首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The objective of this study was to investigate whether home monitoring of blood glucose of diabetic dogs by owners would be possible on a long-term basis. The owners of 12 diabetic dogs were each asked to generate four glucose curves by taking capillary blood samples from their dog's ear, at three- to four-week intervals. Within one week of each curve being produced by the owner, an additional curve was produced by a veterinarian in the hospital. Ten owners were able to generate blood glucose curves; three of them needed a second demonstration, and two telephoned for further guidance. The blood glucose concentrations obtained from the first two 'hospital' curves were significantly lower than those measured at home. Overall, in 42 per cent of cases, the treatment based on the hospital curves would have been different from that based on 'home' curves. The results of this study indicate that the majority of owners were able and willing to perform long-term monitoring of the blood glucose concentrations of their dogs.  相似文献   

2.
Home-monitoring of blood glucose concentrations has recently been introduced to owners. The objectives of this study were to investigate the feasibility of home-monitoring of blood glucose in diabetic cats by owners, the problems encountered and to compare glucose concentrations at home with those measured in the hospital. Twelve of 15 cat owners were able to generate glucose curves over the study period of 4 months. Most problems were related to restraining the cat, generating negative pressure with the lancing device and producing a blood drop. In the majority of cases, these problems could be resolved during the study. Blood glucose concentrations in the clinic tended to be lower than at home; some of the differences were significant. No association between tolerance of the procedure and blood glucose concentrations measured at home was found. We, therefore, assume that the lower glucose levels in the hospital were caused by lack of food intake. In 38% of cases, treatment based on hospital curves would have been different from that based on home curves. Home-monitoring appears to be a valuable tool in the management of cats with diabetes mellitus. One of its major advantages is that it enables frequent generation of blood glucose curves, which is of particular importance in cats that are difficult to regulate.  相似文献   

3.
Recently a new method for capillary blood sampling from the ears of dogs and cats was described, which allows the measurement of glucose concentration by means of portable glucose meters. The authors of this report evaluated the suitability of this method for use by pet owners and the potential technical problems. The owners of seven healthy dogs and seven healthy cats were asked to perform two glucose curves (measuring blood glucose concentration every 2 hours for a total of 12 hours). All dog owners and three cat owners were able to perform a reliable blood glucose curve. The most frequently encountered problems were inadequate formation of a blood drop due to excessive digital pressure on the pinna, repeatedly depressing the plunger of the lancet device instead of allowing the negative pressure to slowly build up, and failure to fill the test strip up to the mark. The authors conclude that these steps of the procedure need to be stressed during technique demonstration and that home monitoring of blood glucose concentrations may serve as a new tool in the management of diabetic dogs and cats.  相似文献   

4.
Many owners are able and willing to perform home monitoring of blood glucose concentrations in diabetic cats. Once owners are familiar with the technique, they appreciate its advantages and show long-term compliance. The success of home monitoring hinges greatly on careful preparation and instruction of the owner. Owners must have ready access to veterinary support if needed. Initially, most owners call for advice, and several of them need repeated explanation or demonstration of the procedure. The frequency of re-evaluations of the diabetic cats by veterinarians is not affected by home monitoring. One of its major advantages is that it enables frequent generation of blood glucose curves. In complicated cases, more than one curve can, therefore, be performed at home before a treatment decision is made. According to preliminary data cats managed with home monitoring may have better glycaemic control than those managed without. However, those results need to be confirmed in a large group of cats.  相似文献   

5.
Two new methods for collection of capillary blood from the ear of dogs and cats for the measurement of blood glucose concentration using portable blood glucose meters (PBGMs) are described. The first method uses a lancing device after pre-warming the ear, while the second employs a vacuum lancing device. Both methods generated blood drops of adequate size, although the latter method was faster and easier to perform. Accuracy of the two PBGMs was evaluated clinically and statistically. Although assessment of statistical accuracy revealed differences between the PBGMs and the reference method, all of the PBGM readings were within clinically acceptable ranges. Measurement of capillary blood glucose concentration is easy to perform, inexpensive and fast. It may be used by owners to determine blood glucose concentrations at home, and could serve as a new tool for monitoring diabetic dogs and cats.  相似文献   

