首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
基于高光谱指数估测马铃薯植株氮素浓度的敏感波段提取   总被引:2,自引:1,他引:1  
  【目的】  基于光谱指数的氮素营养诊断是快速获取作物氮素营养状况的方式之一。其中,利用可见光和近红外波段光谱反射率构建的比率和归一化光谱指数对估测作物氮素营养状况具有重要意义。解决氮素营养诊断过程中存在的指数饱和及数据离散问题,以评价已有比率和归一化光谱指数对马铃薯关键生育时期植株氮素浓度诊断的可行性。  【方法】  2014—2016年在内蒙古武川县和四子王旗,设置了4个不同氮肥梯度的多点田间试验。在马铃薯块茎形成期、块茎膨大期和淀粉积累期,采集试验地和邻近农田马铃薯地上部和块茎样品,分析其氮素含量。并在马铃薯冠层以上50~80 cm采集光谱数据。用试验田数据建立了12个已发表的比率、归一化光谱指数和波段优化光谱指数与马铃薯关键生育时期植株氮素浓度的相关性与估测模型,并用农田马铃薯数据验证模型的精度。  【结果】  马铃薯植株氮素浓度分布范围在1.89%~4.69%,平均氮素浓度为3.30%,变异系数为18.75%;验证集数据来源于农民田块,马铃薯植株氮素浓度分布范围在2.00%~4.92%,平均氮素浓度为3.34%,变异系数为19.27%。蓝紫光400~450 nm和红边690~720 nm波段是马铃薯植株氮素浓度估测的敏感波段,部分已有光谱指数虽然可以用于马铃薯植株氮素浓度的估测,但是蓝紫光波段的缺失大大降低了估测的准确性。通过波段优化算法确定的优化光谱指数RSI、NDSI最佳波段位置分别为430、694和426、694 nm。基于优化光谱指数NDSI (426 nm、694 nm) 建立的马铃薯植株氮素浓度线性估测模型为y=?6.87x+6.08,决定系数R2最高,为0.68;RSI光谱指数与马铃薯植株氮素浓度的线性估测模型为y=?1.11x+5.92,R2为0.65,与已有比率和归一化光谱指数相比,优化光谱指数RSI和NDSI克服了高氮浓度条件下光谱指数饱和现象,显著提高了马铃薯植株氮素浓度的线性建模效果。农民田块验证数据显示,估测模型的估测值与实测值接近1∶1线,其中NDSI光谱指数估测模型的验证效果最佳,平均相对误差RE 和均方根误差RMSE分别为10.58%和0.42%。  【结论】  本研究通过波段优化算法确定了比率和归一化光谱指数的马铃薯植株氮素浓度敏感波段,采用蓝紫光400~450 nm和红边690~720 nm波段进行马铃薯植株氮素浓度估测,可以改善诊断高氮浓度时的指数灵敏度和数据离散问题,提高马铃薯植株氮素营养诊断的精度。  相似文献   

2.
利用无人机多光谱估算小麦叶面积指数和叶绿素含量   总被引:2,自引:4,他引:2  
利用无人机遥感的方式进行农作物长势监测是目前精准农业、智慧农业发展的重要方向,为了探究无人机多光谱反演小麦叶面积指数(Leaf Area Index,LAI)和叶绿素含量的模型估算潜力,该研究在3个飞行高度(30、60、120 m)采集多光谱影像,通过使用全波段差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)、归一化光谱指数(Normalized Spectral Index,NDSI)和经验植被指数与地面实测数据进行相关性分析,获得不同高度下的光谱指数与LAI和叶绿素含量的关系模型及其决定系数,以决定系数为依据分别构建多元逐步回归、偏最小二乘回归和人工神经网络模型,分析不同飞行高度无人机多光谱反演小麦冠层LAI和叶绿素含量SPAD(Soil and Plant Analyzer Development)值的精度。结果表明:1)30 m高度下,绿-红比值光谱指数与小麦LAI的相关性最高,相关系数为0.84;60 m高度下,红-蓝比值光谱指数与小麦叶绿素含量的相关性最高,相关系数为0.68;2)在60 m高度下,经验植被指数与小麦LAI和叶绿素含量的相关性较好,最大相关系数分别为0.77和0.50;3)利用偏最小二乘回归反演小麦LAI的精度最高,决定系数为0.732,均方根误差为0.055;利用人工神经网络模型反演小麦叶绿素含量的精度最高,决定系数为0.804,均方根误差0.135。该研究成果可为基于无人机平台的高通量作物监测提供理论依据,并为筛选无人机多光谱波段实现作物长势参数快速估测提供应用参考。  相似文献   

