小麦籽粒富锌的后效有限;土施基础上配合喷施ZnSO4对小麦籽粒锌的含量效果最令人满意。  相似文献   

7.
锌源和施锌方法对石灰性土壤锌组分及锌肥利用率的影响   总被引:2,自引:1,他引:1  
【目的】选用合适的锌肥以及合理的施肥方式不仅可以提高小麦籽粒锌营养品质,还可以提高石灰性土壤的锌肥利用率。因此,研究不同锌源和施肥方式对石灰性土壤中锌组分含量以及锌肥利用率的影响具有重要意义。【方法】采用盆栽试验,设置两种锌源(水溶态锌肥Zn SO4·7H2O和螯合态锌肥Zn-EDTA)全层混匀均施和表面条施两种方式,调查了土壤中交换态Zn(Ex-Zn)、松结有机态Zn(LOM-Zn)、碳酸盐结合态Zn(Carb-Zn)、氧化锰结合态Zn(Ox Mn-Zn)、紧结有机态Zn(TOM-Zn)5种形态锌的含量,分析了小麦对锌肥的利用率。【结果】全层混匀均施与表面条施,两种锌肥均增加了小麦籽粒和秸秆Zn含量,全层均施Zn SO4·7H2O处理的籽粒Zn含量比对照提高43%,均施和表面条施Zn-EDTA的籽粒Zn含量分别比对照提高57%和75%;Zn-EDTA均施和条施的锌肥利用率分别为6.5%和5.3%,Zn SO4·7H2O均施和条施的锌肥利用率分别为3.6%和1.3%。小麦收获后,条施Zn SO4·7H2O和Zn-EDTA的施锌区有效锌含量分别为9.25和1.97 mg/kg,分别为均施处理的2倍和1.8倍;与对照相比,Zn SO4·7H2O和Zn-EDTA条施及均施的4个处理均增加了土壤中各形态锌的含量,并且4个处理与对照土壤中各形态Zn含量的规律一致,即:松结有机态碳酸盐结合态紧结有机态氧化锰结合态交换态。均施Zn SO4·7H2O和Zn-EDTA 2个处理的交换态Zn含量分别为0.12和0.13 mg/kg,条施分别为0.38和0.54 mg/kg;均施处理松结有机态Zn含量分别为5.26和1.56 mg/kg;不同处理碳酸盐结合态Zn含量变化趋势与松结有机态Zn含量基本一致;条施Zn SO4·7H2O施肥区氧化锰结合态Zn含量为对照的4倍,不同处理的土壤中紧结有机态Zn含量变化规律与氧化锰结合态Zn含量变化规律相似。相关分析表明,土壤交换态Zn、松结有机态Zn和碳酸盐结合态Zn含量均与有效锌含量呈显著正相关关系,与不施锌肥相比,Zn-EDTA施入土壤后,小麦收获后松结有机态Zn和碳酸盐结合态Zn含量明显增加,而紧结有机态Zn则相对减少。【结论】潜在缺锌石灰性土壤上施用螯合态锌肥Zn-EDTA能显著增加土壤中潜在有效的锌组分以及锌肥利用率,而且施用螯合态锌肥后,较高的有效锌含量可以维持至小麦收获后,有效提高了锌肥利用率。与均施处理相比,条施这种集中施用的施肥方法可以增加近根系土壤中有效性较高的锌形态含量。  相似文献   

8.
Abstract

Fertilizers that contain zinc (Zn)‐EDTA and Zn‐lignosulfonate (Zn‐LS), which can also be coated with rosin, were placed at the top of columns of an acid Calcic Palexeralf soil which were periodically irrigated. The liberated Zn remained mostly on the top of the column when the source of Zn was Zn‐LS but Zn migrated through the column when Zn‐EDTA was applied. The use of a coating on the Zn‐EDTA fertilizer diminished the loss of Zn by leaching from 52% to 20% at the end of the experiment at the highest coating percentage (36%). The distribution of the Zn in the soils was studied by fractionation and showed that added Zn remained in the soils in more favorable forms for uptake by plants in comparison with the control soil. The labile fraction (F1) and especially that organically complexed increased, and the percentage corresponding to the residual fraction that was 89% in the native soil diminished in all cases being in the most favorable case by 25%. Correlations between the extracted fractions (r=0.57–0.99, P<0.01%) showed that, in general, a dynamic equilibrium existed between them. The DTPA‐extractable Zn also correlated positively with the most labile Zn fractions, although the significance level depended on the depth.  相似文献   

