首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用浸种、土施或叶饲等方法施入^14C-S07,水稻种子、根系和叶片均能吸收^14C-S07。经种子吸收的^14C-S07,出苗后植株各部位均有^14C放射性;经根系吸收的^14C-S07,主要运转到地上部各器官;经叶片吸收的^14C-S07,大部分滞留于原吸收部位。水稻秧苗内的^14C-S07均有向顶部运输的特性。  相似文献   

2.
通过2012年和2013年的盆栽试验,比较了氨基酸锌复合物和硫酸锌对水稻产量性状和锌吸收的影响。结果表明,与施用ZnSO_4相比,在水稻开花期进行叶面喷施氨基酸锌复合物可提高稻谷产量和秸秆产量,最高可达14.54%和10.40%,可使水稻灌浆粒数和千粒重最高增加11.28%和8.92%。试验结果还表明,氨基酸锌复合物在促进水稻锌吸收方面具有积极作用。在2012年试验中,叶面喷施精氨酸锌复合物、甘氨酸锌复合物和谷氨酰胺锌复合物处理水稻的锌表观利用率分别是20.88%、16.26%和19.34%;而ZnSO_4处理的锌表观利用率仅增加8.89%。2013年试验结果与2012年的结果相一致。因此,氨基酸锌复合物是一种更有效的锌肥。  相似文献   

3.
基于前人取得的主要成果,系统分析了从土壤锌有效性到锌在子粒部位的积累主要过程及其控制点,从三方面:1)植株对锌的吸收过程;2)锌在地上部各营养器官间的运转分配过程;3)锌从营养器官向子粒部位的运转过程,总结并提出今后应利用作物锌高效性的种质资源特点,通过传统育种与生物技术方法选育出锌高效积累型品种和合理配套的栽培技术等农艺措施,提高作物子粒锌的含量。  相似文献   

4.
采用土-石英砂联合培养的盆栽试验,研究两个不同基因型的水稻根表铁膜的形成情况及其对水稻吸收污灌土中的锌的影响。结果表明,两基因型水稻在不同不分条件下根表铁膜的形成情况不同:淹水条件下形成的铁膜数量最多,高于湿润和干-湿交替,后二者之间差异不明显。不同基因型水稻(金优22与90-68-2)根表铁膜的形成趋势一致,只是数量稍有差异;不同基因型秸秆及籽粒中锌的含量存在差异,不同铁处理的根表铁膜数量、地上部锌含量均不同。  相似文献   

5.
锌、锰是植物不可缺少的微量营养元素,小麦虽属对锌不太敏感的作物,但近年来由于高产品种的引进及N、P、K化肥用量的增加,产量不断提高,小麦从土壤中携走的锌量也不断增加,造成石灰性土壤中锌的缺乏。  相似文献   

6.
锌离子活度对水稻幼苗锌吸收分配的影响及基因型差异   总被引:1,自引:1,他引:1  
采用卜HEDTA螯合缓冲营养液,在4个锌水平(pZn2+即-log[Zn2+])分别为11.4、11.0、10.3和9.7下对锌营养效率不同的4个水稻基因型[IR8192、IR26、BY(碧玉早糯)、Z921(浙农921)]进行营养液培养试验,研究水稻幼苗对Zn吸收、转运和利用规律。结果表明,随着锌离子活度下降,各水稻基因型的锌累积量下降,锌从地下部向地上部的转运率提高,锌利用效率提高,且各基因型间差异显著。在锌离子活度较低时,耐低锌基因型(IR8192)锌养分利用效率和提高养分利用率的能力要远远高于锌敏感基因型IR26和子粒富锌基因型BY;在锌离子活度较高时,水稻子粒富锌基因型BY有较强的锌富集能力,具有较高的秧苗锌累积量,这可能是其子粒富锌的主要机理之一;利用苗期营养性状筛选子粒富锌水稻基因型效果可能较好。  相似文献   