3.
  【目的】  作物叶片颜色反映土壤养分的供应状况。研究作物叶片氮素相关的特征光谱信息与土壤无机氮含量的关系,以建立基于叶片光谱信息的土壤无机氮含量诊断模型,实现利用高光谱技术对作物和土壤进行实时监测。  【方法】  在两年(2017—2018) 的玉米 (郑单958) 田间试验中,设置6个施氮水平,施氮量分别为0、60、120、180、240、300 kg/hm2。在玉米的拔节期、大喇叭口期、开花吐丝期、灌浆期测定叶片高光谱反射率,对植株和土壤样品进行采集,分析土壤无机氮含量的变化,明确叶片光谱反射率与土壤无机氮含量的关系,利用光谱参数和偏最小二乘回归法 (partial least squares regression,PLSR) 建立诊断模型并进行模型精度的评价。  【结果】  施氮处理土壤无机氮含量显著高于不施氮处理,随着生育期的推移,土壤无机氮含量呈递减趋势,追肥可显著提高土壤无机氮含量。拔节期和开花吐丝期叶片光谱反射率与土壤无机氮含量在可见光波段呈负相关关系,在近红外波段呈正相关关系;大喇叭口期两者在可见光波段呈负相关关系,灌浆期两者无明显相关关系。在光谱参数模型中,4个生育期土壤无机氮含量预测的最佳光谱指数分别为RVI-2、RSI (534,726)、RSI (567,519) 和RVI-2,其回归模型验证集的R2分别为0.642、0.749、0.696、0.540。在PLSR预测模型中,利用PLSR建立的诊断模型验证集的R2分别为0.876、0.838、0.765、0.595,RPD (ratio of percent deviation) 分别为2.140、2.077、2.002、1.369。  【结论】  基于叶片光谱反射率建立的PLSR估算模型,在玉米的拔节期、大喇叭口期、开花吐丝期均能很好地预测土壤无机氮含量。因此,利用叶片光谱特征诊断土壤无机氮含量具有一定的可行性。  相似文献   

4.
无人机高光谱遥感估算冬小麦叶面积指数   总被引:6,自引:6,他引:0  
为探讨利用低空无人机平台和高光谱影像对冬小麦叶面积指数进行遥感估算,该研究以拔节期冬小麦小区试验为基础,对原始冠层光谱进行一阶导数和连续统去除光谱变换,并在此基础上提取任意两波段组合的差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)和归一化光谱指数(Normalized Spectral Index,NDSI),以最优窄波段光谱指数进行叶面积指数估算模型的构建。结果表明,最优窄波段指数的构成波段主要位于红边区域,最优窄波段指数与叶面积指数均呈现非线性关系;光谱变换显著提升了光谱变量与叶面积指数的相关性,其中连续统去除光谱所获取的NDSI(738,822)光谱指数与叶面积指数的相关性最佳;窄波段光谱指数和随机森林回归算法的叶面积指数估算模型精度最高,其相对预测偏差为2.01,验证集的决定系数和均方根误差分别为0.77和0.27。基于随机森林回归算法的无人机高光谱叶面积指数估算模型能够准确地实现小区域的叶面积指数遥感填图,为后期作物长势、变量施肥等提供理论依据。  相似文献   