9.
The aim of this study was to compare the behavior of residual zinc (Zn) from different synthetic chelates containing the chelating agents EDTA (ethylenediaminetetraacetate acid), HEDTA (hydroxyethyl-ethylenediaminetriacetate acid), and DTPA (diethylenetriaminepentaacetate acid) applied at different rates. This incubation experiment was carried out under two different moisture conditions (60 percent field capacity and waterlogged) and in two different soils from the central region of Spain (Soilacid, Typic Haploxeralf, and Soilcalc, Typic Calcixerept). The potentially available Zn concentration and short-term available Zn were estimated using the DTPA-TEA (diethylenetriaminepentaacetic acid–triethanolamine) and LMWOAs (low-molecular-weight organic acids) methods. In both soils, the amount of water-soluble Zn was estimated under 60 percent field-capacity conditions. Immediately available Zn was estimated under waterlogged conditions. The Zn concentrations depended on the soil type, the experimental time, and the Zn chelate used. Under both moisture conditions, the soil characteristics caused the residual effects of Zn-EDTA in Soilacid and Zn-DTPA-HEDTA-EDTA applied to Soilcalc, to produce the greatest Zn concentrations.  相似文献   

10.
Zinc (Zn) distribution in different soil aggregates can affect Zn availability. In this study, the effect of soil aggregate-size fractions on Zn distribution and availability was determined in some heavy metal-contaminated soils. Air-dried samples were fractionated into four different aggregate-size fractions (2.0–4.0, 0.25–2.0, 0.05–0.25 and <0.05 mm). Extraction efficiency of available Zn determined by using Mehlich-3, DTPA-TEA, Mehlich-1 and H2O methods in different aggregates and relation between extracted Zn and corn indices were studied. Moreover, the Tessier fractionation scheme was applied to determine the partitioning of Zn in different aggregates. Among all the extractants, Mehlich-3 showed better extractability of Zn from soils and the highest amount of extracted Zn was found in the <0.05 (87.65 mg kg?1) and 0.05–0.25 (80.86 mg kg?1) mm fractions. Zn extracted by Mehlich-3 and DTPA-TEA in the <0.05 and 0.05–0.25 mm fractions had significant correlation with the amount of Zn in corn. Also, correlation coefficients between carbonate-bound and Fe–Mn oxide-bound Zn and available Zn in <0.05 and 0.05–0.25 mm aggregates was higher than other aggregates, suggesting that this two fraction of Zn in finer aggregates constituted the major available Zn pools in the studied soils.  相似文献   

11.
The objective of this study was to compare the distribution, mobility, and relative effectiveness of Zn from Zn-amino acids (Zn-AA) and Zn-DTPA-HEDTA-EDTA (Zn-CH) (DTPA, diethylenetriaminepentaacetate; HEDTA, N-2-hydroxyethyl-ethylenedinitrilotriacetate; and EDTA, ethylenedinitrilotetraacetate) sources by applying different Zn levels to weakly acidic and neutral soils in laboratory (incubation and soil column studies) and greenhouse conditions. The experiments were carried out for 60 days in incubation and column experiments and for 45 days in a greenhouse experiment. The zinc soil behavior was evaluated by DTPA-TEA and Mehlich-3 extractions and sequential speciation. The incubation experiment showed that the highest concentrations of available Zn in weakly acidic soil occurred with Zn-AA treatments, whereas in the neutral soil Zn-CH treatments produced the highest quantities of available Zn. The column experiment showed that in neutral soil, with slow to moderate permeability in the Ap and Bt horizons, only Zn-CH significantly increased the mobility of Zn through the column with respect to the control and the Zn-AA source: 31% of the Zn applied as synthetic chelate was leached from the column. The greenhouse experiment showed that, at different rates of Zn application, the Zn carriers increased Zn uptake by maize (Zea mays L.). The use of applied Zn by maize, or Zn utilization, was greatest when the Zn treatments were Zn-CH (3.3%) at 20 mg kg-1 and Zn-CH (4.9%) at 10 mg kg-1, in weakly acidic and neutral soils, respectively.  相似文献   

