首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the pharmacokinetics and tissue fluid distribution of cephalexin in the adult horse following oral and i.v. administration. Cephalexin hydrate (10 mg/kg) was administered to horses i.v. and plasma samples were collected. Following a washout period, cephalexin (30 mg/kg) was administered intragastrically. Plasma, interstitial fluid (ISF) aqueous humor, and urine samples were collected. All samples were analyzed by high-pressure liquid chromatography (HPLC). Following i.v. administration, cephalexin had a plasma half-life (t(1/2)) of 2.02 h and volume of distribution [V(d(ss))] of 0.25 L/kg. Following oral administration, the average maximum plasma concentration (C(max)) was 3.47 mug/mL and an apparent half-life (t(1/2)) of 1.64 h. Bioavailability was approximately 5.0%. The AUC(ISF):AUC(plasma) ratio was 80.55% which corresponded to the percentage protein-unbound drug in the plasma (77.07%). The t(1/2) in the ISF was 2.49 h. Cephalexin was not detected in the aqueous humor. The octanol:water partition coefficient was 0.076 +/- 0.025. Cephalexin was concentrated in the urine with an average concentration of 47.59 microg/mL. No adverse events were noted during this study. This study showed that cephalexin at a dose of 30 mg/kg administered orally at 8 h dosage intervals in horses can produce plasma and interstitial fluid drug concentrations that are in a range recommended to treat susceptible gram-positive bacteria (MIC < or = 0.5 microg/mL). Because of the low oral bioavailability of cephalexin in the horse, the effect of chronic dosing on the normal intestinal bacterial flora requires further investigation.  相似文献   

2.
OBJECTIVE: To determine the pharmacokinetics of potassium bromide (KBr) in horses after single and multiple oral doses. ANIMALS: Twelve adult Standardbred and Thoroughbred mares. PROCEDURE: Horses were randomly assigned to two treatment groups. Group 1 horses were given a single oral dose of 120 mg/kg potassium bromide. Part 2 of the study evaluated a loading dose of 120 mg/kg KBr daily by stomach tube for 5 days, followed by 40 mg/kg daily in feed for 7 days. Serum concentrations of KBr were measured to construct concentration versus time curves and to calculate pharmacokinetic parameters. Treated horses were monitored twice daily by clinical examination. Serum concentrations of sodium, potassium and chloride ions and partial pressures of venous blood gases were determined. RESULTS: Maximum mean serum concentration following a single dose of KBr (120 mg/kg) was 423 +/- 22 microg/mL and the mean elimination half-life was 75 +/- 14 h. Repeated administration of a loading dose of KBr (120 mg/kg once daily for 5 d) gave a maximum serum concentration 1639 +/- 156 microg/mL. The administration of lower, maintenance doses (40 mg/kg once daily) was associated with decreased serum bromide concentrations, which plateaued at approximately 1000 microg/mL. Administration of KBr was associated with significant but transient changes in serum potassium and sodium concentrations, and possible changes in base excess and plasma bicarbonate concentrations. High serum concentrations of bromide were associated with an apparent increase in serum chloride concentrations, when measured on an ion specific electrode. CONCLUSIONS: and clinical relevance Loading doses of 120 mg/kg daily over 5 d and maintenance doses of approximately 90 mg/kg of KBr administered once daily resulted in serum bromide concentrations consistent with therapeutic efficacy for the management of seizures in other species. The clinical efficacy of this agent as an anticonvulsant medication and/or calmative in horses warrants further investigation.  相似文献   