5.
砂姜黑土有机质含量高光谱估测模型构建   总被引:1,自引:1,他引:0  
为快速估测砂姜黑土有机质含量,该研究以河南省商水县砂姜黑土为对象,采用光谱指数和遗传算法结合支持向量机构建砂姜黑土有机质估测模型。结果表明,以Savitzky-Golay(SG)平滑后的一阶导数光谱792和1 389 nm两波段组合构建的比值指数表现最好,建模集决定系数为0.81。利用独立的样本验证,预测决定系数和均方根误差分别为0.91和1.56 g/kg。而相同样本经遗传算法筛选敏感波段结合支持向量机回归构建的模型以SG平滑的一阶导数光谱表现最好,建模集和验证集决定系数分别为0.95和0.91,均方根误差分别为1.01和1.69 g/kg。基于遗传算法结合支持向量机回归和光谱指数2种方法构建的有机质含量估测模型均表现出较高的精度,前者稍优于后者,可用于对砂姜黑土有机质含量的有效估测。该研究成果可为砂姜黑土有机质含量的快速定量估算提供依据和参考。  相似文献   

6.
基于SVR算法的小麦冠层叶绿素含量高光谱反演   总被引:21,自引:14,他引:7  
为给小麦的长势监测与农艺决策提供科学依据,利用高光谱技术实现了小麦冠层叶绿素含量的估测。通过分析18种高光谱指数对叶绿素的估测能力,筛选出可敏感表征叶绿素含量的指数REP,利用地面光谱数据为样本集,以最小二乘支持向量回归(least squares support vector regression,LS-SVR)算法建立了小麦冠层叶绿素含量反演模型,其校正决定系数C-R2与预测决定系数P-R2分别为0.751与0.722,在各指数中反演精度最高。进一步分析表明,REP对叶绿素含量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对叶绿素含量估测的影响。利用LS-SVR反演模型完成了OMIS影像叶绿素含量的遥感填图,并以地面实测值进行检验,其拟合模型R2与RMSE值分别为0.676与1.715。结果表明,高光谱指数REP所建立的LS-SVR模型实现了叶绿素含量的准确估测,可用于小麦叶绿素含量信息的快速、无损获取。  相似文献   

7.
基于成像光谱技术的寒地玉米苗期冠层氮含量预测模型   总被引:2,自引:1,他引:1  
为了探索寒地玉米冠层氮素含量,以不同氮素水平下玉米大田试验为基础,利用高光谱成像技术探讨苗期玉米冠层光谱,通过相关矩阵法选择植被指数的变量,并依据叶片氮素含量与植被指数的相关性,建立玉米冠层氮素含量预测模型。结果表明:根据玉米冠层高光谱图像,选择与各波段相关性较强的525、566、700、715、895 nm作为植被指数的变量,构建与氮素含量相关性强的植被指数归一化植被指数NDVI(normalized difference vegetation index)、归一化光谱植被指数NDSI(normalized difference spectral index)、比值光谱指数RSI(ratio spectral index)、差值光谱指数DSI(difference spectral index)。以与叶片氮素含量相关性较高的植被指数为自变量,建立单变量、多变量回归预测模型。采用单变量NDVI二次函数回归模型作为0、50 kg/hm~2施氮量下玉米冠层氮素含量预测模型,其R~2分别为0.719、0.803。在100 kg/hm~2施氮量下玉米冠层氮素含量的预测模型为3变量回归模型,其R~2达到0.657。用置信椭圆F检验法检验预测模型,其F值均小于F0.05,估测值与实测值间R2分别是0.724、0.798、0.655,标准误差RMSE分别为0.156、0.140、0.156 mg/g,表明实测值和估测值间的差异不明显,预测模型可用。  相似文献   