12.
Leaching of boron (B) and zinc (Zn) can be significant in some pedomorphic conditions, which can cause contamination of shallow groundwater and economic losses. Boron and Zn adsorption and transport was studied using 8.4 cm diameter × 28 cm long intact columns from two calcareous soil series with differing clay contents and vadose zone structures: Lyallpur soil series, clay loam (fine-silty, mixed, hyperthermic Ustalfic Haplargid), and Sultanpur soil series, sandy loam (coarse-silty, mixed, hyperthermic Ustollic Camborthid). The adsorption isotherms were developed by equilibrating soil with 0.01 tool L^-1 CaCl2 aqueous solution containing varying amounts of B and Zn and were fitted to the Langmuir equation. The B and Zn breakthrough curves were fitted to the two-domain convective-dispersive equation. At the end of the leaching experiment, 0.11 L 10 g L^-1 blue dye solution was also applied to each column to mark the flow paths. The Lyallpur soil columns had a slightly greater adsorption partition coefficient both for B and Zn than the Sultanpur soil columns. In the Lyallpur soil columns, B arrival was immediate but the peak concentration ratio (the concentration in solution at equilibrium/concentration applied) was lower than that in the Sultanpur soil columns. The breakthrough of B in the Sultanpur soil columns occurred after about 10 cm of cumulative drainage in both the columns; the rise in effluent concentration was fast and the peak concentration ratio was almost 1. Zinc leaching through the soil columns was very limited as only one column from the Lyallpur soil series showed Zn breakthrough in the effluent where the peak concentration ratio was only 0.05. This study demonstrates the effect of soil structure on B transport and has implications for the nutrient management in field soils.  相似文献   

13.
 ZnSO4, Zn-enriched farmyard manure (Zn-FYM), Zn-tetraammonia complex sorbed on FYM [Zn(NH3)4-FYM] and Zn-ethylenediaminetetraacetate (Zn-EDTA) were compared as Zn sources for rice production under lowland conditions. The amount of Zn supplied by Zn-EDTA was one-tenth of that supplied by the other Zn sources. Zn application to a Zn-deficient soil corrected the visual symptoms of Zn deficiency and significantly increased the total biomass, grain yields and the harvest index of rice, as well as the Zn concentration in the grain and the uptake of Zn by the straw and the grains. Even with lower rates of application (0.25 and 0.5 mg Zn kg–1 soil), Zn-EDTA treatments gave comparable values for these parameters, and the highest "Zn-mobilization efficiency" compared to the other Zn sources. The content of diethylenetriaminepentaacetate (DTPA)-extractable Zn in the soil of the different treatments after the harvest of rice was in the order; ZnSO4=Zn-FYM>Zn(NH3)4-FYM=Zn-EDTA. The application of Zn also significantly increased the number of panicles that emerged between 80 to 93 days after transplanting, though the total number of panicles at harvest remained unaffected. The calculated panicle-emergence index had a positive correlation with the grain yield of rice. The Zn-EDTA treatment, inspite of supplying the lowest amount of Zn, as well as leading to the lowest rate of Zn uptake, produced the highest yields. Therefore, we concluded Zn-EDTA to be the most efficient source of Zn for lowland rice production. Received: 20 October 1998  相似文献   

14.
Abstract

Laboratory studies to assess the effects of pH, and phosphorus (P) and organic matter contents on zinc (Zn) distribution in various soil fractions were conducted. Soils were incubated with different levels of lime, P fertilization, and two types of added organic materials. Phosphorus and pH were found to influence Zn distribution in the different soil fractions. Increase in pH and P decreased available and organic Zn and increased unavailable forms. Where fresh Zn was applied, a greater proportion of Zn was retained in the available and organically‐bound Zn forms. Application of maize stover and cow manure had a temporal effect of reducing available zinc in both the Chiota and Gwebi soils. The organic Zn and other unavailable forms of Zn increased showing that Zn was being immobilised. The immobilization was a relatively rapid process occurring in the first two weeks. The release of Zn which had been immobilised increased with time of incubation.  相似文献   