7.
过量锰对水稻的影响与对策   总被引:2,自引:0,他引:2  
胜见太  李思义 《土壤学进展》1990,18(2):39-41,F003
  相似文献   

8.
锌胁迫对重金属富集植物黑麦草养分吸收和锌积累的影响   总被引:20,自引:2,他引:20  
采用土培根袋试验研究了锌胁迫对重金属富积累植物黑麦草4个品种生长,N、P、K养分及Zn吸收积累的影响。结果表明,Zn在一定范围内(0~520mg/kg)促进了黑麦草生长,RTI(根系耐性指数)≥1.0(0~520mg/kg Zn^2+)。在Zn^2+≤260mg/kg(根系)或Zn^2+≤520mg/kg(地上部)时,黑麦草吸收N、P、K并未受到抑制。植株地上部和根系最大N、P、K含量大多出现在生物量最大或次高的260,520mg/kg Zn^2+处理中。黑麦草植株Zn含量随Zn胁迫的增加而增加,以泰德植株Zn含量和对Zn的转运率最高(其植株Zn地上部最大含量为583.9mg/kg DW,加Zn处理的S/R〉1)。  相似文献   

9.
不同铁形态对水稻根表铁膜及铁吸收的影响   总被引:5,自引:0,他引:5  
通过溶液培养试验研究了FeCl2?4H2O和FeCl3?6H2O对水稻根表铁膜数量及铁吸收的影响。结果表明,FeCl2处理时水稻根表铁膜浓度是FeCl3处理的197%~233%。利用EDTA-BPDS对铁膜形态分析看出,根表铁膜中Fe3+占85%~92%,Fe2+占8%~15%。水稻天优998根表铁膜数量显著高于培杂泰丰,其铁吸收是培杂泰丰的115%~138%。两种铁形态处理明显提高水稻的根系活力,其中,FeCl2处理时水稻根系活力增加24%~69%,FeCl3为16%~54%。FeCl2处理时水稻根系SOD、POD和CAT活性分别增加11%~32%、15%~30%和30%~31%,但FeCl3处理没有明显影响。上述结果表明一定浓度铁处理明显增加水稻根表铁浓度和铁吸收;与FeCl3处理相比,FeCl2处理能提高根系抗氧化酶活性,增加水稻的铁吸收和根表铁膜数量。  相似文献   

10.
铁膜对水稻根表面电化学性质和氮磷钾短期吸收的影响   总被引:3,自引:0,他引:3  
通过水培试验研究了水稻根表铁膜对根表电化学性质、根表对NH4+、K+和磷酸根吸附和吸收的影响。结果表明,铁膜降低根表阳离子交换量,使根表zeta电位绝对值减小,说明根表负电荷数量减少。与对照相比,铁膜抑制了水稻根表对NH4+和K+的吸附,但促进了其对磷酸根的吸附。6 h培养实验结果表明,铁膜使水稻对NH4+、K+、H2PO4-的吸收速率分别降低了21.1%、42.7%、59.1%。因此,作为物理、化学屏障或者临时储存库,铁膜抑制了水稻对大量营养元素的短期吸收。  相似文献   

11.
水稻是中国南方地区的主要粮食作物,其籽粒锌营养强化是近年研究的热点,水稻磷与锌的吸收利用存在互作效应.研究长期不同施磷模式对水稻锌的吸收、积累与转运的影响,为通过合理施肥提高水稻的锌营养提供理论依据.依托22年的黄壤(水田)长期定位试验,选取其中7种施肥模式:不施肥(CK)、偏施氮肥(N)、偏施氮钾肥(NK)、平衡施用...  相似文献   

12.
锌离子活度对水稻锌积累与分配的影响   总被引:3,自引:0,他引:3  
采用HEDTA螯合剂缓冲营养液培养法,选用籽粒含锌量有明显差异的2个基因型水稻(BY和Z921),设置4种锌离子活度(pZn2+9.7、10.3、11.0、11.4),研究了锌离子活度对水稻锌积累、分配的影响以及对不同时期水稻叶片中锌的化学形态的影响。结果显示:(1)2个基因型水稻各器官的锌含量都随着锌离子活度的升高而升高,但不同基因型间,同一基因型不同器官间均存在差异,供锌正常的的条件下,锌首先向代谢活性较弱的营养器官分配;缺锌的条件下,锌首先满足籽粒的需要;(2)从籽粒锌分配看,当锌离子活度(pZn2+)小于10.3时,糙米锌含量最高,当pZn2+升高到9.7时,颖壳锌含量则超过糙米,糙米和精米锌含量的比值在0.79~0.90之间,并以pZn2+为9.7时为最小;(3)任一锌离子活度下,BY籽粒锌含量均大于Z921。表明通过筛选籽粒富锌水稻品种来提高稻米锌含量是经济可行的,且通过增加环境锌离子活度来改善水稻的锌营养能显著提高水稻籽粒的锌含量;(4)营养生长前期,水稻叶片中的锌主要以活性较低的醋酸提取态(重金属磷酸盐)存在;营养生长后期,锌主要以乙醇提取态(醇溶性蛋白、氨基酸等)存在。  相似文献   