3.
OBJECTIVE: To determine the pharmacokinetics of itraconazole after IV or oral administration of a solution or capsules to horses and to examine disposition of itraconazole in the interstitial fluid (ISF), aqueous humor, and polymorphonuclear leukocytes after oral administration of the solution. ANIMALS: 6 healthy horses. PROCEDURE: Horses were administered itraconazole solution (5 mg/kg) by nasogastric tube, and samples of plasma, ISF, aqueous humor, and leukocytes were obtained. Horses were then administered itraconazole capsules (5 mg/kg), and plasma was obtained. Three horses were administered itraconazole (1.5 mg/kg, IV), and plasma samples were obtained. All samples were analyzed by use of high-performance liquid chromatography. Plasma protein binding was determined. Data were analyzed by compartmental and noncompartmental pharmacokinetic methods. RESULTS: Itraconazole reached higher mean +/- SD plasma concentrations after administration of the solution (0.41 +/- 0.13 microg/mL) versus the capsules (0.15 +/- 0.12 microg/mL). Bioavailability after administration of capsules relative to solution was 33.83 +/- 33.08%. Similar to other species, itraconazole has a high volume of distribution (6.3 +/- 0.94 L/kg) and a long half-life (11.3 +/- 2.84 hours). Itraconazole was not detected in the ISF, aqueous humor, or leukocytes. Plasma protein binding was 98.81 +/- 0.17%. CONCLUSIONS AND CLINICAL RELEVANCE: Itraconazole administered orally as a solution had higher, more consistent absorption than orally administered capsules and attained plasma concentrations that are inhibitory against fungi that infect horses. Administration of itraconazole solution (5 mg/kg, PO, q 24 h) is suggested for use in clinical trials to test the efficacy of itraconazole in horses.  相似文献   

4.
OBJECTIVE: To determine the pharmacokinetics of voriconazole following IV and PO administration and assess the distribution of voriconazole into body fluids following repeated PO administration in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURES: All horses received voriconazole (10 mg/kg) IV and PO (2-week interval between treatments). Plasma voriconazole concentrations were determined prior to and at intervals following administration. Subsequently, voriconazole was administered PO (3 mg/kg) twice daily for 10 days to all horses; plasma, synovial fluid, CSF, urine, and preocular tear film concentrations of voriconazole were then assessed. RESULTS: Mean +/- SD volume of distribution at steady state was 1,604.9 +/- 406.4 mL/kg. Systemic bioavailability of voriconazole following PO administration was 95 +/- 19%; the highest plasma concentration of 6.1 +/- 1.4 microg/mL was attained at 0.6 to 2.3 hours. Mean peak plasma concentration was 2.57 microg/mL, and mean trough plasma concentration was 1.32 microg/mL. Mean plasma, CSF, synovial fluid, urine, and preocular tear film concentrations of voriconazole after long-term PO administration were 5.163 +/- 1.594 microg/mL, 2.508 +/- 1.616 microg/mL, 3.073 +/- 2.093 microg/mL, 4.422 +/- 0.8095 microg/mL, and 3.376 +/- 1.297 microg/mL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that voriconazole distributed quickly and widely in the body; following a single IV dose, initial plasma concentrations were high with a steady and early decrease in plasma concentration. Absorption of voriconazole after PO administration was excellent, compared with absorption after IV administration. Voriconazole appears to be another option for the treatment of fungal infections in horses.  相似文献   