6.
OBJECTIVE: To evaluate owner compliance with longterm home monitoring of blood glucose concentrations in diabetic cats and assess the influence of home monitoring on the frequency of reevaluation of those cats at a veterinary hospital. DESIGN: Retrospective study. ANIMALS: 26 cats with diabetes mellitus. PROCEDURE: Medical records of diabetic cats for which home monitoring was undertaken were reviewed, and owners were contacted by telephone. Signalment, laboratory test results, insulin treatment regimen, details of home monitoring, clinical signs during treatment, frequency of follow-up examinations, and survival times were evaluated. RESULTS: Monitoring of cats commenced within 12 weeks (median, 3 weeks) after initial evaluation; 8 owners were unable to perform home monitoring, and 1 cat was euthanatized after 1 week. In 17 cats, duration of home monitoring was 4.8 to 46.0 months (median, 22.0 months); 6 cats died after 7.0 to 18.0 months (median, 13.0 months). In 11 cats, home monitoring was ongoing at completion of the study (12.0 to 46.0 months' duration). Fourteen owners completed blood glucose curves every 2 to 4 weeks. Cats managed with home monitoring received higher dosages of insulin, compared with cats that were not monitored. Four of 17 cats managed by home monitoring had transient resolution of diabetes mellitus for as long as 1 year. Home monitoring did not affect the frequency of reevaluation at the veterinary hospital. CONCLUSIONS AND CLINICAL RELEVANCE: Owner compliance with long-term home monitoring appeared to be satisfactory, and home monitoring did not affect the frequency of reevaluation of patients by veterinarians.  相似文献   

7.
Objective: To examine the relative contributions of sodium and glucose to serum effective osmolality and the presence of abnormalities of sodium and osmolality in diabetic dogs and cats. Design: Retrospective study. Setting: A university‐based referral hospital. Animals: Diabetic dogs (n=14) and cats (n=13) consecutively admitted to the hospital over a 6‐month period. Interventions: None Measurements: Serum biochemistry assessments. Main results: The mean glucose concentration was higher in diabetic dogs than in diabetic cats. Total osmolality (OsmT), effective osmolality (OsmE), and the concentrations of sodium, potassium, blood urea notrogen, bicarbonate, and creatinine did not differ between species. Sodium abnormalities and hyperosmolality affected 44% and 81%, respectively, of the study group. However, marked hyperosmolality (OsmE>330 mOsm/L) was found in only 33% of the study group. Serum sodium correlated closely with OsmE in dogs and cats but serum glucose did not correlate with the OsmE in either species. Subsets of dogs (n=10) and cats (n=7) with diabetic ketosis (DK) were examined separately. DK dogs had significantly lower sodium concentrations than DK cats and the proportion of DK dogs with hyponatremia was nearly 3 times greater than DK cats. Severe hyperosmolality (OsmE>330 mOsm/L) was more common in DK cats than DK dogs. Conclusions: In diabetic dogs and cats, sodium, not glucose, was correlated with serum OsmE and marked elevation in pretreatment OsmE is uncommon. Compensatory reduction in serum sodium may be 1 mechanism for blunting changes in OsmE in the presence of marked hyperglycemia.  相似文献   

8.
OBJECTIVE: To evaluate day-to-day variability in blood glucose curves (BGCs) generated at home and at the clinic for cats with diabetes mellitus. DESIGN: Prospective study. ANIMALS: 7 cats with diabetes mellitus. Procedures-BGCs generated at home on 2 consecutive days and within 1 week at the clinic were obtained twice. On each occasion, insulin dose, amount of food, and type of food were consistent for all 3 BGCs. Results of curves generated at home were compared with each other and with the corresponding clinic curve. RESULTS: Differences between blood glucose concentration determined after food was withheld (fasting), nadir concentration, time to nadir concentration, maximum concentration, and mean concentration during 12 hours had high coefficients of variation, as did the difference between fasting blood glucose and nadir concentrations and area under the curve of home curves. Differences between home curve variables were not smaller than those between home and clinic curves, indicating large day-to-day variability in both home and clinic curves. Evaluation of the paired home curves led to the same theoretical recommendation for adjustment of insulin dose on 6 of 14 occasions, and evaluation of home and clinic curves resulted in the same recommendation on 14 of 28 occasions. Four of the 6 paired home curves in cats with good glycemic control and 2 of the 8 paired home curves in cats with poor glycemic control led to the same recommendation. CONCLUSIONS AND CLINICAL RELEVANCE: Considerable day-to-day variability was detected in BGCs generated at home. Cats with good glycemic control may have more reproducible curves generated during blood collection at home than cats with poorer control.  相似文献   