8.
高光谱信息量巨大,如何选取最佳组合波段构建高精度光谱模型,是植被参数遥感反演模型研究的重要工作基础。该研究将最佳指数与相关系数通过熵权评价值进行融合,提出最佳指数-相关系数法(optimum index factor and correlation coefficient,OIFC)。基于OIFC法选取了小麦叶片叶绿素含量的最佳组合波段,并利用最佳组合波段的高光谱数据建立小麦叶片叶绿素含量预测模型。结果表明:利用OIFC法所提取的小麦叶绿素最佳组合波段是760、1 860、1 970 nm;对比最佳指数法(optimum index factor,OIF)、最大相关系数法(maximum correlation coefficient,MCC)提取波段以及归一化植被指数(normalized difference vegetation index,NDVI)、土壤调和植被指数(soil-adjusted vegetation index,SAVI)所建立的叶片叶绿素含量高光谱模型,基于OIFC法构建的模型预测值与实测值具有显著的线性关系,决定系数达0.827,且均方根误差最小(RMSE=5.44)。可见,基于OIFC法构建的小麦叶绿素含量模型具有更高的精度,该结果验证了利用OIFC法提取高光谱特征波段的可行性,并且能够获得更高建模精度的特征波段。  相似文献   

9.
采用RNCA-PSO-ELM的水稻叶绿素光谱特征分析与反演   总被引:1,自引:1,他引:0  
为探索有效的水稻叶绿素光谱特征选择方法与含量反演建模,解决东北粳稻叶绿素含量无人机遥感监测等问题,该研究利用沈阳农业大学卡力玛水稻实验站2018-2020年无人机(Unmanned Aerial Vehicle,UAV)水稻冠层高光谱数据及地面样本数据,设计了基于正则近邻成分分析的光谱特征选择方法,优化了其损失函数与正则化参数,获得水稻叶绿素不同含量的特征波段,并以此为输入,构建粒子群优化极限学习机叶绿素含量反演模型。结果表明:正则近邻成分分析算法具有较好的特征选择能力,其损失函数为均方误差损失函数、正则化参数值为0.306时,特征选择效果最佳,初选出权重非零的16个特征波段;进一步以叶绿素极限学习机反演精度为判据,优选出权重最高的6个特征波段:710、716、508、798、532和708 nm;应用粒子群优化算法优化了极限学习机模型的输入权值和阈值偏差,粒子群算法正交试验种群规模(POP)、惯性权重(IW)、学习因子(C1,C2)和速度位置相关系数(MC)的优选结果分别为50、1.5、1.3、3.5和0.6;基于正则近邻成分分析-粒子群优化极限学习机叶绿素含量反演结果的RMSE和R2分别为9.549 mg/L、0.891。研究结果可为基于无人机平台的高通量作物监测提供理论依据,并为筛选无人机高光谱波段实现作物长势参数快速估测提供参考。  相似文献   

10.
黄河三角洲土壤有机质含量的高光谱反演   总被引:2,自引:0,他引:2  
【目的】土壤有机质(SOM)具有改良土壤结构、 促进团粒结构形成、 增加土壤疏松性、 改善土壤通气性和透水性以及促进植物生长发育的作用。传统测定土壤有机质的方法,虽然精度高,但是实时性差。本文通过对土壤高光谱数据进行变换和分析,筛选出与土壤有机质含量相关性高的敏感波长,构建能够实时、 快速反演黄河三角洲土壤有机质含量的数学统计模型。【方法】60个土壤样品采于黄河三角州。利用ASD Fieldspec3光谱仪,在室内环境下对黄河三角洲不同有机质含量的风干土壤样本进行了光谱测量,利用化学方法测定了土壤的有机质含量。在对土壤样品高光谱反射率进行去包络线处理的基础上,与土壤有机质含量进行相关分析,筛选敏感波长;运用主成分回归分析、 多元线性回归分析、 二次多项式逐步回归分析和支持向量机回归分析方法,分别建立了有机质含量的反演模型。【结果】确定了估测土壤有机质含量的敏感波长,建立了能够快速反演黄河三角洲土壤有机质含量的数学统计模型。从土壤光谱反射率曲线可以看出在1400 nm、 1900 nm和2200 nm等波段附近有十分明显的水分吸收谷。经对比相关性可以看出,去包络线的数据处理方法明显提高了光谱反射率与土壤有机质之间的相关性。1278 nm、 1307 nm、 1314 nm、 1322 nm、 1328 nm、 1334 nm、 1343 nm 7个相关性较高的波长作为估测土壤有机质含量的敏感波长。基于主成分回归分析、 多元线性回归分析、 二次多项式逐步回归分析和支持向量机回归分析方法,分别构建了反演有机质含量的模型。其中,二次多项式逐步回归模型校正集的决定系数达到了0.865,验证集的决定系数最大,达到了0.837,为黄河三角洲土壤有机质含量的最佳反演模型。【结论】去包络线的数据处理方法可提高光谱反射率与土壤有机质之间的相关性,确定的1278 nm、 1307 nm、 1314 nm、 1322 nm、 1328 nm、 1334 nm、 1343 nm 7个波长是估测黄河三角洲土壤有机质含量的敏感波长。由于二次多项式逐步回归模型校证集的决定系数最高、 均方根误差最小,其拟合效果最好。因此二次多项式逐步回归模型对反演黄河三角洲土壤有机质含量是最佳的。  相似文献   