5.
OBJECTIVE: To determine the pharmacokinetics of potassium bromide (KBr) in horses after a single and multiple oral doses. ANIMALS: Twelve adult Standardbred and Thoroughbred mares. PROCEDURE: Horses were randomly assigned into two treatment groups. In Part 1 of the study, horses were given a single oral dose of 120 mg/kg KBr. Part 2 of the study evaluated a loading dose of 120 mg/kg KBr daily by stomach tube for 5 days, followed by 40 mg/kg daily in feed for 7 days. Serum concentrations of bromide were determined by colorimetric spectrophotometry following drug administration to permit determination of concentration versus time curves from which pharmacokinetic parameters could be calculated. Treated horses were monitored twice daily by clinical examination. Serum concentrations of sodium, potassium and chloride ions and partial pressures of venous blood gases were determined. RESULTS: Maximum mean serum bromide concentration following a single dose of KBr (120 mg/kg) was 284 +/- 15 microg/mL and the mean elimination half-life was 75 +/- 14 h. Repeated administration of a loading dose of KBr (120 mg/kg once daily for 5 days) gave a maximum serum bromide concentration of 1098 +/- 105 microg/mL. The administration of lower, maintenance doses of KBr (40 mg/kg once daily) was associated with decreased serum bromide concentrations, which plateaued at approximately 700 microg/mL. Administration of KBr was associated with significant but transient changes in serum potassium and sodium concentrations, and possible changes in base excess and plasma bicarbonate concentrations. High serum concentrations of bromide were associated with an apparent increase in serum chloride concentrations, when measured on an ion specific electrode. CONCLUSIONS AND CLINICAL RELEVANCE: A loading dose of 120 mg/kg daily over 5 days and maintenance doses of approximately 90-100 mg/kg of KBr administered once daily are predicted to result in serum bromide concentrations consistent with therapeutic efficacy for the management of seizures in other species. The clinical efficacy of this agent as an anticonvulsant medication and/or calmative in horses warrants further investigation.  相似文献   

6.
OBJECTIVE: To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution. ANIMALS: 6 adult horses. PROCEDURES: Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed. RESULTS: Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 +/- 18.41%. The elimination half-life after a single orally administered dose was 13.11 +/- 2.85 hours, and the maximum plasma concentration was 2.43 +/- 0.4 microg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration 相似文献   

7.
OBJECTIVE: To determine pharmacokinetics, safety, and penetration into interstitial fluid (ISF), polymorphonuclear leukocytes (PMNLs), and aqueous humor of doxycycline after oral administration of single and multiple doses in horses. ANIMALS: 6 adult horses. PROCEDURE: The effect of feeding on drug absorption was determined. Plasma samples were obtained after administration of single or multiple doses of doxycycline (20 mg/kg) via nasogastric tube. Additionally, ISF, PMNLs, and aqueous humor samples were obtained after the final administration. Horses were monitored for adverse reactions. RESULTS: Feeding decreased drug absorption. After multiple doses, mean +/- SD time to maximum concentration was 1.63 +/- 1.36 hours, maximum concentration was 1.74 +/- 0.3 microg/mL, and elimination half-life was 12.07 +/- 3.17 hours. Plasma protein binding was 81.76 +/- 2.43%. The ISF concentrations correlated with the calculated percentage of non-protein-bound drug. Maximum concentration was 17.27 +/- 8.98 times as great in PMNLs, compared with plasma. Drug was detected in aqueous humor at 7.5% to 10% of plasma concentrations. One horse developed signs of acute colitis and required euthanasia. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that doxycycline administered at a dosage of 20 mg/kg, PO, every 24 hours will result in drug concentrations adequate for killing intracellular bacteria and bacteria with minimum inhibitory concentration < or = 0.25 microg/mL. For bacteria with minimum inhibitory concentration of 0.5 to 1.0 microg/mL, a dosage of 20 mg/kg, PO, every 12 hours may be required; extreme caution should be exercised with the higher dosage until more safety data are available.  相似文献   

8.
The safety and pharmacokinetics of fentanyl, delivered transdermally at a dosage of 60-67 microg/kg, were investigated in six healthy adult horses. Three transdermal fentanyl patches (Duragesic), each containing 10 mg of fentanyl citrate, were applied to the mid-dorsal thorax of each horse and left in place for 72 h. Plasma fentanyl concentrations were periodically measured throughout this period and for 12 h after patch removal. After an initial delay of approximately 2 h, the plasma fentanyl concentration rose rapidly in a fairly linear fashion, reaching a peak at around 12 h; thereafter, it gradually declined in a roughly linear manner over the next 72 h. There was much individual variation, however. The initial delay ranged from 0 to 5.1 h (mean, 1.91+/-2.0 h), Tcmax ranged from 8.5 to 14.5 h (mean, 11.4+/-2.7 h) and Cmax ranged from 0.67 to 5.12 ng/mL (mean, 2.77+/-1.92 ng/mL). In two horses, the plasma fentanyl concentration failed to reach even 1 ng/mL, whereas in the other four horses it was >1 ng/mL for at least 40 h and for at least 72 h in two of these horses. No adverse effects attributable to fentanyl were observed in any of the horses, indicating that this dosage is safe in systemically healthy adult horses. However, it failed to achieve plasma fentanyl concentrations generally considered to be analgesic (>or=1 ng/mL) in about one-third of horses.  相似文献   