9.
Use of continuous glucose monitoring in veterinary medicine is gaining popularity. Through use of a commercially available continuous glucose monitor system, insights into daily glucose changes in dogs and cats are achievable. The continuous glucose monitoring system measures glucose concentrations in the interstitial fluid of the subcutaneous space by use of a small, flexible probe. When placed in the subcutaneous tissue, the probe is connected to a recording device that is attached to the animal and records the interstitial fluid glucose concentration every 5 minutes (288 readings per 24 hours). Once attached and properly calibrated, the instrument can remain in place for several days, hospitalization of the patient is not necessary, and the normal daily routine of the animal can be maintained. The data from the recording device are then downloaded and a very detailed picture of the interstitial fluid glucose concentration over that time period can be obtained. Subcutaneous interstitial fluid glucose concentrations have a good correlation to blood glucose concentrations within a defined range. The continuous glucose monitoring system has distinct advantages over traditional blood glucose curves and is a valuable tool for managing diabetic dogs and cats. In addition, other clinical uses for continuous glucose monitoring are being developed. This review is designed to outline the technology behind the continuous glucose monitoring system, describe the clinical use of the instrument, provide clinical examples in which it may be useful, and discuss future directions for continuous glucose monitoring in dogs and cats.  相似文献   

10.
Fructosamine   总被引:3,自引:0,他引:3  
Fructosamines are glycated serum proteins that, depending on their life span, reflect glycemic control over the previous 2 to 3 weeks. The nitroblue tetrazolium reduction method adapted to autoanalysis appeared to be a practical means to assay fructosamine quickly, economically, and accurately. The upper limit of the reference range is 374 μmol/L in dogs (95% percentile) and 340 μmol/L in cats (95% percentile). Newly diagnosed diabetic dogs and cats that had not undergone previous insulin therapy had significantly higher fructosamine concentrations than nondiabetic animals. In diabetic dogs that were receiving insulin therapy, the fructosamine test reflected the glycemic state far more accurately than did individual blood glucose measurements. Animals with satisfactory metabolic control revealed fructosamine concentrations within the reference range, whereas fructosamine concentrations above 400 μmol/L indicated insufficient metabolic control. On the basis of fructosamine concentrations, cats with a transitory hyperglycemia and cats with diabetes mellitus were differentiated. The fructosamine test is a valuable parameter for the diagnosis and metabolic control of diabetes mellitus in dogs and cats.  相似文献   

11.
OBJECTIVE: To determine responses of canine and feline lenses to incubation in a medium with a high glucose concentration. SAMPLE POPULATION: Lenses from 35 dogs and 26 cats. PROCEDURE: Glucose concentrations were measured in paired lenses from 25 dogs and 17 cats after incubation for 14 days in high-glucose (30 mmol of glucose/L) or control (6 mmol of glucose/L) medium. Aldose reductase activity was measured spectrophotometrically in the incubated lenses and in freshly frozen lenses from 10 dogs and 9 cats. Two lenses of each group were studied histologically. RESULTS: Canine and feline lenses in high-glucose medium developed glucose-specific opacities of variable localization and extent. Canine lenses developed equatorial vacuoles, but severity of the lesions was not associated with the age of the dog. Lenses from young cats (< or = 4 years old) developed extensive posterior cortical opacities, whereas those from older cats (> 4 years old) did not. Glucose concentrations were similar in all lenses incubated in high-glucose medium; however aldose reductase activity was significantly lower in lenses from older cats, compared with lenses from young cats and from dogs. CONCLUSIONS AND CLINICAL RELEVANCE: High aldose reductase activity and glucose-related opacities suggest a central role for this enzyme in the pathogenesis of diabetic cataracts in dogs and cats. Because onset of diabetes mellitus usually occurs in cats > 7 years of age, low activity of aldose reductase in lenses of older cats may explain why diabetic cataracts are rare in this species despite hyperglycemia.  相似文献   

