首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
支持向量机(Support Vector Machines,SVM)是一种具有坚实理论基础的新颖小样本学习方法。采用支持向量机回归(Support Vector Machine Regression,SVR)算法,用libsvm-2.89软件包对我国近年来的粮食产量进行回归预测,选择交叉验证法进行参数寻优,建立粮食产量和其影响因素的支持向量机回归模型。粮食产量预测平均相对百分误差为1.209%,均方根误差为581.191,相关系数为0.962 24。将预测结果与指数平滑模型、生产函数模型及多元线性回归模型进行了比较,用平均绝对百分误差、希尔不等系数及均方根误差对4种模型预测结果进行评价。结果表明,基于支持向量机的径向基核函数(RBF)模型预测粮食产量的精度优于其他预测方法。  相似文献   

2.
支持向量机在粮食产量预测中的应用   总被引:3,自引:1,他引:3  
将支持向量机算法应用于粮食产量预测,结果表明,支持向量机的径向基核函数模型预测粮食产量的精度优于其他预测方法。  相似文献   

3.
针对Lasso方法与支持向量机两者的联系与各自的优势,给出了基于Lasso与支持向量机的串联型、并联型和嵌入型三种组合预测,并将它们运用到我国粮食价格预测中.实证结果表明,与单一预测方法的预测结果相比,基于Lasso方法与支持向量机的串联型组合预测和嵌入型组合预测具有更高的预测精度.  相似文献   

4.
通过1991—1996的历史数据分析稻田早稻生物学特征与不同土壤处理对二化螟发生株率的非线性相关关系,测试支持向量机回归(SVR)模型在二化螟测报的可行性。结果表明,应用epsilon-SVR模型预测水稻综合因子观测场1996年的早稻二化螟平均发生株率预测准确率达97.95%,而阴离子观测场的平均发生株率预测准确率达96.97%。该回归模型表现出良好的鲁棒性和自学习能力。因此,SVR模型适于二化螟田间发生株率的预测,在虫害测报中应用前景广阔。  相似文献   

5.
一种改进的支持向量机集成分类算法   总被引:2,自引:0,他引:2  
为了更好地改进集成分类器的性能,提出了一种基于反馈学习的支持向量机Bagging集成分类算法.该算法在对子分类器的训练中,引入反馈学习的思想,首先对每个训练得到的子分类器进行测试,找到被错分的样本,把这些样本添加到训练样本集中,重新进行训练、测试,直到没有新的被错分的样本出现为止,最后采用多数投票策略对得到的各子分类器进行组合.仿真实验结果表明,该算法可通过提高各分类器的分类能力改进集成学习器的性能.  相似文献   

6.
滑坡位移具有非线性特征,针对单变量的时间序列,首先引入相空间重构理论,将其扩展到多维的相空间中。再结合数据挖掘中的机器学习算法——支持向量回归算法(SVR)建立预测模型,并对李家湾滑坡的水平位移进行预测。试验结果表明,该模型具有非常高的精度(均控制在94%以上),可以充分的应用于滑坡灾害的预测和预报。  相似文献   

7.
支持向量回归机在农业供应链预测中的应用   总被引:2,自引:0,他引:2  
为了提农业供应链预测的能力,应用基于结构风险最小化准则的标准支持向量回归机方法来研究供应链预测问题。在选择适当的参数和核函数的基础上,通过对实例研究,对时间序列数据进行预测,并与人工神经网络方法进行对比,发现该方法能获得最小的训练相对误差和测试相对误差。结果表明,支持向量回归机是研究农业供应链预测的有效方法。  相似文献   

8.
降水量的变化受到许多因素影响,其动态特征呈现复杂的非线性,使得预测难度较大。为了提高降水量预测精度,提出了一种基于局域支持向量机的降水量预测方法,对月降水量时间序列进行参数提取,构造相空间,使用支持向量回归模型代替局域线性模型,使用邻近点训练该局域支持向量回归模型。仿真结果表明,该方法预测精度高,在旱涝预测方面有较好的应用前景。  相似文献   

9.
传统的油田开发动态生产预警采用独立性指标阈值判别方法,从而带来预警结果不准确、异常事件发生时报警而不是预警等问题。本课题提出一种油田生产预警模型,该方法将支持向量回归机(Support Vector Regression,SVR)用于油田生产预警中,通过分析历史生产动态数据,找到它们的变化规律,总结出生产异常警报形成模式,在油田异常事件的初期给出预警信号,提前分析处理潜在隐患,以便保证油田采收效率的稳定性。实验结果证明模型对于油田生产中发生的异常情况具有较高的预测准确性。  相似文献   