15.
砂质土壤积累的铜和锌的可提取性与移动性研究   总被引:7,自引:0,他引:7  
An investigation was conducted to study problems of determining a reasonable percentage for ecological water-use in the Haihe River Basin of China. Three key aspects for the ecological water requirement (EWR) were analyzed, involving i) the EWR for river system, ii) the EWR for wetlands and lakes, and iii) the EWR for discharge into the sea to maintain the estuary ecological balance of the Haihe River. The Montana method and related water level-flow relationships, and the statistic approach based on hydrological records were applied to estimate different components of EWR. The results showed that the total ecological water demand in the region, was about 3.47-14.56 billion m^3. Considering flow regime change and uncertainty, the ecological water demand could be estimated by the hydrological frequency approach. Preliminary analysis showed that for different annual runoff under the frequencies of 20%, 50%, 75% and 95%, the ecological water demand approached 12%-50%, 18%-74%, 24%-103%, 35%-148% and 16%-66%, respectively. By further analysis to balance ecological water-use and socioeconomic water-use, the rational percentage of ecological water-use was estimated as 35%-74%, that provides useful information to judge whether the allocation of water resources is reasonable, and was proved to be satisfactory by comparing with the practical condition.  相似文献   

16.
Abstract

Efficient nutrient and water use are two important considerations to obtain good harvests of wheat. This necessitates the development of an effective nutrient management technique that not only increases yield, but simultaneously can save nutrient and water use. In this context, a field experiment was conducted at Indian Agricultural Research Institute, New Delhi, India to evaluate the residual effect of sesbania and rice bean (in-situ), subabul (ex-situ) green manuring and Zinc (Zn) fertilization, using chelated Zn-ethylenediaminetetraacetic acid (Zn-EDTA) on nutrient use, yields and water productivity of wheat under rice–wheat cropping system. Among residual effects of green manure crops and Zn fertilization, sesbania and foliar spray of 0.5% chelated Zn-EDTA at 20, 40, 60 and 80 days after sowing (DAS) recorded significantly higher nutrient content and uptake and yields than other green manure crops and Zn treatments. Residual effect of sesbania saved about 46.5?×?103 and 30.5?×?103 L irrigation water per tonne of wheat over subabul and rice bean, respectively. Foliar spray of 0.5% chelated Zn-EDTA at 20, 40, 60 and 80 DAS saved about 55.5?×?103, 47?×?103 and 13?×?103 L irrigation water per tonne wheat over residual effect of 5?kg Zn ha?1 through chelated Zn-EDTA as soil application, 2.5?kg Zn ha?1 through chelated Zn-EDTA as soil application + 1 foliar spray of 0.5% chelated Zn-EDTA at flowering and foliar spray of 0.5% chelated Zn-EDTA at active tillering?+?flowering?+?grain filling, respectively. Correlation analysis showed positive correlation between Zn uptake and grain yield.  相似文献   

17.
Abstract

Interpretations of soil zinc (Zn) tests for golf course greens vary among testing laboratories, with little information in the literature on which to base these interpretations. Our studies determined the effects of increasing fertilizer Zn on extractable soil Zn and tissue Zn levels for five creeping bentgrass (Agrostis palustris Huds.) cultivars, to investigate their potential for Zn toxicity. The effects of Zn concentrations up to 4000 mg/kg were investigated in three greenhouse studies on a potted soil mix of sand, Nicolett (fine‐loamy, mixed‐mesic, Aquic Hapludoll) soil, and Hypnum peat in an 8:1:1 ratio. ‘Penncross’ bentgrass was used in the first two studies, and ‘Penncross’, ‘Penneagle’, ‘Cobra’, ‘Emerald’, and ‘Prominent’ were compared in a third study. Mean DTPA‐extractable soil Zn concentrations increased from 0.6 mg/kg in the controls to 652 mg/kg in the pots treated with 4000‐mg Zn/kg soil. Tissue Zn concentrations increased from a low of 50 mg/kg for grass on the control pots to a high of 1500 mg/kg for plants grown in soil treated with 4000 mg/kg soil. No consistent deleterious effects were observed on the grass tissue of any of the varieties. Our study demonstrates that creeping bentgrass is capable of tolerating very high levels of Zn without tissue damage.  相似文献   