12.
Differentiating transient hyperglycemia from diabetic hyperglycemia can be difficult in cats since single blood glucose measurements reflect only momentary glucose concentrations, and values may be elevated because of stress-induced hyperglycemia. Glycated protein measurements serve as monitors of longer-term glycemic control in human diabetics. Using an automated nitroblue tetrazolium assay, fructosamine concentration was measured in serum from 24 healthy control cats and 3 groups of hospitalized cats: 32 euglycemic, 19 transiently hyperglycemic, and 12 diabetic cats. Fructosamine concentrations ranged from 2.1 - 3.8 mmol/L in clinically healthy cats; 1.1 - 3.5 mmol/L in euglycemic cats; 2.0 - 4.1 mmol/L in transiently hyperglycemic cats; and 3.4 to >6.0 mmol/L in diabetic cats. Values for with-in-run precision at 2 fructosamine concentrations (2.64 mmol/L and 6.13 mmol/L) were 1.5% and 1.3%, respectively. Between-run coefficient of variation was 3.8% at a fructosamine concentration of 1.85 mmol/L. The mean fructosamine concentration for the diabetic group differed significantly (P=0.0001) from the mean concentrations of the other 3 groups. Poorly regulated or newly diagnosed diabetic cats tended to have the highest fructosamine values, whereas well-regulated or over-regulated diabetic cats had values approaching the reference range. As a single test for differentiating nondiabetic cats from diabetic cats, fructosamine was very sensitive (92%) and specific (96%), with a positive predictive value of 85% and a negative predictive value of 98%. Serum fructosamine concentration shows promise as an inexpensive, adjunct diagnostic tool for differentiating transiently hyperglycemic cats from poorly controlled diabetic cats.  相似文献   

13.
OBJECTIVE: To correlate serum fructosamine concentrations with established measures of glycemic control and to compare serum fructosamine and blood glycosylated hemoglobin (GHb) concentrations as a means for assessing glycemic control in diabetic cats. DESIGN: Longitudinal cohort study. ANIMALS: 26 healthy cats, 5 cats with stress-induced hyperglycemia, 15 untreated diabetic cats, and 36 treated diabetic cats. PROCEDURE: Control of glycemia was classified and monitored and serum fructosamine and blood GHb concentrations were measured for 12 poorly controlled diabetic cats before and after improving glycemic control, 8 well-controlled treated diabetic cats before and after glycemic control deteriorated, and 5 cats with diabetes mellitus before and after onset of stress-induced hyperglycemia. RESULTS: Mean serum fructosamine and blood GHb concentrations were significantly higher in untreated diabetic cats, compared with healthy cats, and in 24 poorly controlled diabetic cats, compared with 12 well-controlled diabetic cats. Mean serum fructosamine and blood GHb concentrations decreased significantly in 12 poorly controlled diabetic cats after improving glycemic control and increased significantly in 8 well-controlled diabetic cats after glycemic control deteriorated. A significant stress-induced increase in mean blood glucose concentration was evident 12 hours after insulin administration, but not in 5 docile diabetic cats that became fractious. CLINICAL IMPLICATIONS: Serum fructosamine and blood GHb concentrations are clinically useful tools for monitoring control of glycemia in cats with diabetes mellitus.  相似文献   

14.
The activities of the enzymes in the malate-aspartate shuttle were measured in peripheral leucocytes of spontaneous type 1 diabetic dogs and cats treated with insulin injections. In the diabetic dogs and cats, fasting plasma glucose concentrations were three- or fourfold greater than the control levels in spite of insulin injections and the activities of cytosolic malate dehydrogenase (MDH), one of pivotal enzymes in the malate-aspartate shuttle, were remarkably lower than the controls. Depressed expression of cytosolic MDH mRNA was confirmed by RT-PCR analysis in the diabetic animals. The cytosolic ratio of MDH/lactate dehydrogenase (LDH) activity (M / L ratio) in leucocytes of the diabetic animals was significantly lower than that of normal control animals. The smaller M / L ratio appeared to reflect depression of energy metabolism in the diabetic animals. Intrinsically lower and further decreased MDH activities may be factors that induce insulin resistance observed in diabetic cats.  相似文献   