9.
The purpose of this study was to describe the pharmacokinetics of bromide in horses and to evaluate the corrected bromide space as an indicator of extracellular fluid volume (ECFV) in horses after the administration of a single dose of bromide by intravenous infusion. Sodium bromide (30 mg/kg of body weight, IV) was administered to 6 clinically healthy mares over a period of 3 minutes. Blood samples were collected before infusion and at intervals between 0.5 hours and 53 days after infusion. Mean elimination half-life (harmonic mean) was 126 hours (5.2 days), clearance was 1.4 +/- 0.09 mL/(kg x h), area under the curve was 17,520 +/- 1,100 microg x h/mL. and volume of distribution (steady state) was 0.255 +/- 0.015 L/kg. The mean corrected bromide space was determined from the volume of distribution (steady state) and the serum concentrations of bromide at equilibration. Corrected bromide space, an estimate of ECFV, was 0.218 +/- 0.01 L/kg. The conclusion was made that ECFV of horses can be estimated by measuring bromide concentrations in a preinfusion serum sample and a sample obtained 5 hours after the administration of bromide.  相似文献   

10.
OBJECTIVE: To determine the pharmacokinetics of marbofloxacin after single IV and orally administered doses in blue and gold macaws. ANIMALS: 10 healthy blue and gold macaws. PROCEDURES: In a crossover study, marbofloxacin (2.5 mg/kg) was administered orally (via crop gavage) to 5 birds and IV to 5 birds. Blood samples were obtained at 0, 0.5, 1, 3, 6, 12, 24, 48, 72, and 96 hours after marbofloxacin administration. After a 4-week washout period, the study was repeated, with the first 5 birds receiving the dose IV and the second 5 birds receiving the dose orally. Serum marbofloxacin concentrations were quantitated by use of a validated liquid chromatography-mass spectrometry assay. RESULTS: After oral administration, mean +/- SD area under the curve was 7.94 +/- 2.08 microg.h/mL, maximum plasma concentration was 1.08 +/- 0.316 microg/mL, and bioavailability was 90.0 +/- 31%. After IV administration of marbofloxacin, the apparent volume of distribution was 1.3 +/- 0.32 L/kg, plasma clearance was 0.29 +/- 0.078 L/h/kg, area under the curve was 9.41 +/- 2.84 microg.h/mL, and the harmonic mean terminal half-life was 4.3 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Single IV and orally administered doses of marbofloxacin were well tolerated by blue and gold macaws. The orally administered dose was well absorbed. Administration of marbofloxacin at a dosage of 2.5 mg/kg, PO, every 24 hours may be appropriate to control bacterial infections susceptible to marbofloxacin in this species.  相似文献   

11.
Lidocaine is administered as an intravenous infusion to horses for a variety of reasons, but no study has assessed plasma lidocaine concentrations during a 12-h infusion to horses. The purpose of this study was to evaluate the plasma concentrations and pharmacokinetics of lidocaine during a 12-h infusion to postoperative horses. A second purpose of the study was to evaluate the in vitro plasma protein binding of lidocaine in equine plasma. Lidocaine hydrochloride was administered as a loading dose, 1.3 mg/kg over 15 min, then by a constant rate IV infusion, 50 microg/kg/min to six postoperative horses. Lidocaine plasma concentrations were measured by a validated high-pressure liquid chromatography method. One horse experienced tremors and collapsed 5.5 h into the study. The range of plasma concentrations during the infusion was 1.21-3.13 microg/mL. Lidocaine plasma concentrations were significantly increased at 0.5, 4, 6, 8, 10 and 12 h compared with 1, 2 and 3 h. The in vitro protein binding of lidocaine in equine plasma at 2 microg/mL was 53.06+/-10.28% and decreased to 27.33+/-9.72% and 29.52+/-6.44% when in combination with ceftiofur or the combination of ceftiofur and flunixin, respectively. In conclusion, a lower lidocaine infusion rate may need to be administered to horses on long-term lidocaine infusions. The in vitro protein binding of lidocaine is moderate in equine plasma, but highly protein bound drugs may displace lidocaine increasing unbound concentrations and the risk of lidocaine toxicity.  相似文献   