11.
基于综合指标的冬小麦长势无人机遥感监测   总被引:10,自引:7,他引:3  
作物长势监测可以及时获取作物的长势信息,该文尝试建立新型长势指标,监测小麦总体长势情况。将反映小麦长势的叶面积指数(leaf area index,LAI)、叶片叶绿素含量、植株氮含量、植株水分含量和生物量5个指标按照均等权重综合成一个指标,综合长势指标(comprehensive growth index,CGI)。利用450~882 nm范围内单波段和任意两个波段构建归一化光谱指数(normalized difference spectral index,NDSI),比值光谱指数(ratio spectral index,RSI)和简单光谱指数(simple spectral index,SSI),计算CGI与光谱指数的相关性,筛选出相关性好的光谱指数,结合偏最小二乘回归(partial least squares regression,PLSR)建立反演模型。以CGI为指标,运用无人机高光谱影像对2015年小麦多生育期的长势监测。结果表明:1)冬小麦各生育期,总体上CGI与光谱指数的决定系数R~2均好于各项单独指标与相应光谱指数的R~2。仅孕穗期CGI和RSI(754,694)的R~2比叶绿素和RSI(486,518)的R~2低,开花期的CGI和R570的R~2比生物量和R834的R~2低以及灌浆期CGI和SSI(582,498)的R~2比植株含水量和SSI(790,862)的R~2低。2)拔节期,孕穗期,开花期,灌浆期和全生育期PLSR模型的建模R~2分别为0.70,0.72,0.78,0.78和0.61。拔节期,孕穗期和开花期的无人机CGI影像验证模型的均方根误差RMSE(root mean square error)分别为0.050,0.032和0.047。CGI与相应光谱指数的R~2高于单独各项指标与相应光谱指数的R~2,光谱指数能够很好反映CGI包含的信息。无人机高光谱影像反演CGI精度较高,能够判断出小麦总体的长势差异,可为监测小麦长势提供参考。  相似文献   

12.
廖钦洪 《农业工程学报》2015,31(Z2):159-163
Recent advances in optical remote sensing led to improved methodologies to monitor crop properties.The red-edge-based vegetation index considered to be one of the most powerful tools for estimating the chlorophyll content(Chl) was usually constructed from in-situ hyperspectral reflectance.In this paper, we present the work done to compare the Chl predictive quality by various red-edge-based vegetation indices based on the CASI data.The results indicated that among the selected vegetation indices, TCARI/OSAVI-based model estimated Chl(R2=0.46, RMSE =0.60 and P<0.01) with the best accuracy.To search the optimal vegetation index for Chl estimation, the normalized difference spectral index(NDSI) and ratio spectral index(RSI) were developed by using the waveband combination algorithm.A high linear correlation(R2=0.79, RMSE=0.38 and P<0.01) was acquired by combining the 869.20 and 754.90 nm wavebands, then NDSI(869.20, 754.90) was applied to the CASI image to generate the Chl distribution map.It suggests that more fertilizer should be provided for the southwest areas due to the lower Chl.  相似文献   