13.
秸秆还田与氮肥管理对水稻养分吸收的影响   总被引:12,自引:1,他引:12  
在大田条件下,设计2种秸秆还田方式和3个氮肥水平,研究秸秆还田与氮肥管理对水稻养分吸收的影响。结果表明:秸秆还田与实地氮肥管理(SSNM)能提高抽穗和成熟期各器官中N、P、K含量,使得群体源、库进一步协调,增加抽穗期非结构性碳水化合物,减少成熟期茎鞘中NSC(非结构性碳水化合物含量)的残留,促进同化物向籽粒的运转。该文还对不同处理下养分吸收的差异进行了分析。  相似文献   

14.
采用400目尼龙娟网制作的网袋进行土-砂联合培养的盆栽试验,研究了不同水分处理和铁、锰肥用量对水稻根表铁、锰氧化物胶膜厚度及水稻铁、锰营养的影响,结果表明,水分状况是影响水稻根表铁、锰胶膜厚度的重要因素,长期淹水条件下水稻根表形成的铁、锰胶膜较厚,而干-湿交替和湿润处理形成的铁、锰胶胶较薄;施用铁、锰肥力明显增加根表铁、锰胶膜厚度。试验还表明水稻根表铁、锰胶膜以铁胶膜为主,即使在含锰丰富土壤上施用  相似文献   

15.
16.
锌肥对旱稻苗期锌吸收分配和干物质积累的影响   总被引:2,自引:0,他引:2  
为了探明旱稻锌吸收分配的规律,本试验通过对两个早稻供试品种(旱稻502和巴两陆稻)进行不同供锌水平(0.0、0.1、0.5、2.5、5.0、10.0mg/kg)处理的盆栽试验,研究了锌肥供给水平对旱稻锌吸收分配和千物质积累的影响。结果表明:在适宜锌用量范围内,随着施锌量的增加,供试品种地上部于物重均呈增加趋势。其中在Zn 5.0mg/kg水平下,早稻502和巴西陆稻地上部生物量达到最大值。但过多锌肥对旱稻生长有抑制作用。在外界锌源充足条件下,早稻对锌的吸收积累表现为奢侈吸收,多余的锌分配主要贮存在叶鞘中。从总体上看,根和叶鞘中的锌含量明显比叶片中的高,并且随着锌肥供给水平的增加,根和叶鞘中的锌含量上升显著,而叶片锌含量则增加相对缓慢。  相似文献   

17.
不同土壤的还原状况对铁镉形态转化和水稻吸收的影响   总被引:2,自引:0,他引:2  
采用土壤-蛭石联合培养,以填充蛭石的网袋模拟根际,置于红壤、水稻土、盐土中后淹水栽培水稻13 d.试验结果表明,水稻栽培期问,红壤、水稻土、盐土pH变化范围分别为6.05 ~6.78、6.47 ~7.33、6.42 ~7.44;有机质处理下,除红壤根际pH明显升高外,其余土壤根际和非根际pH均有所下降.各土壤对照根际Eh保持在233 ~ 385 mV;有机质处理使根际Eh下降,同时也导致除盐土外的非根际Eh上升.土壤还原溶解Fe与蛭石吸附Fe的90%以上均米自铁锰氧化物结合态铁(Oxide-Fe)组分,与溶液Eh、pe+ pH均有显著相关性,表明两表面同为Fe的氧化还原反应,但方向相反.水稻根表Fe膜的形成与根际氧化还原状况有关,在对照根际(高Eh)环境下,根表Fe含量随pH升高而降低,在有机质处理根际(低Eh)环境下则随pH升高而升高;在红壤中,根表Fe膜阻碍Fe的吸收,在水稻土和盐土中,根表Fe膜促进Fe吸收.根表Cd含量与根内Cd、地上部Cd有显著正相关;在红壤中,根表Fe膜阻碍了水稻Cd的吸附和吸收;水稻土和盐土中,根表Fe膜促进了水稻Cd的吸附和吸收.  相似文献   

