共查询到18条相似文献,搜索用时 62 毫秒
1.
为明确飞防助剂和施药液量对植保无人飞机喷施在棉花冠层的雾滴沉积和对棉花上蓟马防效的影响,选择倍达通、功倍、杰效丰和迈丝4种飞防助剂,设置3种施药液量,通过田间试验研究了植保无人飞机喷施25%噻虫嗪水分散粒剂后其在棉花冠层的雾滴密度、覆盖率、沉积量和雾滴均匀性以及对棉花上蓟马的防效。结果表明,4种飞防助剂和3种施药液量对植保无人飞机喷施的雾滴沉积和蓟马防效均有显著影响。增加施药液量可显著增加雾滴在棉花冠层的密度与覆盖率,添加飞防助剂对雾滴密度的提升效果显著。4种助剂对农药雾滴在棉花冠层上、中、下部的覆盖率的影响趋势较为一致,与棉花冠层上部相比,对中、下部位覆盖率的影响较低。施药液量为2 L/667 m2时,添加倍达通、功倍、杰效丰、迈丝及无助剂对照的雾滴穿透性分别为46.0%、49.1%、33.6%、36.1%和44.3%,该施药液量下各处理雾滴穿透性均较好。随着施药液量增加,药后1、3、7 d对棉花蓟马的防效也显著提升。在相同施药液量下,25%噻虫嗪水分散粒剂药液中添加飞防助剂倍达通和杰效丰相较于功倍和迈丝,对棉花蓟马具有更高的防治效果。试验结果为植保无人飞机防治... 相似文献
2.
采用大疆MG-1P型植保无人飞机在棉花苗期进行喷雾,探讨喷雾量及助剂对农药在棉花上的沉积分布及对棉蚜防治效果的影响。以5%啶虫脒乳油为试验药剂,在3个喷雾量(15.0、22.5和30.0 L/hm2)及添加2种飞防助剂(YS09和倍达通)条件下进行喷雾,以诱惑红为雾滴沉积和农药利用率测定的指示剂,采用Deposit-Scan软件分析雾滴密度和雾滴覆盖率。结果表明:采用植保无人飞机施药,棉花叶片上的雾滴密度和覆盖率随着喷雾量的增加而提高,其中,喷雾量为30.0 L/hm2时叶片正面和背面的雾滴密度最高,分别为43.42和58.04个/cm2,雾滴覆盖率分别为6.44%和6.34%。3个喷雾量下农药沉积率分别为3.53%、3.70%和4.00%,低于背负式电动喷雾器喷雾处理,药后1~3 d对棉蚜的防效也低于背负式电动喷雾器喷雾处理。喷雾量为22.5 L/hm2时,添加助剂YS09和倍达通对叶片上雾滴密度、雾滴覆盖率及农药利用率无显著影响,但可提高对棉蚜的防效,药后1 d防效为86.24%和84.40%,... 相似文献
3.
4.
农药雾滴信息是评价农药施用质量的主要指标, 农药雾滴采集器的设置对于获取雾滴信息有较大的影响。针对如何科学地设置农药雾滴采集器从而准确地获取真实雾滴信息等问题, 本文以油动单旋翼植保无人飞机和电动六旋翼植保无人飞机为供试药械, 以诱惑红为雾滴示踪剂, 采用将卡罗米特纸卡直接固定在棉花叶片上和使用金属杆固定2种方法采集雾滴信息, 研究2种方法下采集的雾滴信息的差异。结果表明, 油动单旋翼植保无人飞机作业, 在添加助剂情况下, 金属杆固定法在棉花冠层上、中、下层采集的雾滴体积中径分别为(435.4±66.1)、(434.6±68.3)μm和(398.9±66.7)μm显著大于植株固定法在相应部位采集的雾滴体积中径(361.2±93.1)、(351.9±95.7)μm和(338.1±71.1)μm;金属杆固定法采集的雾滴密度在棉花冠层上层为(29.9±13.6)个/cm2, 中层为(13.4±4.5)个/cm2, 下层为(6.7±4.2)个/cm2, 显著大于植株固定法在相应冠层采集的雾滴密度(12.9±5.0)、(8.6±3.4)个/cm2和(1.9±1.3)个/cm2。添加助剂能够提升两种植保无人飞机喷施作业的雾滴覆盖率和雾滴的沉积量, 提高农药的利用率。 相似文献
5.