12.
Pharmacokinetics of ciprofloxacin in ponies   总被引:8,自引:0,他引:8  
The pharmacokinetics of ciprofloxacin was investigated in healthy, mature ponies. Ciprofloxacin was administered intravenously to six ponies at a dose of 5 mg per kg body weight. Seven days later, ciprofloxacin was administered orally to each pony at the same dose. Intravenous ciprofloxacin concentration vs. time data best fit a two-compartment open model with first-order elimination from the central compartment. Mean plasma half-life, based on the terminal phase, was 15 7.8 9 min (harmonic mean). Total body clearance of ciprofloxacin was 18.12 ± 3.99 mL/min/kg. Volume of distribution at steady-state was 3.45 ± 0.72 L/kg. From the pharmacokinetic data and reported minimum inhibitory concentrations for equine gram-negative pathogens, the appropriate dosage of ciprofloxacin was determined to be 5.32 mg per kg body weight at 12 h intervals. Bioavailability of oral ciprofloxacin in ponies was 6.8 ± 5.33%. Owing to the poor bioavailability, a dosage regimen could not be proposed for oral ciprofloxacin administration in horses. Ciprofloxacin concentrations were determined in tissues and body fluids at 1, 2 and 4 h after intravenous administration. At all times, tissue concentrations exceeded plasma concentrations of ciprofloxacin. Highest concentrations were achieved in kidneys and urine. Potentially therapeutic concentrations were obtained in cerebrospinal and joint fluid, but low concentrations were achieved in aqueous humour.  相似文献   

13.
OBJECTIVE: To determine the disposition of a bolus of meloxicam (administered IV) in horses and donkeys (Equus asinus) and compare the relative pharmacokinetic variables between the species. ANIMALS: 5 clinically normal horses and 5 clinically normal donkeys. PROCEDURES: Blood samples were collected before and after IV administration of a bolus of meloxicam (0.6 mg/kg). Serum meloxicam concentrations were determined in triplicate via high-performance liquid chromatography. The serum concentration-time curve for each horse and donkey was analyzed separately to estimate standard noncompartmental pharmacokinetic variables. RESULTS: In horses and donkeys, mean +/- SD area under the curve was 18.8 +/- 7.31 microg/mL/h and 4.6 +/- 2.55 microg/mL/h, respectively; mean residence time (MRT) was 9.6 +/- 9.24 hours and 0.6 +/- 0.36 hours, respectively. Total body clearance (CL(T)) was 34.7 +/- 9.21 mL/kg/h in horses and 187.9 +/- 147.26 mL/kg/h in donkeys. Volume of distribution at steady state (VD(SS)) was 270 +/- 160.5 mL/kg in horses and 93.2 +/- 33.74 mL/kg in donkeys. All values, except VD(SS), were significantly different between donkeys and horses. CONCLUSIONS AND CLINICAL RELEVANCE: The small VD(SS) of meloxicam in horses and donkeys (attributed to high protein binding) was similar to values determined for other nonsteroidal anti-inflammatory drugs. Compared with other species, horses had a much shorter MRT and greater CL(T) for meloxicam, indicating a rapid elimination of the drug from plasma; the even shorter MRT and greater CL(T) of meloxicam in donkeys, compared with horses, may make the use of the drug in this species impractical.  相似文献   