18.
巨峰葡萄对硒元素的吸收运转规律   总被引:2,自引:2,他引:2       下载免费PDF全文
以4年生露地栽培巨峰葡萄(砧木为贝达)为试材,研究氨基酸硒的不同施用方法和不同施用量条件下巨峰葡萄对硒的吸收、分布和积累特性。试验结果表明:(1)盛花期叶面喷施0.01%氨基酸硒(最适浓度)和土施0.3 g/株氨基酸硒(最适浓度)后,从花后至成熟巨峰葡萄的叶片、叶柄、果肉和单果硒含量均呈现先升高后降低的变化趋势。(2)与对照相比,施硒处理后,硒含量的累积顺序发生了变化,叶喷处理硒含量的累积顺序是叶片果肉叶柄,土施处理硒含量的累积顺序是果肉叶片叶柄。(3)不同施用方式影响硒在果实中积累与分布,土施硒肥处理,硒的积累顺序是先累积到种子,再到果肉,最后到果皮;叶面喷施硒肥处理,硒的积累顺序是先累积到果皮,再到果肉,最后才到种子。(4)无论叶喷还是土施氨基酸硒肥都在盛花期施用效果较好;当外源硒施入量增加时,巨峰葡萄果实各部位硒含量增加。  相似文献   

19.
镉处理根表铁膜对水稻吸收镉锰铜锌的影响   总被引:2,自引:0,他引:2  
本试验利用营养液和土壤培养系统,研究不同Fe、 Cd处理下根表铁膜对水稻吸收Cd、 Mn、 Cu、 Zn的影响。土壤中Fe的水平为0、 1、 2 g/kg Fe(以FeSO47H2O的形式供应),Cd 的水平为0、 2、 10 mg/kg Cd(以3CdSO48H2O的形式供应)。营养液中Fe和Cd的水平分别为0、 10、 30、 50、 80、 100 mg/L Fe 和 0、 0.1、 1.0 mg/L Cd。收获后测定水稻根表、 根中和地上部Cd、 Fe、 Mn、 Cu、 Zn 含量。试验结果表明,两种培养方式下,随着介质中Fe浓度的增加,水稻根表铁膜(DCB-Fe)逐渐增多。土壤培养方式下,根表铁膜中Cd 和 Mn 含量随铁膜量增加而略有增加,所有元素含量均表现为根中大于铁膜中。营养液培养条件下,根表铁膜中Mn和Cu含量在高量 Fe 供应时有所增加, Mn、 Cu、 Zn表现为铁膜中大于根中。根表铁膜中Zn含量在两种培养方式下均未呈现一定规律性变化。根中和地上部 Cd、 Mn、 Cu、 Zn 含量一般都随介质中Fe浓度的增加而下降,Cu和Zn含量在加Cd处理中下降。以上结果证明,铁膜对Cd 的吸附阻挡能力有限,对Mn、 Cu、 Zn 的吸附作用因培养方式和元素种类不同而有所差异,植株体内微量元素含量的下降主要与它们之间的相互抑制作用有关。  相似文献   

20.
水稻对~(65)Zn吸收和分配的比较研究   总被引:2,自引:0,他引:2  
本试验以籽粒高锌含量基因型水稻V5 6和低锌含量基因型水稻湘早籼 1 7为材料 ,运用溶液培养和同位素示踪技术 ,探讨了水稻不同时期对65Zn吸收、运转和分配 ,特别是往籽粒的运输与分配。试验结果表明 :V5 6苗期根系吸收65Zn的能力和往地上部运转65Zn的能力强 ,累积的65Zn较少 ;生殖阶段分配到剑叶的65Zn低 ,籽粒的65Zn分配率高 ,籽粒65Zn累积高。湘早籼 1 7的结果恰恰相反  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号