18.
Abstract

Rice is mostly transplanted under puddled low land soil conditions in India, where Zinc (Zn) deficiency is a common problem. The objective of this study was to find out the efficacy of split application of Zn on growth and yield of rice in an inceptisol. The split application of Zn as ZnSO4 · 7H2O performed better than its single basal application, while the split application of Zn-EDTA did not show any significant difference on yield and yield components of rice over its single basal application. Zn-EDTA was found to be better for growth and yield of rice among the two sources of Zn. The soil application of Zn at 1.0 kg ha?1 as Zn-EDTA (T7) recorded highest grain yield of 5.42 t ha?1, filled grain percentage of 90.2%, 1000-grain weight of 25.41 g and number of panicles m?2 of 452. The Zn content of grain and straw were found to be maximum in the treatment T7 i.e. 38.19 and 18.27 mg kg?1, respectively. Linear regression studies indicated that grain yield of rice is significantly influenced by Zn content of grain, Zn content of straw and DTPA extractable Zn content of soil at the level of 95.96, 96.74 and 95.57%, respectively.  相似文献   

19.
ABSTRACT

The accumulation of potentially toxic elements (PTEs) in the soil can pose risks to human health, and precise risk assessment dealing with the production and consumption of plants is required. The 0.43 M of nitric acid (HNO?) solution was suggested by the International Organization for Standardization for reactive fraction of PTEs in the soil. The efficiency of some extractors was evaluated in tropical soils. Contents of barium (Ba), cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) were extracted in accordance with the methods of Environmental Protection Agency (EPA) 3051A, Aqua Regia, Diethylenetriaminepentaacetic acid (DTPA), Mehlich-1, Mehlich-3, 0.43 M HNO? and 0.01 M of calcium chloride (CaCl?), and these contents correlated with the contents of PTEs in roots, shoots, and fruits of vegetables. Mehlich-3 had the highest correlation with Ni and Zn contents extracted by the plants. Contents extracted with 0.43 M HNO? had high correlation with the amounts extracted by DTPA and Mehlich-3, as well as with the amounts of PTEs accumulated by plants.  相似文献   

20.
This study was conducted to evaluate the redistribution of the heavy metals Cd, Cu, Pb, Ni, and Zn among different soil fractions by N fertilizers. In a lab experiment, soil columns were leached with distilled water, KNO3, NaNO3, NH4NO3, or Ca(NO3)2 · 4H2O. After leaching, soil samples were sequentially extracted for exchangeable (EXCH), carbonate (CARB), organic‐matter (OM), Mn oxide (MNO), Fe oxide (FEO), and residual (RES) fractions. Distilled water significantly increased the concentrations of Cd and Ni in EXCH fraction, while concentration of Cu and Zn did not change significantly. Application of KNO3, NaNO3, NH4NO3, or Ca(NO3)2 · 4H2O significantly increased the concentrations of Cd and Zn in EXCH fraction, while concentration of Pb and Ni was decreased. Application of all fertilizers caused an increase of Cu in the OM fraction. Moreover, leaching with these solutions significantly increased Cd [except in Ca(NO3)2 · 4H2O], Cu, and Zn concentrations in the CARB fraction, while Pb and Ni concentrations were decreased. With application of all leaching solutions, Zn in the EXCH, CARB, FEO, and MNO fractions was significantly increased, while Zn in the OM fraction did not change. The mobility index indicated that Ca(NO3)2 · 4H2O increased the mobility of Cd, Cu, and Zn in the soil, whereas NaNO3 decreased the mobility of Pb and Ni in the soil. The mobility index of Pb decreased by all leaching solutions. Thus, these results suggest that applying N fertilizers may change heavy‐metal fractions in contaminated calcareous soil and possibly enhance metal mobility and that N‐fertilization management therefore may need modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号