14.
OBJECTIVE: To evaluate the pharmacokinetic-pharmacodynamic parameters of enrofloxacin and a low dose of amikacin administered via regional IV limb perfusion (RILP) in standing horses. ANIMALS: 14 adult horses. PROCEDURES: Standing horses (7 horses/group) received either enrofloxacin (1.5 mg/kg) or amikacin (250 mg) via RILP (involving tourniquet application) in 1 forelimb. Samples of interstitial fluid (collected via implanted capillary ultrafiltration devices) from the bone marrow (BMIF) of the third metacarpal bone and overlying subcutaneous tissues (STIF), blood, and synovial fluid of the radiocarpal joint were collected prior to (time 0) and at intervals after tourniquet release for determination of drug concentrations. For pharmacokinetic-pharmacodynamic analyses, minimum inhibitory concentrations (MICs) of 16 microg/mL (amikacin) and 0.5 microg/mL (enrofloxacin) were applied. RESULTS: After RILP with enrofloxacin, 3 horses developed vasculitis. The highest synovial fluid concentrations of enrofloxacin and amikacin were detected at time 0; median values (range) were 13.22 microg/mL (0.254 to 167.9 microg/mL) and 26.2 microg/mL (5.78 to 50.0 microg/mL), respectively. Enrofloxacin concentrations exceeded MIC for approximately 24 hours in STIF and synovial fluid and for 36 hours in BMIF. After perfusion of amikacin, concentrations greater than the MIC were not detected in any samples. Effective therapeutic concentrations of enrofloxacin were attained in all samples. CONCLUSIONS AND CLINICAL RELEVANCE: In horses with orthopedic infections, RILP of enrofloxacin (1.5 mg/kg) should be considered as a treatment option. However, care must be taken during administration. A dose of amikacin > 250 mg is recommended to attain effective tissue concentrations via RILP in standing horses.  相似文献   

15.
Phenylbutazone (PBZ) was administered to six calves intravenously (i.v.) and orally at a dose rate of 4.4 mg/kg in a three-period cross-over study incorporating a placebo treatment to establish its pharmacokinetic and pharmacodynamic properties. Extravascular distribution was determined by measuring penetration into tissue chamber fluid in the absence of stimulation (transudate) and after stimulation of chamber tissue with the mild irritant carrageenan (exudate). PBZ pharmacokinetics after i.v. dosage was characterized by slow clearance (1.29 mL/kg/h), long-terminal half-life (53.4 h), low distribution volume (0.09 L/kg) and low concentrations in plasma of the metabolite oxyphenbutazone (OPBZ), confirming previously published data for adult cattle. After oral dosage bioavailability (F) was 66%. Passage into exudate was slow and limited, and penetration into transudate was even slower and more limited; area under curve values for plasma, exudate and transudate after i.v. dosage were 3604, 1117 and 766 microg h/mL and corresponding values after oral dosage were 2435, 647 and 486 microg h/mL. These concentrations were approximately 15-20 (plasma) and nine (exudate) times greater than those previously reported in horses (receiving the same dose rate of PBZ). In the horse, the lower concentrations had produced marked inhibition of eicosanoid synthesis and suppressed the inflammatory response. The higher concentrations in calves were insufficient to inhibit significantly exudate prostaglandin E2 (PGE2), leukotriene B4 (LTB4) and beta-glucuronidase concentrations and exudate leucocyte numbers, serum thromboxane B2 (TxB2), and bradykinin-induced skin swelling. These differences from the horse might be the result of: (a) the presence in equine biological fluids of higher concentrations than in calves of the active PBZ metabolite, OPBZ; (b) a greater degree of binding of PBZ to plasma protein in calves; (c) species differences in the sensitivity to PBZ of the cyclo-oxygenase (COX) isoenzymes, COX-1 and COX-2 or; (d) a combination of these factors. To achieve clinical efficacy with single doses of PBZ in calves, higher dosages than 4.4 mg/kg will be probably required.  相似文献   