采用大疆MG-1P型电动四旋翼植保无人飞机在棉花生长中期进行喷雾施药处理,探讨了喷雾参数及添加的助剂类型对农药雾滴在棉花植株叶片上沉积分布的影响。以22%氟啶虫胺腈悬浮剂及3种飞防助剂(倍达通、ND-800和G-2801)为试验药剂,在不同喷雾参数及飞防助剂条件下在棉花生长中期进行喷雾处理,以诱惑红作为药剂沉积指示剂,采用雾滴测试卡和滤纸检测雾滴沉积分布情况,利用分光光度计测定滤纸洗脱溶液的吸光度值,计算单位面积的药液沉积量,利用DepositScan软件分析雾滴密度。结果显示:植保无人飞机的飞行速度对雾滴沉积分布的影响最大,而飞行高度则对其无显著影响。添加不同助剂对棉花植株叶片正反面的雾滴沉积分布影响不同:3种助剂均可使棉花冠层上、中、下部叶片正面的雾滴密度显著提高;而对于叶片反面,则仅添加ND-800后棉花冠层上、中、下部叶片反面的雾滴密度分别增长688.9%、590.9%和327.5%,而添加G-2801与倍达通助剂则无显著影响。 相似文献
6.
7.
为明确施药液量、雾滴粒径大小和助剂等不同喷雾因子对极飞P-20植保无人飞机防除小麦田杂草效果的影响,于2019年以30 g/L甲基二磺隆悬浮剂+20%双氟·氟氯酯水分散粒剂为试验药剂,研究了上述喷雾因子对药剂雾滴沉积量以及对杂草防除效果的影响。药剂沉积量测定结果表明:低施药液量(11.25 L/hm^2)处理的沉积量最低,仅为0.67μg/cm^2,沉积率为22.37%,其次是大雾滴粒径,沉积量为1.07μg/cm^2,沉积率为35.62%,这2个处理药剂的沉积量略低于其他飞防处理(沉积量在1.16~1.52μg/cm^2之间,沉积率在38.73%~50.83%之间),但所有飞防处理的沉积量均明显低于常规喷雾器处理(沉积率为67.00%)。杂草防效结果表明:于小麦田应用极飞P-20植保无人飞机防除杂草,最适宜的施药液量为15.0~22.5 L/hm^2,在3个施药液量11.25、15.0和22.5 L/hm^2下,杂草总鲜重防效分别为74.8%、85.9%和88.2%;最适宜的雾滴粒径为中型,在小、中、大不同雾滴粒径下,杂草总防效分别为84.2%、86.2%和78.2%;最适宜的两种助剂是易滴滴F和迈飞,杂草总鲜重防效分别为88.9%和87.4%。农户常规喷雾药液沉积量为2.01μg/cm^2,杂草鲜重防效为87.6%。极飞P-20植保无人飞机在合适的喷雾因子下,具有省时省水的优势,虽然雾滴沉积量低于常规喷雾,但最终防效与常规喷雾差异不大。 相似文献
8.
植保无人机喷施不同雾滴粒径药剂对其在棉花冠层沉积、穿透及脱叶催熟效果的影响 总被引:1,自引:0,他引:1
为明确植保无人机喷施不同雾滴粒径药剂对其雾滴沉积、穿透以及棉花脱叶催熟效果,试验设置100、150、200和285 μm共4个不同雾滴粒径,用水敏纸测定雾滴在棉花冠层的沉积分布特征,并调查对棉花脱叶率和吐絮率的影响。结果表明,雾滴粒径对于沉积分布特征以及棉花脱叶率和吐絮率均有显著影响。当喷施雾滴粒径为100 μm时,具有最大的雾滴密度;当喷施雾滴粒径为150 μm和200 μm时,具有最大的覆盖度及沉积量;以下部沉积量与中部沉积量的比值为评价指标时,在喷施4个雾滴粒径下植保无飞机喷施雾滴的穿透率为39.4%~63.8%,各雾滴粒径之间差异不显著。在喷施4个雾滴粒径下,2018年和2019年棉花脱叶率分别为74.7%~80.4%和79.3%~88.4%;吐絮率分别为84.9%~92.0%和86.4%~94.2%。表明当喷施雾滴粒径为150 μm或200 μm,具有更高的脱叶率和吐絮率,较适宜棉田植保无人飞机脱叶催熟剂喷施选用。 相似文献
9.