13.
Recent advances in optical remote sensing led to improved methodologies to monitor crop properties.The red-edge-based vegetation index considered to be one of the most powerful tools for estimating the chlorophyll content(Chl)was usually constructed from in-situ hyperspectral reflectance.In this paper,we present the work done to compare the Chl predictive quality by various red-edge-based vegetation indices based on the CASI data.The results indicated that among the selected vegetation indices,TCARI/OSAVI-based model estimated Chl(R2=0.46,RMSE=0.60 and P0.01)with the best accuracy.To search the optimal vegetation index for Chl estimation,the normalized difference spectral index(NDSI)and ratio spectral index(RSI)were developed by using the waveband combination algorithm.A high linear correlation(R2=0.79,RMSE=0.38 and P0.01)was acquired by combining the 869.20 and 754.90 nm wavebands,then NDSI(869.20,754.90)was applied to the CASI image to generate the Chl distribution map.It suggests that more fertilizer should be provided for the southwest areas due to the lower Chl.  相似文献   

14.
[目的]比较花生叶片碳代谢指标与根瘤固氮的关系,以寻找与根瘤固氮能力关系最为密切的叶片碳代谢指标,为花生育种提供可靠的判定方法.[方法]盆栽试验在山东省花生研究所莱西试验站进行,试验以19个花生品种(系)为材料,包括山东、河南、河北、四川等省份近年来审定或育成的品种(系),辅助利用15N示踪技术,测定了花生叶片叶绿素含...  相似文献   

15.
旨在阐明双季稻分蘖数与冠层反射高光谱间的定量关系,构建基于高光谱的双季稻分蘖数监测模型。基于不同早、晚稻品种和施氮水平的田间试验,于关键生育期(分蘖期、拔节期和孕穗期)测定早、晚稻分蘖数,同步使用FieldSpec HandHeld 2型高光谱仪采集早、晚稻冠层反射高光谱数据,分别利用光谱指数法和连续小波变换构建新型光谱指数和敏感小波特征对双季稻分蘖数进行监测,建立双季稻分蘖数光谱监测模型,并用独立试验数据进行检验。结果表明,新型光谱指数和敏感小波特征对双季稻分蘖数的监测效果优于其他类型光谱参数(植被指数和“三边”参数),其中位于红边区域的小波特征db7(s9,w735)监测早稻分蘖数时表现最优,监测模型R2为0.754,模型检验相对均方根误差RRMSE为0.128;位于红边区域的小波特征mexh(s6,w714)监测晚稻分蘖数时表现最优,监测模型R2为0.837,模型检验RRMSE为0.112。研究结果可为双季稻分蘖数快速无损监测和群体质量精确调控提供理论基础与技术支持。  相似文献   

16.
最优权重组合模型和高光谱估算苹果叶片全磷含量   总被引:8,自引:5,他引:3  
为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。  相似文献   