16.
OBJECTIVE: To compare gentamicin concentrations achieved in synovial fluid and joint tissues during IV administration and continuous intra-articular (IA) infusion of the tarsocrural joint in horses. ANIMALS: 18 horses with clinically normal tarsocrural joints. PROCEDURE: Horses were assigned to 3 groups (6 horses/group) and administered gentamicin (6.6 mg/kg, IV, q 24 h for 4 days; group 1), a continuous IA infusion of gentamicin into the tarsocrural joint (50 mg/h for 73 hours; group 2), or both treatments (group 3). Serum, synovial fluid, and joint tissue samples were collected for measurement of gentamicin at various time points during and 73 hours after initiation of treatment. Gentamicin concentrations were compared by use of a Kruskal-Wallis ANOVA. RESULTS: At 73 hours, mean +/- SE gentamicin concentrations in synovial fluid, synovial membrane, joint capsule, subchondral bone, and collateral ligament of group 1 horses were 11.5 +/- 1.5 microg/mL, 21.1 +/- 3.0 microg/g, 17.1 +/- 1.4 microg/g, 9.8 +/- 2.0 microg/g, and 5.9 +/- 0.7 microg/g, respectively. Corresponding concentrations in group 2 horses were 458.7 +/- 130.3 microg/mL, 496.8 +/- 126.5 microg/g, 128.5 +/- 74.2 microg/g, 99.4 +/- 47.3 microg/g, and 13.5 +/- 7.6 microg/g, respectively. Gentamicin concentrations in synovial fluid, synovial membrane, and joint capsule of group 1 horses were significantly lower than concentrations in those samples for horses in groups 2 and 3. CONCLUSIONS AND CLINICAL RELEVANCE: Continuous IA infusion of gentamicin achieves higher drug concentrations in joint tissues of normal tarsocrural joints of horses, compared with concentrations after IV administration.  相似文献   

17.
OBJECTIVES: To determine the disposition of orally administered cefpodoxime proxetil in foals and adult horses and measure the minimum inhibitory concentrations (MICs) of the drug against common bacterial pathogens of horses. ANIMALS: 6 healthy adult horses and 6 healthy foals at 7 to 14 days of age and again at 3 to 4 months of age. PROCEDURE: A single dose of cefpodoxime proxetil oral suspension was administered (10 mg/kg) to each horse by use of a nasogastric tube. In 7- to 14-day-old foals, 5 additional doses were administered intragastrically at 12-hour intervals. The MIC of cefpodoxime for each of 173 bacterial isolates was determined by use of a commercially available test. RESULTS: In 7- to 14-day-old foals, mean +/- SD time to peak serum concentration (Tmax) was 1.7 +/- 0.7 hours, maximum serum concentration (Cmax) was 0.81 +/- 0.22 microg/mL, and elimination half-life (harmonic mean) was 7.2 hours. Disposition of cefpodoxime in 3- to 4-month-old foals was not significantly different from that of neonates. Adult horses had significantly higher Cmax and significantly lower Tmax, compared with values for foals. The MIC of cefpodoxime required to inhibit growth of 90% of isolates for Salmonella enterica, Escherichia coli, Pasteurella spp, Klebsiella spp, and beta-hemolytic streptococci was 0.38, 1.00, 0.16, 0.19, and 0.09 microg/mL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration at a dosage of 10 mg/kg every 6 to 12 hours would appear appropriate for the treatment of equine neonates with bacterial infections.  相似文献   