风洞环境下喷头及助剂对植保无人飞机喷雾飘移性的影响 总被引:2,自引:0,他引:2
为探究和减少植保无人飞机喷雾施药过程中的雾滴飘移,采用由单个旋翼与喷头组成的喷雾单元,在可控风洞环境条件下进行了模拟飞行喷雾试验,控制风洞条件为风速5 m/s、喷雾压力0.3 MPa及旋翼转速2300 r/min不变,对比研究了11种喷头、4种代表性助剂以及不同温度/相对湿度条件对雾滴飘移的影响,采用飘移潜在指数(DIX)及相对减飘率(DPRP)两项指标进行对比评估。结果表明:在温度/相对湿度为20℃/RH 80%条件下,不同类型喷头喷雾药液在空中垂直面和水平距离上的飘移沉积量分布均呈现显著的规律性变化趋势,与对照喷头F110-03相比,喷头飘移潜在性从大到小依次为:TR80-0067>ST110-0067>XR110-01>ST110-015>TR80-01>ST110-02>XR110-03>对照F110-03>IDK系列,其中IDK120-01与IDK120-015喷头的减飘移效果相近并为最好;在30℃/RH 40%条件下,采用XR110-01喷头,分别添加助剂0.5%Silwet DRS-60、1.0%"迈飞"(MF)和1.0%Y-20079后,与不添加助剂的对照相比,平均减飘率分别为43.3%、15.6%和5.2%,表明不同助剂对飘移的影响不同,需考虑助剂类型及其减飘效果合理选用;在20℃/RH 40%、20℃/RH 80%、30℃/RH 40%和30℃/RH 60%条件下,XR110-01喷头与添加1.0%MF助剂组合有利于空中飘移的减少,尤其是高温/低湿条件下,添加助剂的减飘移效果较好。该研究结果可为植保无人飞机的喷头选择、喷雾助剂筛选和实际应用提供参考和指导,并为进一步研究喷头及助剂的减飘技术提供数据基础。 相似文献
10.
为阐明不同气象条件对植保无人飞机防治赤霉病过程中冠层雾滴沉积的影响规律, 采用大疆T40四轴八旋翼植保无人飞机在不同麦区进行喷雾施药处理, 利用诱惑红示踪剂、聚酯卡、水敏纸等采集雾滴, 计算雾滴沉积量和覆盖率, 并对实时记录的田间气象条件进行分级, 其中温度分为A1(10℃≤T<20℃)、A2(20℃≤T<30℃)、A3(30℃≤T<40℃)等级, 相对湿度分为B1(30%≤RH<50%)、B2(50%≤RH<70%)、B3(70%≤RH<90%)等级, 风速分为C1(0 m/s≤V<1.6 m/s)、C2(1.6 m/s≤V<3.4 m/s)、C3(3.4 m/s≤V<5.5 m/s)等级。应用方差分析、主效应多重比较等统计方法, 揭示不同气象等级组合条件对雾滴沉积量和覆盖率的影响趋势, 并基于气象因子构建沉积量和覆盖率的预报模型。结果表明:温度、相对湿度、风速对雾滴沉积量的有利程度按等级排序分别为:A1≥A2>A3、B3>B2>B1、C1≥C2>C3。不同气象等级对覆盖率的影响规律与对沉积量的影响规律基本一致, 其中相对湿度对雾滴覆盖率和沉积量影响显著, 温度和风速的交互作用对覆盖率也具有显著影响。基于气象因子构建的冠层上层雾滴沉积量和覆盖率预报模型准确率分别为88.15%、82.82%, 均方根误差分别为0.030 μL/cm2、1.33%, 具有较高的可信度, 可应用于植保飞防气象预报服务。研究结果对植保无人飞机适时开展药剂喷洒作业、提高防治效果、减轻农药对农田生态环境的污染具有参考作用。 相似文献
11.
植保无人飞机是现代植保施药机械,具有作业效率高、精准、节水省药、灵活机动和对施药人员安全等特点,然而,与传统施药方式不同,其用水量少,喷施农药浓度高,喷雾易飘移,存在潜在的应用风险。目前关于植保无人飞机施药应用研究主要集中在雾滴沉积分布、飘移影响因素和防治效果评价等领域,有关其在膳食风险、环境风险和职业暴露健康风险评估等方面研究较少,且药剂登记和管理标准法规等相对滞后。为全面了解植保无人飞机施药应用以及管理现状,本文综述了植保无人飞机施药应用、风险研究及国际航空植保农药登记管理情况,总结了我国在该领域发展潜力和管理建议,以期为我国植保无人飞机安全施用农药和登记科学管理提供参考。 相似文献
12.