15.
OBJECTIVE: To measure activities of NADPH-dependent reductases and sorbitol dehydrogenase in lenses from healthy dogs and cats. SAMPLE POPULATION: Lenses from 37 dogs and 23 cats. All animals were healthy and had serum glucose concentrations within reference limits. PROCEDURE: Lenses were homogenized, and activities of NADPH-dependent reductases and sorbitol dehydrogenase were measured spectrophotometrically. RESULTS: Activities of NADPH-dependent reductases and sorbitol dehydrogenase were significantly lower in lenses from cats than in lenses from dogs. However, the ratio of NADPH-dependent reductases activity-to-sorbitol dehydrogenase activity was significantly higher in lenses from cats than in lenses from dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that during periods of hyperglycemia, sorbitol would accumulate at a faster rate in the lenses of cats than in the lenses of dogs. Thus, the higher incidence of diabetic cataracts in dogs, compared with cats, is likely not attributable to a difference in the ratio of NADPH-dependent reductases activity-to-sorbitol dehydrogenase activity.  相似文献   

16.
OBJECTIVE: To establish a reliable diagnostic tool for septic peritonitis in dogs and cats using pH, bicarbonate, lactate, and glucose concentrations in peritoneal fluid and venous blood. STUDY DESIGN: Prospective clinical study. ANIMALS: Eighteen dogs and 12 cats with peritoneal effusion. METHODS: pH, bicarbonate, electrolyte, lactate, and glucose concentrations were measured on 1- to 2-mL samples of venous blood and peritoneal fluid collected at admission. The concentration difference between blood and peritoneal fluid for pH, bicarbonate, glucose, and lactate concentrations were calculated by subtracting the peritoneal fluid concentration from the blood concentration. Peritoneal fluid was submitted for cytologic examination and bacterial culture. Peritonitis was classified as septic or nonseptic based on cytology and bacterial culture results. RESULTS: In dogs, with septic effusion, peritoneal fluid glucose concentration was always lower than the blood glucose concentration. A blood-to-fluid glucose (BFG) difference > 20 mg/dL was 100% sensitive and 100% specific for the diagnosis of septic peritoneal effusion in dogs. In 7 dogs in which it was evaluated, a blood-to-fluid lactate (BFL) difference < -2.0 mmol/L was also 100% sensitive and specific for a diagnosis of septic peritoneal effusion. In cats, the BFG difference was 86% sensitive and 100% specific for a diagnosis of septic peritonitis. In dogs and cats, the BFG difference was more accurate for a diagnosis of septic peritonitis than peritoneal fluid glucose concentration alone. CONCLUSIONS: A concentration difference > 20 mg/dL between blood and peritoneal fluid glucose concentration provides a rapid and reliable means to differentiate a septic peritoneal effusion from a nonseptic peritoneal effusion in dogs and cats. CLINICAL RELEVANCE: The difference between blood and peritoneal fluid glucose concentrations should be used as a more reliable diagnostic indicator of septic peritoneal effusion than peritoneal fluid glucose concentration alone.  相似文献   

17.
The postprandial increase in glucose concentration is typically not considered in selecting diets to manage diabetic and pre-diabetic cats. This study describes increases in glucose and insulin concentrations in 24 clinically healthy, neutered adult cats following one meal (59 kcal/kg) of a moderate carbohydrate diet (25% of energy). Median time to return to baseline after feeding for glucose was 12.2 h (1.8-≥24 h) and for insulin was 12.3 h (1.5-≥24 h). Time to return to baseline for glucose was not different between male (10.2 h) and female (17.2 h) cats. There was evidence female cats had a longer return to baseline for insulin (18.9 h versus 9.8 h) and females had higher (0.9 mmol/l difference) peak glucose than males. This demonstrates that the duration of postprandial glycaemia in cats is markedly longer than in dogs and humans, and should be considered when managing diabetic and pre-diabetic cats.  相似文献   