17.
  【目的】  研究滴灌施肥条件下不同马铃薯品种的滴灌量和施肥量优化组合,以建立马铃薯生长、产量、品质、水肥利用效率和经济效益最优的水肥管理组合技术。  【方法】  采用正交试验设计方法布置马铃薯小区试验。试验设3个滴灌水平:W1 (100%ETc)、W2 (80%ETc)、W3 (60%ETc),其中ETc为作物蒸散量;3个施肥(N–P2O5–K2O)水平:F1 (240–120–300 kg/hm2)、F2 (180–90–225 kg/hm2)、F3 (120–60–150 kg/hm2 );3个马铃薯品种:V1 (费乌瑞它)、V2 (陇薯7号)、V3 (青薯9号),设1个不施肥对照处理(W3F0V1),共10个处理。在主要生育期测定了马铃薯光合指标和耗水量,在成熟期测定马铃薯产量、产量组成和品质,分析水分利用效率(WUE)、肥料偏生产力(PFP)和经济效益。  【结果】  滴灌量、施肥量和品种对马铃薯产量组成、WUE、PFP和净收益有极显著影响(P<0.01)。F2水平下马铃薯产量、干物质累积量、淀粉含量、维生素C含量、粗蛋白含量和净收益比F1水平的下分别提高了19.28%、1.13%、1.62%、3.79%、8.79%和34.64%,比F3水平下提高了21.48%、3.07%、6.27%、6.08%、11.18%和27.94%。随着滴灌量的增加,产量、产量组成、淀粉含量、维生素C含量、粗蛋白含量、PFP和经济效益呈单峰曲线变化趋势,还原糖含量随着灌水量的增加呈先减少后增加趋势。青薯9号的叶片叶绿素含量、淀粉含量、粗蛋白含量、维生素C含量、WUE、PFP均高于其余两个品种。通过熵权法和TOPSIS分析得出排名前三的优化处理依次为:F2W2V3、F1W1V1和F3W2V1。F2W2V3处理的产量、单株块茎重、商品薯重、最大单个块茎重、粗蛋白含量、WUE和净收益最大,分别为49.22 t/hm2、1096.7 g、794.3 g/plant、433.9 g、0.214 mg/g、20.21 kg/m3和44832元/hm2。F1W1V1 和F3W2V1 依次排在第二和第三,其产量分别为41.79和37.67 t/hm2,单株块茎重分别为906.5和836.7 g, 商品薯重分别为711.4和607.3 g/plant,最大单个块茎重分别为395.6和357.1 g, 净收益分别为34584和32023元/hm2。  【结论】  在陕北旱区春季马铃薯生产中,3个马铃薯品种的最优灌溉和施肥组合均为80%ETC和N–P2O5–K2O 180–90–225 kg/hm2,该组合可同时兼顾高产、优质、高水肥利用效率和高经济效益的多重目标,其中品种青薯9号各指标均优于其他两个品种。  相似文献   

18.
钾肥对甘薯块根营养成分的影响及其与烘烤风味的关系   总被引:2,自引:0,他引:2  
  【目的】  探讨不同施钾量条件下食用型甘薯块根烘烤后风味品质的变化,及其与生块根中关键营养成分和烘烤后特征挥发性物质的关系。  【方法】  选用烟薯25和北京553两个鲜食型甘薯品种,在山东农业大学农学实验站进行田间小区试验。设置4个钾肥 (K2O) 用量,分别为0、12、24、36 g/m2。在甘薯收获期,测定了块根中主要营养成分含量以及烘烤后挥发性物质含量,同时对块根烘烤后的风味进行评价。  【结果】  施用钾肥不同程度地提高了甘薯块根中可溶性糖、淀粉、可溶性蛋白、维生素C、β-胡萝卜素和纤维素含量,提高了烘烤后甘薯中挥发物质二丙酮醇、苯乙醛、壬酸、4-乙烯基愈创木酚、丁酸丁酯、未知物-1、十五烷酸、植物醇和香叶基香叶醇的浓度,提高了风味评分。4个钾肥处理中,各成分含量以施钾量24 g/m2处理达到或者接近最高。通过逐步回归和通径分析发现,施用钾肥改善块根烘烤后风味品质的关键营养成分是果糖、葡萄糖、氨基酸、可溶性蛋白质、支链淀粉和蔗果三糖,施用钾肥改善块根烘烤后风味的主要特征挥发性物质是丁酸丁酯、苯乙醛和未知物-1。  【结论】  施用钾肥主要通过提高甘薯收获期块根中营养物质含量和块根烘烤后有益挥发性物质(如苯乙醛、丁酸丁酯等)的浓度,改善块根的烘烤风味。在本试验条件下,K2O用量为240 kg/hm2为最适用量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号