多旋翼植保无人机喷施新烟碱类杀虫剂对蜜蜂的飘移风险 总被引:2,自引:0,他引:2
为明确植保无人机喷施新烟碱类杀虫剂对非靶标生物蜜蜂的飘移风险,在田间试验场景下,比较分析多旋翼植保无人机和背负式电动喷雾器喷施新烟碱类杀虫剂时的雾滴飘移量及对蜜蜂的影响。结果表明:应用背负式电动喷雾器和多旋翼植保无人机进行施药作业时,距离施药区下风向5 m处的雾滴飘移率分别为0.50%和23.98%;而多旋翼植保无人机施药时,即使距离施药区下风向17 m处的雾滴飘移率仍高达2.79%,且多旋翼植保无人机施药时的飘移总量显著高于背负式电动喷雾器。喷施新烟碱类杀虫剂时,应用背负式电动喷雾器作业时距离下风向5 m处的蜜蜂在施药后1 d内的死亡数量为75头,分别是距离下风向17 m处和对照组的2.4倍和1.8倍,施药后2~8 d内蜜蜂的死亡数量与对照组无明显差异;应用多旋翼植保无人机作业时距离下风向5 m处的蜜蜂在施药后1 d内的死亡数量为4 721头,分别是距离下风向17 m、29 m处和对照组的3.0倍、6.1倍和112.4倍,施药后2~8 d内蜜蜂的死亡数量明显降低,但距离施药区较近的蜜蜂其死亡数量明显高于对照组,表明多旋翼植保无人机喷施新烟碱类杀虫剂对蜜蜂存在较高的飘移风险。 相似文献
13.
给农业插上科技的翅膀:植保无人机低容量喷雾技术助力农药减施增效 总被引:5,自引:0,他引:5
十三五期间以植保无人机低容量施药技术为代表的现代航空植保产业发展迅速。科研协作研究与大量田间试验示范表明,采用植保无人机施药技术能够提高靶标作物上药液沉积量并减少农药流失,实现精准减量施药;同时能够解决地面机具无法作业时的病虫害防治问题。航空植保技术实现了人机分离作业,避免了农药中毒,降低了劳动强度,极大地提高了作业效率,达到减少农药使用量、提高农药利用率的目的。以水稻为对象,综述植保无人机在农药减量、水稻病虫害防效、技术简易性、农药利用率提升、水稻增产以及成本效益提升等发面发挥的作用。航空植保产业的迅速发展加快了植保无人机智能精准控制系统质量的提升和新技术的研发步伐,且植保无人机的普及性提出了飞防药剂、助剂和施药飘移风险控制技术研发的迫切需求,基于此进一步梳理总结了植保无人机低容量喷雾技术在农药减施增效中的作用和未来发展方向。 相似文献
14.
两种植保无人机对火龙果冠层的作业参数优化 总被引:1,自引:0,他引:1
为探究飞行作业参数对植保无人机喷雾雾滴在火龙果冠层沉积分布规律的影响,明确植保无人机作业时雾滴的最佳分布效果,通过采用飞行高度、飞行速度、航线方向3个因素的3个水平正交试验,综合分析T16多旋翼和F5A电动单旋翼2种植保无人机在不同作业参数下在火龙果冠层的雾滴密度和覆盖率。结果表明:在相同喷施量情况下,影响这2种植保无人机雾滴分布的主次因素不一致,影响T16多旋翼植保无人机雾滴分布的主次因素依次为作业高度、作业速度、航线方向;影响F5A电动单旋翼植保无人机雾滴分布的主次因素依次为作业速度、作业高度、航线方向。优化了2种植保无人机在火龙冠层的作业参数,T16多旋翼植保无人机最佳作业参数是平行或垂直于种植行飞行,飞行高度为1.0 m,飞行速度为3.0 m/s;F5A电动单旋翼植保无人机最佳作业参数是垂直或平行于种植行飞行,飞行高度为2.0 m,飞行速度为2.0 m/s。这2种植保无人机飞行速度越小,飞行高度越低,其雾滴在火龙果冠层分布越好,雾滴穿透性也越好。在最优参数下,2种植保无人机喷雾雾滴在火龙果各个冠层都能达到比较好的分布效果,冠层下层雾滴密度高于冠层其他层。 相似文献
15.