18.
Insulin-dependent diabetes mellitus (IDDM) is a common metabolic disease often complicated by a number of pathological conditions among which are haematological changes and alterations in blood cell function. Human and feline diabetes mellitus patients have been reported to be associated with oxidative stress that can lead to membrane alterations and to reduced erythrocyte life-span. Erythrocyte function in dogs affected by IDDM has been investigated during insulin therapy, paying attention to antioxidant status, membrane resistance, enzyme activities and 2,3-diphosphoglycerate (2,3DPG) concentration. Thirteen diabetic and 36 healthy dogs were bled and haematology and blood chemistry assays were performed to evaluate the degree of compensation. Osmotic fragility, the activities of the enzymes glucose-6-phosphate dehydrogenase (G6PD) and pyruvate-kinase (PK) and the concentrations of reduced glutathione (GSH) and 2,3DPG were evaluated in the erythrocytes. Diabetic dogs did not differ from controls in terms of haematological parameters, except for higher numbers of platelets. Higher values of fructosamine, glucose, protein, plasma potassium and calculated osmolality were detected in the plasma from diabetic dogs. No differences were detected in osmotic fragility, GSH concentration and PK activity between the two groups but 2,3DPG concentration and G6PD activity were statistically significantly higher in the diabetic group. The results indicate minimal alterations in erythrocyte functions occur in insulin-treated diabetic dogs. This contrasts with what has been reported for IDDM humans and cats.  相似文献   

19.
Fructosamines are glycated serum proteins that reflect long-term serum glucose concentrations in humans and several animal species. In the present study, blood samples were drawn from three populations of diabetic cats: untreated diabetic cats with clinical symptoms prevailing only a few days (n = 1), untreated diabetic cats with symptoms lasting more than two weeks (n = 6) and clinically well stabilised diabetic cats receiving insulin twice daily which showed no signs of disease (n = 4). All untreated diabetic cats showed elevated fructosamine measurements. Based on fructosamine measurements, clinically well stabilised diabetic cats could be subdivided further according to the degree of glycaemic control. Diabetic cats with satisfactory glycaemic control revealed fructosamine concentrations within or close to the reference range (146 to 271 umol/litre), whereas fructosamine concentrations above 400 umol/litre indicated insufficient glycaemic control. This study suggests that the fructosamine assay reflects persistently elevated serum glucose concentrations in cats and is a useful parameter for diagnosing and monitoring diabetes mellitus in cats.  相似文献   

20.
Background: The Guardian REAL‐Time is a continuous glucose‐monitoring system (CGMS) recently developed to provide instantaneous interstitial glucose concentrations; the system does not require a monitor being fixed to the animal. Hypothesis: The CGMS provides accurate and reproducible real‐time readings of glucose concentration in cats. Animals: Thirty‐two diabetic cats, 2 cats with suspected insulinoma, and 5 healthy cats. Methods: Prospective, observational study. CGMS accuracy was compared with a reference glucose meter at normal, high, and low blood glucose concentrations using error grid analysis. Reading variability of 2 simultaneously used CGMS was determined in diabetic cats by calculating correlation and percentage of concordance of paired data at different glycemic ranges. The time interval between increasing glycemia and a rise in interstitial fluid glucose measured by the CGMS was assessed in healthy cats receiving glucose IV; the time point of maximal increase in interstitial glucose concentrations was calculated. Results: The CGMS was 100, 96.1, and 91.0% accurate at normal, high, and low blood glucose concentrations. Measurements deviated from reference by ?12.7 ± 70.5 mg/dL at normal, ?12.1 ± 141.5 mg/dL at high, and ?1.9 ± 40.9 mg/dL at low glucose concentrations. Overall, paired CGMS readings correlated significantly (r= 0.95, P < .0001) and concordance was 95.7%. The median delay after IV administration of glucose to an increase in interstitial glucose was 11.4 minutes (range: 8.8–19.7 minutes). Conclusions and Clinical Importance: Although some readings substantially deviated from reference values, the CGMS yields reproducible results, is clinically accurate in cats with hyperglycemia and euglycemia, and is slightly less accurate if blood glucose concentrations are low. Rapidly increasing interstitial glucose after a glycemic rise suggests that the CGMS is suitable for real‐time measurement under clinical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号