10.
基于ε-支持向量回归机算法建立了小菜蛾在多发季节的预测模型,通过对广东省蔬菜小菜蛾试验数据进行分析,结果表明,在选择惩罚因子c为43、核函数参数κ为0.2的情况下,ε-支持向量回归机预警模型取得了较好的预测结果。  相似文献   

11.
关于支持向量机VC维问题证明的研究   总被引:1,自引:0,他引:1  
支持向量机是基于统计学习理论的新一代学习机器,本文主要阐述了支持向量机中关于VC维的理论,并就一类函数集的VC维的大小给出理论上的证明。  相似文献   

12.
介绍了支持向量机(SVM)的基本原理及其应用。以风向、风速、云量、相对湿度、露点温度、气压6个相关因素为因子,采用Libsvm进行预测建模,用真实数据进行分析对比,得出SVM在气象预报上也有良好的应用的结论。  相似文献   

13.
电子商务客户流失受到多种影响,具有时变性、非线性,为了提高电子商务客户流失的预测精度,提出一种粒子群算法优化支持向量机的电子商务客户流失预测模型。首先收集电子商务客户数据,并进行预处理,然后将数据输入到支持向量机进行学习,并采用粒子群算法选择支持向量机参数,建立最优电子商务客户流失预测模型,最后采用具体数据进行了仿真实验。结果表明,相对于其他电子商务客户流失预测模型,本文模型提高了电子商务客户流失的预测精度,可以准确反映电子商务客户流失变化特点,预测结果可以为电子商务企业提供有价值的参考意见。  相似文献   

14.
张弘杨  陈渊  袁哲明 《安徽农业科学》2014,(30):10759-10761,10783
农民收入既受其自身动态时序特性的影响,又与国家政策、农产品产量、天气等多种人为因素和自然因素关系密切,是一种典型的多维时间序列数据.该研究以国民总收入、乡村人口等11个可能与农民收入相关的影响因子为自变量,农村居民家庭平均每人纯收入为因变量,基于1982~2011年我国相关统计数据,采用支持向量回归与地统计学非线性时间序列预测模型对农民收入进行分析.结果表明:非线性时间序列预测模型大幅度提高了农民收入预测精度;农民的主要收入来源已不是粮食生产,而是向其他农业生产、进城务工等方面转移.  相似文献   

15.
在提取啤酒瓶的缺陷特征后,如何选择合适的多分类支持向量机算法对提高分类准确率和分类速度具有重要的作用.本文通过一对一、一对多、决策有向无环图、二叉树、误差纠错码、一次性求解等多分类支持向量机算法在核函数为线性、多项式、径向基,神经网络的情况下,对多个基准样本进行了分类性能、分类速度、分类准确性的详细比较以及完整的理论分析,最终得出一对一多分类支持向量机在径向基核函数时性能优于其他算法.在啤酒瓶智能检测机器人上的实验,表明这种算法能够满足检测需要.  相似文献   

16.
基于支持向量机与径向基(RBF)神经网络在结构上的相似性,提出了一种用于RBF网络的支持向量机与BP的混合学习算法.算法分为2步:首先采用序贯最小优化算法学习训练支持向量机,得到RBF网络较优的初始结构和参数;随后由BP算法调整优化RBF网络参数.混合学习算法结合了支持向量机小样本学习、学习训练快捷以及BP算法在线修改网络参数的特点.仿真研究表明,混合学习算法学习效率高,网络性能优良,应用于函数逼近时效果优良.  相似文献   

17.
基于最小二乘支持向量机的灌区粮食产量预测研究   总被引:1,自引:0,他引:1  
对常用作物产量预测模型进行了简要评述,建立了基于最小二乘支持向量机的灌区产量预测模型。对灌区作物产量进行模拟计算,并用检验样本与灰色预测和神经网络模型的预测结果进行了比较。结果表明,最小二乘支持向量机预测的最大误差7.12%,平均误差4.81%。最小二乘支持向量机模型有较高的预测精度和良好的推广能力,可做为灌区粮食产量预测的一种新方法。  相似文献   

18.
针对逆系统方法中非线性逆模型辨识困难的问题,研究了基于支持向量机(SVM)的逆模型辨识及控制,提出了一种SVM逆模型与PID结合的复合控制系统.由SVM辨识非线性系统的逆模型作为前馈控制器,形成直接逆控制.同时,由PID控制器构成反馈控制,克服直接逆控制鲁棒性不强的缺陷.仿真研究表明,SVM的逆模型辨识能力强,该复合控制系统具有比直接逆控制更优的控制性能和鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号