植物油助剂Aero-mate 320对植保无人机稻田低容量喷雾沉积利用率的提升效果及其机理分析 总被引:1,自引:0,他引:1
为明确添加植物油助剂Aero-mate 320对植保无人机施药体系的影响,评价其作为航空喷雾助剂的可行性,通过在15%甲维·茚虫威悬浮剂和325 g/L苯甲·嘧菌酯悬浮剂药液中添加0.3%、0.6%和1.0%的Aero-mate 320,测定并评估其对药液体系理化性质、抗蒸发性以及雾滴在水稻田沉积分布和沉积利用率的影响。结果表明,助剂Aero-mate 320的适量添加可以改善药液的理化性质,提高喷雾的均匀性,减少蒸发,增加雾滴在水稻冠层的覆盖及沉积,并能显著增加农药沉积利用率。其中,添加0.6% Aero-mate 320后药液的表面张力以及在水稻叶片上的接触角显著减小,分别降低13.3%和30.3%,黏附张力由-9.7 mN/m增加至9.1 mN/m,黏附功增加51.3%,药液更易润湿叶片;雾滴粒径显著增大,雾滴谱相对跨度显著变窄,雾滴分布更加均匀,小雾滴数量显著降低,减少了雾滴的飘移;对喷雾雾滴蒸发的抑制率为25.0%;同时药液在水稻冠层中的沉积密度和覆盖率增大,沉积量显著增加,农药沉积利用率增至66.8%。 相似文献
16.
机动喷雾器棉田喷洒效果的调查 总被引:1,自引:0,他引:1
为了充分发挥机动喷雾器防治棉铃虫的优势,提高防治的效果,我们在2002年8月份,就改变机动喷雾器在棉田喷雾的行走方式做了调查,结果整理如下。 1 材料与方法 1.1 试验方法 改机头左右双向喷雾为单向喷雾,每次喷洒4行。药箱内所盛液体以红色墨水标识。在第3、4两行各选10株棉花,在倒1、倒3、倒5层果枝上的第2节位分别挂牌标记,每株3个,牌面大小为12cm2(3㎝×4㎝)。试验在彭泽县定山镇东光村进行,棉花株高1.25m~1.35m,厢宽1.2m,每厢单行移栽棉花。所用机动喷雾器为泰山牌。 1.2 调查方法 待药液干后,按不同部位分别统计各牌… 相似文献
17.
环境风速及飞行参数对多旋翼植保无人机雾滴飘移特性的影响 总被引:3,自引:0,他引:3
为评估植保无人机低空低容量施药下的喷雾飘移风险,以国内市场主流机型电动多旋翼植保无人机为施药机械,研究不同环境风速及飞行参数(高度和速度)下喷雾雾滴飘移特性,构建雾滴飘移率与飘移距离之间的函数关系,并将测试结果与侧风速度及飞行参数进行相关性分析和回归分析。结果表明:在温度为16.5~25.2℃,相对湿度为21.7%~64.4%的条件下,植保无人机喷雾地面雾滴飘移率与下风向距离的关系满足指数函数λ=a·ebx,相关系数R2均大于0.914;在侧风速度为1.1~7.0 m/s的条件下,雾滴累计飘移率在13.0%~56.2%之间,90%飘移雾滴沉降在喷雾区下风向7.0~27.3 m距离范围内;侧风速度、飞行高度均与雾滴累计飘移率和90%累计飘移距离呈极显著正相关,且3个因素对雾滴飘移率的影响大小为侧风速度 > 飞行高度 > 飞行速度,对90%累计飘移距离的影响大小为飞行高度 > 侧风速度 > 飞行速度,对喷幅内沉积率的影响大小为飞行高度 > 侧风速度 > 飞行速度。研究结果可用于多旋翼植保无人机实际作业中雾滴飘移风险的控制及飘移缓冲距离的确定。 相似文献
18.
植保无人机施药沉积飘移监测系统设计与应用 总被引:1,自引:0,他引:1
为提升植保无人机施药沉积飘移监测智能化水平,研发植保无人机施药沉积飘移监测系统,该系统机载监测终端实时获取药械状态参数、植保无人机状态参数及位置参数,通过数据处理服务系统将其发送至平台软件,基于作业参数利用沉积飘移预测模型实时监测药液沉积区域及飘移范围。该系统同时具有作业面积计量、飞行轨迹回溯、作业质量空间分析等功能。2015年4月于山东省威海市文登区泽头镇眠虎岭区域对该系统进行性能测试,植保无人机规划靶区作业面积为433 hm2,最终监测作业面积为405 hm2,施药覆盖率为93.5%;施药过程中实时监测沉积区域和飘移范围,受环境侧风影响,药液最大飘移距离可达40 m,系统整体达到预期设计要求。截至目前该系统已在山东、安徽、江苏、云南、河南、浙江、天津等多个省市应用。 相似文献