18.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin after oral administration to captive elephants. ANIMALS: 6 clinically normal adult Asian elephants (Elephas maximus). PROCEDURE: Each elephant received a single dose of enrofloxacin (2.5 mg/kg, PO). Three elephants received their complete diet (pellets and grain) within 2 hours after enrofloxacin administration, whereas the other 3 elephants received only hay within 6 hours after enrofloxacin administration. Serum concentrations of enrofloxacin and ciprofloxacin were measured by use of high-performance liquid chromatography. RESULTS: Harmonic mean half-life after oral administration was 18.4 hours for all elephants. Mean +/- SD peak serum concentration of enrofloxacin was 1.31 +/- 0.40 microg/mL at 5.0 +/- 4.2 hours after administration. Mean area under the curve was 20.72 +/- 4.25 (microg x h)/mL. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of enrofloxacin to Asian elephants has a prolonged elimination half-life, compared with the elimination half-life for adult horses. In addition, potentially therapeutic concentrations in elephants were obtained when enrofloxacin was administered orally at a dosage of 2.5 mg/kg. Analysis of these results suggests that enrofloxacin administered with feed in the manner described in this study could be a potentially useful antimicrobial for use in treatment of captive Asian elephants with infections attributable to organisms, such as Bordetella spp, Escherichia coli, Mycoplasma spp, Pasteurella spp, Haemophilus spp, Salmonella spp, and Staphylococcus spp.  相似文献   

19.
OBJECTIVE: To determine the pharmacokinetics and effects of the morphine antagonist N-methylnaltrexone (MNTX) on gastrointestinal tract function in horses when administered alone and in combination with morphine. ANIMALS: 5 healthy adult horses. PROCEDURES: Horses were treated with MNTX (1 mg/kg, IV), and serial blood samples were collected for determination of drug pharmacokinetics. For evaluation of effects on the gastrointestinal tract when administered alone, MNTX was administered at a dosage of 0.75 mg/kg, IV, twice daily for 4 days. For evaluation of effects when administered concurrently with morphine, MNTX (0.75 mg/kg, IV, q 12 hours) and morphine (0.5 mg/kg, IV, q 12 hours) were administered for 6 days. Gastrointestinal variables evaluated were defecation frequency, weight of feces produced, fecal moisture content, intestinal transit time, and borborygmus scores. RESULTS: The time-concentration data for MNTX disposition best fit a 2-compartment model with a steady-state volume of distribution of 244.6 +/- 21.8 mL/kg, t1/2 of 47.04 +/- 11.65 minutes, and clearance of 11.43 +/- 1.06 mL/min/kg. Adverse effects were not observed at doses 相似文献   

20.
OBJECTIVE: To validate use of high-performance liquid chromatography (HPLC) in determining imipramine concentrations in equine serum and to determine pharmacokinetics of imipramine in narcoleptic horses. ANIMALS: 5 horses with adult-onset narcolepsy. PROCEDURE: Blood samples were collected before (time 0) and 3, 5, 10, 15, 20, 30, and 45 minutes and 1, 2, 3, 4, 6, 8, 12, and 24 hours after IV administration of imipramine hydrochloride (2 or 4 mg/kg of body weight). Serum was analyzed, using HPLC, to determine imipramine concentration. The serum concentration-versus-time curve for each horse was analyzed separately to estimate pharmacokinetic values. RESULTS: Adverse effects (muscle fasciculations, tachycardia, hyperresponsiveness to sound, and hemolysis) were detected in most horses when serum imipramine concentrations were high, and these effects were most severe in horses receiving 4 mg of imipramine/kg. Residual adverse effects were not apparent. Value (mean +/- SD) for area under the curve was 3.9 +/- 0.7 h X microg/ml, whereas volume of distribution was 584 +/- 161.7 ml/kg, total body clearance was 522 +/- 102 ml/kg/h, and mean residence time was 1.8 +/- 0.6 hours. One horse had signs of narcolepsy 6 and 12 hours after imipramine administration; corrresponding serum imipramine concentrations were less than the therapeutic range. CONCLUSIONS AND CLINICAL RELEVANCE: Potentially serious adverse effects may be seen in horses administered doses of imipramine that exceed a dosage of 2 mg/kg. Total body clearance of imipramine in horses is slower than that in humans; thus, the interval between subsequent doses should be longer in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号